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Abstract

Background and objectives: Severe acute respiratory syndrome coronavirus (SARS-CoV) 2 infection has caused 
millions of deaths worldwide, pushing the urgent need for an efficient treatment. Nonstructural protein 15 
(NSP15) is a promising target due to its importance for SARS-CoV-2’s evasion of the host’s innate immune re-
sponse.

Methods: Using the crystal structure of SARS-CoV-2 NSP15 endoribonuclease, we developed a pharmacoph-
ore model of the functional centers in the NSP15 inhibitor’s binding pocket. With this model, we conducted 
data mining of the conformational database of FDA-approved drugs. The conformations of these compounds 
underwent three-dimensional fingerprint similarity clustering, and possible conformers were docked to the 
NSP15 binding pocket. We also simulated the docking of random compounds to the NSP15 binding pocket for 
comparison.

Results: This search identified 170 compounds as potential inhibitors of SARS-CoV-2 NSP15. The mean free 
energy of docking for the group of potential inhibitors was significantly less than that for the group of random 
compounds. Twenty-one of the compounds identified as potential NSP15 inhibitors were antiviral compounds 
that inhibited a range of viruses, including Middle East respiratory syndrome, SARS-CoV, and even SARS-CoV-2. 
Eight of the selected antiviral compounds in cluster A are pyrimidine analogues, six of which are currently used 
in a clinical setting. Four tyrosine kinase inhibitors were identified with potential SARS-CoV-2 inhibition, which 
is consistent with previous studies showing some kinase inhibitors acting as antiviral drugs.

Conclusions: We recommend that the 21 selected antiviral compounds are tested as COVID-19 therapeutics.
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Introduction

Coronavirus disease-2019 (COVID-19) is a respiratory disease 
caused by severe acute respiratory syndrome coronavirus (SARS-
CoV) 2 infection. As of 1 August 2021, SARS-CoV-2 has cumu-
latively infected over 198 million people and killed over 4 million 
individuals in almost 200 countries and regions (www.coronavi-
rus.jhu.edu). The serious threats to global public health and the 
economy presented by SARS-CoV-2 have created an urgent need 
to identify novel tools to provide new pharmacologic leads that can 
improve survival for those already infected.

SARS-CoV-2 is a positive-sense, single-stranded, RNA beta-
coronavirus with a genome size of approximately 30 kb. The 
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genomic RNA contains a 5′-cap structure and a 3′-poly(A) tail. 
During infection, the viral genome is translated to generate viral 
polyproteins and transcribed to generate negative-sense RNA and 
subgenomic RNAs. The SARS-CoV-2 genome contains 14 open 
reading frames (ORFs) that encode 29 proteins, including non-
structural proteins (NSPs), structural proteins, and accessory pro-
teins. The two main units, ORF1a and ORF1b, are located at the 
5′-terminus and produce 16 NSPs through proteolytic cleavage by 
two viral proteases: the 3C-like protease and the papain-like pro-
tease. NSPs are essential for RNA transcription, replication, trans-
lation, and suppression of the host antiviral response.1–3

Targeting viral proteins to disrupt replication is an important ap-
proach to develop a therapy against SARS-CoV-2 infection. Ideally, 
one can target highly conserved viral proteins that are unlikely to ac-
quire the resistance of new viral mutants as the outbreak progresses. 
Recent studies have reported SARS-CoV-2 genomic variations in 
over 10% of isolated sequences, with the most frequent mutations 
being P323L in NSP12 and D641G in the spike protein.4,5 In con-
trast, NSP15, an RNA uridylate-specific endoribonuclease (with a 
C-terminal region homologous to poly(U)-specific endoribonucle-
ase enzymes), is highly conserved, making it an attractive target for 
drug development. NSP15-like endoribonucleases are found in all 
coronavirus family members, suggesting its endonuclease function 
is critical for the viral life cycle. The amino-acid sequence alignment 
of NSP15 from SARS-CoV and SARS-CoV-2 shows 88% sequence 
identity and 95% sequence similarity.6 NSP15 recognizes uracil and 
cleaves single-stranded RNA through an ion of Mn2+, requiring a 
transesterification reaction.7 Recent studies indicate that NSP15 is 
not required for viral RNA synthesis; rather, NSP15 suppresses the 
host protective immune response through evasion of host dsRNA 
sensors.8 Most recently, NSP15 has been reported to participate in 
viral RNA processing by degrading viral polyuridine sequences. 
This may prevent the host immune sensing system from detecting 
viral RNA via cell pathogen-recognition receptors, which subse-
quently inhibits both direct and indirect antiviral effects.9 These 
mechanisms are important for normal coronavirus infection of host 
cells. In the absence of NSP15 activity, viral replication is slowed 
significantly; therefore, NSP15 remains an attractive target for ad-
dressing SARS-CoV-2 infection.10

NSP15 is only active as a hexamer, which is formed as a dimer 
of trimers. The NSP15 monomer contains three domains: a N-ter-
minal domain responsible for oligomerization, a middle domain, 
and a C-terminal domain, which contains the catalytic domain.11 
The binding sites of each of the catalytic domains are accessible 
despite hexamerization. A recent publication reveals the first two 
crystal structures of SARS-CoV-2 NSP15 with 1.90 Å and 2.20 Å 
resolution.6 In the C-terminal catalytic domain of SARS-CoV-2 
NSP15, the active site carries six key residues: His235, His250, 
Lys290, Thr341, Tyr343, and Ser294. Among these residues, 
His235, His250, and Lys290 are suggested to constitute the cata-
lytic triad for its nuclease activity. His250 acts as a general base to 
activate the 2′-OH of the ribose, while His235 functions as a gen-
eral acid to donate a proton to the leaving 5′-OH of the ribose.6,11 
Ser294 together with Tyr343 determine uridine specificity. Ser294 
is a key residue that recognizes uracil and is assumed to interact 
with the carbonyl oxygen atom of uracil, while Tyr343 orients 
the ribose of uridine for cleavage by van der Waals interactions.11 
In the crystal structure of the NSP15 citrate-bound form, the cit-
rate ion forms hydrogen bonds with active site residues including 
His235, His250, Lys290, and Thr341.6 In the crystal structure of 
NSP15 complexed with uridine-5′-monophosphate (5′-UMP), 5′-
UMP interacts with all six active site residues. The uridine base 
of 5′-UMP interacts with Tyr343 through van der Waals interac-
tions and forms hydrogen bonds with the nitrogen atom of Ser294, 

Lys290, and His250.12 This structural information is important 
for exploring the binding of uridine analogues as potential SARS-
CoV-2 NSP15 inhibitors.

Tipiracil, a uracil derivative, is a thymidine phosphorylase in-
hibitor. It is an FDA-approved drug used with trifluridine to treat 
metastatic colorectal and gastric cancer. Previously, tipiracil has 
been reported to form hydrogen bonds with the SARS-CoV-2 
NSP15 active site residues Ser 294, Lys345, and His250.12 Tip-
iracil suppresses the RNA nuclease activity of NSP15 and modest-
ly inhibits SARS-CoV-2 virus replication in vitro without affecting 
the viability of host cells, most likely through competitive inhibi-
tion.12 Moreover, recent in-silico-based approaches have identi-
fied other potential NSP15 inhibitors that await further structural 
and biochemical validation.13,14 The current COVID-19 pandemic 
has brought attention to the repurposing of existing drugs and the 
rapid identification of candidate compounds. In this study, we use 
structure-based pharmacophore modeling and molecular docking 
to identify potential inhibitors of NSP15 by screening the FDA-
approved drug database.

Methods

The crystal structure of SARS-CoV-2 NSP15 endoribonuclease 
(protein data bank (PDB) ID: 6WXC) complexed with the ligand 
tipiracil (5-chloro-6-(1-(2-iminopyrrolidinyl)methyl)uracil) was 
downloaded from the RCSB protein data bank. Using Molecu-
lar Operating Environment (MOE; CCG, Montreal, Canada), we 
analyzed the key binding site residues that are responsible for the 
interaction between NSP15 and tipiracil and employed a structure-
based approach to construct our pharmacophore model of NSP15. 
The default forcefield used was Amber 10: EHT with R Field sol-
vation. Our pharmacophore model was created with seven features 
and excluded volume R = 1.6 Å. It had one donor, three accep-
tors, one cationic atom and donor, and two hydrophobic centroids. 
Based on this developed pharmacophore, we conducted a phar-
macophore search on our conformational database of 2,356 FDA-
approved drugs. A pharmacophore partial match was used for a 
5-of-7 features search.

For multi-conformational docking of the selected compounds, 
we prepared the NSP15 structure with the Protonate 3D applica-
tion, isolated the ligand and pocket, visualized the space available 
for the docked ligands, defined the binding pocket based on the 
known key residues for its nuclease activity and uridine specific-
ity, and generated ligand conformations using the bond rotation 
method. The compounds were docked into the pocket using the 
Triangle Matcher Method and London dG scoring for placement 
as well as the Induced Fit Method and GBVI/WSA dG scoring for 
refinement. Poses were ranked by the GBVI/WSA binding free en-
ergy calculation in the S field. The 56 random control compounds 
were selected from the FDA drug database.

To further analyze the ligand interactions for some of the above 
models, the structures were divided into ligand and protein pdb 
files. The separate structures were protonated: the protein with 
Visual Molecular Dynamics (VMD), v1.9.4, and the ligand with 
Avogadro, v1.2.0. VMD was used to generate a psf (NAMD pro-
tein structure file) file for the protein, and the Ligand Reader and 
Modeler from charmm-gui.org was used to generate the psf and 
prm files for the ligand. VMD was then used with the CHARMM36 
forcefield to recombine the ligand and protein, thus solvating the 
structure and generating the required psf and pdb files.15–17 NAMD 
v2.14 was used to run 100 steps of minimization followed by 100 ns 
of dynamics with 2 fs/step (50,000,000 iterations). The simulation 
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conditions were rigid bonds involving hydrogen (rigid bonds set 
to “all”), a splitting distance of 12 Å between the short-range and 
the particle-mesh Ewald long-range potential, Langevin dynamics 
at 310K with hydrogen atoms excluded (Langevin hydrogen set to 
“off”), and periodic boundary conditions.15–17 The MD simulations 
were run on the San Diego Supercomputer Center Expanse Clus-
ter (https://www.sdsc.edu/support/user_guides/expanse.html) on 2 
nodes, 128 cores per node for a total of 256 processors.

Results

Pharmacophore model creation and search of drug database

A recent publication of the crystal structure of the SARS-CoV-2 
NSP15 endoribonuclease complexed with the ligand tipiracil pro-
vides detailed information regarding key residues responsible for 
the catalytic activity of NSP15 and its interactions with potential 
ligands.6 Based on the binding information for these key residues, 
we generated a pharmacophore model with potential functional 
centers that bind to the residues in the pocket (Fig. 1a).

The pharmacophore search with a partial match of 5 of 7 centers 
identified 803 compounds. We selected 170 compounds from the 
search based on the numbers of hydrogen bonds and hydrophobic 
interactions in the best docking pose. A minimum of three hydro-
gen bonds and two hydrophobic interactions were the criteria for 
selection. We clustered the selected compounds using the Simi-
larity Clustering of the MOE Database Viewer with a fingerprint 
of GpiDAPH3 and similarity-overlap parameter SO = 45%. The 
search identified three major hit clusters containing ten or more 
compounds, along with several clusters containing less than ten 
compounds (from nine to two) and 36 single clusters with just one 
compound (Table 1). The two largest clusters (A and B) contain 
16 and 35 compounds, respectively; clusters C, D, E, F, G, and H 
contain 11, 9, 7, 7, 5, and 5 compounds, respectively; clusters I, 
J, and K contain 4 compounds each; clusters L to V contain 2–3 
compounds each; and 36 single compounds were not a part of a 
cluster (Table 1). Flexible alignment of the clusters was used to il-
lustrate common features of the compounds (Figs. 1, 2). Cluster A 
mainly contains pyrimidine analogues that are known viral inhibi-
tors. Cluster B mainly contains cephalosporin antibiotics. Cluster 
C mainly contains diuretic medications. Cluster D mainly contains 
angiotensin-converting enzyme inhibitors and carbapenem antibi-
otics. Cluster E mainly contains beta blockers. Cluster F mainly 
contains nonsteroidal anti-inflammatory drugs. Cluster G mainly 
contains tyrosine kinase inhibitors. Cluster H mainly contains fluo-
roquinolones. Cluster I mainly contain diuretics. Cluster J mainly 
contains saccharide-like compounds. Cluster K mainly contains 
prostaglandin-like compounds.

Computational docking

For docking the selected compounds, we used the crystal structure 
of SARS-CoV-2 NSP15 endoribonuclease (PDB ID: 6WXC), which 
was imported into MOE. After structure preparation and the model’s 
binding pocket was defined, based on known key residues for its 
nuclease activity and uridine specificity, ligand conformations were 
generated using the bond rotation method. These were docked into 
the site with the Triangle Matcher method and ranked with the Lon-
don dG scoring function. The retain option specifies the number of 
poses (30) to pass to the refinement, which is for energy minimiza-
tion in the pocket, before rescoring with the Induced Fit method and 

the GBVI/WSA dG scoring function. To validate docking, 56 ran-
dom control compounds were selected from the FDA drug database, 
using a random number generator without repetitions.

The values of docking free energies of the selected and random 
compounds are shown in Figure 3. The means of the selected and 
random compounds are −6.50 kcal/mol and −5.79 kcal/mol, respec-
tively. Furthermore, the p value of the one-tailed test for selected vs. 
random compounds is 1.31 E-06. The energies of interaction with 
the NSP15 active site are shown in Table 2 and Table S1.

Molecular dynamics (MD) simulations

We selected the three compounds with the top docking energies to 
further analyze the stability of the ligand interactions; these com-
pounds were cefmenoxime, cefotiam, and ceforanide. The final 
configurations of the compound-protein complexes resulting from 
these MD simulations are shown in Figure 4 and Table 3.

Cefmenoxime (Fig. 4a, d) had six major ligand interactions 
with NSP15, the shortest distance of which was 2.73 Å from the 
residue Lys290. Cefotiam (Fig. 4b, e) had four major ligand in-
teractions with NSP15, the shortest distance of which was 2.69 
Å from the residue Leu246. Finally, ceforanide (Fig. 4c, f) had 
two major ligand interactions with NSP15, the shortest distance 
of which was 2.70 Å from the residue Lys290. Figure 5 shows the 
measurements between the NZ atom of Lys290 of the protein and 
the geometric center of these compounds. Of note, these distances 
were fairly stable during the MD simulations.

Discussion

Based on the crystal structure of the SARS-CoV-2 NSP15 endori-
bonuclease complexed with tipiracil, we developed a pharmacoph-
ore model of NSP15’s binding pocket, including key residues for 
its nuclease activity and uridine specificity. Using this model, we 
conducted a pharmacophore search of our conformational database 
of FDA-approved drugs. In the search, 170 compounds were se-
lected, clustered, and were then used for flexible docking into the 
NSP15 active site pocket in the catalytic domain. Twenty-one of 
the compounds identified as potential NSP15 inhibitors were anti-
viral compounds used against a range of viruses, including human 
immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis 
B virus, influenza, and herpes simplex virus. Some of them also 
demonstrated inhibitory activity against Middle East respiratory 
syndrome, SARS-CoV, and SARS-CoV-2 (Table 4).

According to the DrugVirus.info database,18 13 of the antivi-
ral compounds selected by the pharmacophore-based search dis-
played activity against a total of 40 viruses in cell-culture, animal, 
and clinical models (Fig. 6). The other eight antiviral compounds 
were not in the database. A previous study did not identify any 
of these compounds as potential NSP15 inhibitors, and their top 
selected drugs did not show antiviral activity.14 Differences in 
methodology may explain these discrepancies in the results. 
Specifically, Chandra and co-authors used the NSP15 (PDB ID: 
6W01) structure with a citrate ion;14 we used the crystal structure 
of NSP15 complexed with tipiracil that binds to the NSP15 uracil 
site. We assume that the pharmacophore model generated with this 
protein structure includes the key features responsible for ligand 
interaction with residues in the NSP15 active site. We did notice 
that tipiracil, the positive control, did not have a low free energy. 
However, an in-vitro study confirmed that tipiracil can inhibit 
uracil binding to the NSP15 active site, presumably through com-
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petitive inhibition and modestly suppressing SARS-CoV-2 viral 
replication in cellular assays.12 Cluster A includes six pyrimidine 
analogues that are currently used as viral inhibitors: HIV reverse 
transcriptase inhibitors—zidovudine and stavudine, a hepatitis B 

virus DNA polymerase inhibitor—telbivudine, and herpes simplex 
virus DNA polymerase inhibitors—brivudine, edoxudine, and tri-
fluridine (Table 4 and Fig. 6). The other two drugs in cluster A, 
tipiracil12 and floxuridine,19 are anticancer drugs that have antivi-

Fig. 1. Pharmacophore of the NSP15 binding pocket and binding poses of the best energy-docked molecules. (a) The model of the pharmacophore con-
tains seven functional centers: one donor, three acceptors, one cationic atom and donor, and two hydrophobic centroids. Binding poses of the drugs with 
the best scores: (b) Cefotiam, DFE = −8.48 kcal/mol; (c) Ceforanide, DFE = −8.43 kcal/mol; (d) Cefmenoxime, DFE = −8.25 kcal/mol; (e) Pentetic acid, DFE = 
−8.20 kcal/mol. (f) Positive control, Tipiracil, DFE = −5.14 kcal/mol. DFE, Docking free energy; NSP15, nonstructural protein 15.
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ral properties. All of these pyrimidine analogues are polymerase 
inhibitors, which is a major class of antiviral drugs.

These results support using the pharmacophore features of 

NSP15 to identify potential antiviral compounds containing a 
pyrimidine-like scaffold and the further development of nucleo-
tide-like drugs with a higher affinity for the active site of NSP15. 

Fig. 3. Free energies of the docking interaction of selected and random compounds with SARS-CoV-2 NSP15. The means of the selected and random 
compounds are −6.50 and −5.79 kcal/mol, respectively. The p value of the one-tailed test is 1.31E-06. NSP15, nonstructural protein 15; SARS-CoV-2, severe 
acute respiratory syndrome coronavirus 2.

Fig. 2. Flexible alignments of compounds in clusters selected by the pharmacophore-based search of possible drug candidates in the conformational 
database of FDA-approved drugs. (a) Cluster A (16 compounds). (b) Cluster B (35 compounds).
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Recent studies have demonstrated that tyrosine kinase inhibitors 
have antiviral potential through inhibition of key kinases required 
for viral entry and replication.20,21 Thus, repurposing receptor ty-
rosine kinase inhibitors is an effective strategy in the fight against 
COVID-19.22 Our pharmacophore model successfully identified 
four tyrosine kinase inhibitors with antiviral activity in cluster G, 
the binding affinities of which were high. Dasatinib, an approved 
drug for chronic myelogenous leukemia, has activity against both 
Middle East respiratory syndrome-CoV and SARS-CoV in vitro 
and possible protection against SARS-CoV-2 infection.23,24 The 
epidermal growth factor receptor inhibitor gefitinib has demon-
strated in-vitro activity against HCV, BK virus, cytomegalovirus 
, and vaccinia virus (Fig. 6). In addition, lapatinib was recently 
found to potently inhibit SARS-CoV-2 replication at clinical dos-
es, strongly supporting our screening result.25

Promising antiviral drugs from cluster U include the HIV 
proteinase inhibitor amprenavir. Specifically, amprenavir has 
a free energy of −7.29 kcal/mol and modestly inhibits replica-
tion of SARS-CoV-2 in vitro.26 Outside of clusters A, G, and U, 
other antiviral drugs include the influenza neuraminidase inhibi-
tors peramivir and oseltamivir, the HIV non-nucleoside reverse 
transcriptase inhibitor doravirine, and the HCV NS5B polymer-

ase inhibitor sofosbuvir, which displays activity against SARS-
CoV-2.27

It is interesting to note that some of the randomly selected FDA-
approved drugs had free energies less than −7.00 kcal/mol, namely 
gadoxetate (−8.31 kcal/mol), iohexol (−7.45 kcal/mol), and chlo-
rtetracycline (−7.11 kcal/mol) (Table S1). These compounds also 
can be potential inhibitors of NSP15.

Future directions

We have identified potential NSP15 inhibitors through computer-
based screening. These compounds will be further investigated for 
their effects on the endoribonuclease activity of NSP15 and the 
viral replication of SARS-CoV-2 using biochemical and cellular 
assays, respectively. Crystallization of NSP15 complexes with 
the potential inhibitor will also be conducted. NSP15 has been 
reported to be responsible for the interference with the innate im-
mune response; thus, animal model and in vivo studies are needed 
to determine the efficacy, toxicity, and antiviral mechanism of the 
candidate compounds.

Table 2.  List of selected compounds sorted by their energies of interaction with SARS-CoV-2 NSP15 in the docked positions. All compounds shown have 
an energy less than −7 kcal/mol

Drug Name DFE kcal/mol Cluster Drug Name DFE kcal/mol Cluster

Cefotiam −8.48 B Gliclazide −7.33 I

Ceforanide −8.43 B Streptomycin −7.31 S

Cefmenoxime −8.25 B Amprenavir −7.29 S

Pentetic Acid −8.20 M Minocycline −7.28 S

Cefonicid −8.14 B Azlocillin −7.26 B

Cephaloglycin −7.97 B Dasatinib −7.26 G

Cefamandole nafate −7.95 B Acarbose −7.25 J

Cefamandole −7.94 B Cefditoren −7.24 B

Atorvastatin −7.87 S Meropenem −7.19 D

Cefazolin −7.79 B Cefpirome −7.18 B

Ertapenem −7.70 D Macitentan −7.13 S

Doripenem −7.66 D Cefdinir −7.12 B

Glyburide −7.65 P Betiatide −7.12 B

Cefmetazole −7.62 B Alprostadil −7.12 K

Dinoprostone −7.56 K Cefoxitin −7.11 B

Spirapril −7.52 D Acemetacin −7.11 R

Cefotaxime −7.52 B Ramipril −7.09 D

Cefapirin −7.50 B Ranolazine −7.07 S

Cephalothin −7.48 B Afatinib −7.06 G

Ceftibuten −7.44 B Losartan −7.06 K

Lapatinib −7.42 G Cefadroxil −7.03 B

Cefprozil −7.39 B Methicillin −7.03 B

Cefpodoxime −7.37 B Sofosbuvir −7.03 S

Mezlocillin −7.34 B

DFE, Docking free energy; NSP15, nonstructural protein 15; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Fig. 4. Further analysis of the top three compounds in terms of the docking energies with the NSP15 binding pocket. (a, d) Cefmenoxime; (b, e) Cefotiam; 
(c, f) Ceforanide. NSP15, nonstructural protein 15.

Table 3.  List of ligand interactions with the NSP15 binding pocket, distance, and energy for the compounds in Figure 4

Ligand Receptor Interaction Distance Energy (kcal/mol)
Cefmenoxime

OXT 6 O Leu246 H-donor 2.83 −5.0
O1 7 N Gly248 H-acceptor 2.79 −0.5
O1 7 NZ Lys290 H-acceptor 2.73 −6.7
O2 10 NZ Lys290 H-acceptor 2.80 −4.0
O3 14 CE Lys345 H-acceptor 3.51 −0.8
N9 33 N Gly248 H-acceptor 3.46 −0.6

Cefotiam
OXT 6 O Leu246 H-donor 2.69 −2.8
O1 7 N Gly248 H-acceptor 2.77 −2.0
O1 7 NZ Lys290 H-acceptor 2.96 −3.3
O2 10 NZ Lys290 H-acceptor 2.82 −7.9

Ceforanide
O1 6 NZ Lys290 H-acceptor 2.70 −4.6
O2 10 N Gly248 H-acceptor 2.71 −5.8

NSP15, nonstructural protein 15.
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Fig. 5. Distances between the NZ atom of Lys290 of NSP15 protein and the geometric centers of the compounds during the 100 ns of MD simulation. (a) 
Cefmenoxime; (b) Cefotiam; (c) Ceforanide. The plots show the stability of the positions of these compounds. MD, molecular dynamics; NSP15, nonstruc-
tural protein 15.
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Conclusions

Given the severity of the COVID-19 pandemic, we need a fast way 
of discovering treatments. The identification of FDA-approved 
drugs that inhibit SARS-CoV-2 infection can lead to advances in 
this field. Though this study is limited due to only using comput-
er-based screening, the potential of the 170 compounds is a key 
step in finally finding a treatment. Twenty-one of these drugs have 
known antiviral properties, some of which have demonstrated in-
hibition of SARS-CoV-2 replication in vitro. We recommend that 
the 21 selected antiviral compounds are tested as COVID-19 thera-
peutics, especially those in clusters A, G, and U.

Supporting information

Supplementary material for this article is available at https://doi.

org/10.14218/JERP.2021.00032.

Table S1. List of random compounds sorted by their energies 
of interaction with SARS-CoV-2 NSP15 in the docked posi-
tions. DFE, docking free energy.
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