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Introduction

Cancer is one of the leading causes of death worldwide.1 It is a 
complex disease originating from various genetic alterations/epige-
netic aberrations. Due to its mechanistic complexity, current cancer-
specific therapies have certain limitations, emphasizing the need for 
alternative therapeutic approaches. The Cancer Genome Atlas2–7 has 
described over 15,000 tumors that have generated multi-dimension-
al data that illuminate the complexities of oncogenesis. Researchers 
have made a significant effort to comprehend the underlying biol-
ogy of tumorigenesis, which has helped in the development of vari-
ous chemotherapeutic agents, small molecule drugs, and antibod-
ies. However, different cancer patients have vastly different genetic 
alterations/aberrations that can drastically alter tumor progression 

and susceptibility to therapy. As a result, there have been a signifi-
cant thrusts and emphasis on identifying various genetic/epigenetic 
mutations, comprehending the genomic landscape, and developing 
more productive and safe therapeutic approaches for cancer.8,9 RNA 
interference (RNAi) and random mutagenesis were initially used 
to discover genetic alterations.10,11 Subsequently, the discovery of 
programmable nucleases such as zinc-finger nucleases (ZFNs) and 
Transcription activator-like effector nucleases (TALENs) provided 
an immense opportunity to study the function of genes in cancer. 
These genome editing technologies have enabled researchers to 
target the genome at specific sites to generate gene-knockouts.12,13 
Both TALENs and ZFNs are engineered nucleases and are created 
by fusing DNA binding domains with a DNA cleavage domain. 
They can target and cleave specific DNA sequences, which are then 
repaired by the endogenous DNA repair machinery, thereby precise-
ly altering DNA sequences in the complex genome.12,13 However, 
TALENs and ZFNs are considered to have low editing efficiency 
and are expensive tools. The recent identification of RNA-guided 
programmable nucleases of the bacterial adaptive immune system 
has shown tremendous success and proven to be a highly efficient 
tool for gene editing/genome engineering.13–17

The Clustered regularly interspaced short palindromic repeats-
CRISPR associated protein 9 (CRISPR-Cas9) system of gene edit-
ing has gained significant attention in recent years for its precision 
and effectiveness in genome editing in several model systems and 
human cells. Not only that, CRISPR-Cas9 is also used to introduce 
transcriptional and epigenetic modifications in different mamma-
lian systems. Direct somatic editing using CRISPR-Cas9 has trans-
formed the druggable space by helping researchers to correct any 
altered genomic aberrations or modify regulatory elements and 
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splicing patterns.18,19

The technological demonstration of CRISPR-Cas9 and the mo-
lecular basis of editing has been covered elsewhere.20–22 In short, 
a single guide RNA (sgRNA) directs Cas9 endonuclease to intro-
duce a double-stranded break at a specific site in the genome.23 
The endogenous DNA repair mechanisms later repair the genome 
using two different mechanisms: namely, the predominant error-
prone non-homologous end joining24–26 and less frequent homol-
ogy-directed repair (HDR),27–31 which requires a donor template. 
Non-homologous end joining has been used to disrupt the genome 
sequences to create deletion and insertions, while HDR has been 
used to alter specific regions of the genome using exogenous repair 
templates. In addition to this, a modified version of Cas9 protein, 
catalytically dead Cas9 (nuclease-dead Cas9), has been utilized to 
either activate or repress the target genes; these mechanisms are 
known as CRISPR activation and CRISPR interference respec-
tively (Fig. 1).32–34

In this review, we will discuss how CRISPR-Cas9 is revolu-
tionizing cancer research and therapy. The role of CRISPR-Cas9 
system in understanding cancer genomics, exploring non-coding 
regions, in vivo gene editing, and the generation of novel orga-
noid models will also be discussed. The recent advances in the 
delivery of CRISPR-Cas9 for in vivo gene editing will be reviewed 
Lastly, we will summarize the preclinical and clinical applications 
of CRISPR-Cas9 technology in cancer.

CRISPR-Cas9 as a tool for target discovery in cancer

CRISPR-Cas9 is a powerful tool to identify novel targets in can-
cer. Due to precise gene editing capabilities, CRISPR has become 
the tool of choice to study the function and regulation of specific 
genes. It has been used in high-throughput screening approaches, 
where CRISPR-Cas9 is used to generate a large number of genetic 
knockouts using which one can monitor whether there is a pheno-
typic effect due to knockout of a particular gene in a cell population. 
In cancer, this strategy has been used to perform high-throughput 
screens and look at gene-drug interactions when used in conjunc-
tion with small molecules.35–38 The recent advancement in next-
generation DNA sequencing and genome-wide association studies 
has provided a more comprehensive understanding of variations in 
the human genome. This has unraveled thousands of single nucleo-
tide polymorphisms and mutations attributed to various diseases 
and their predisposition. Several genomic repositories (such as The 
Cancer Genome Atlas, the Cancer Cell Line Encyclopedia or the 
Encyclopedia of DNA Elements39,40) have been developed, contain-
ing a catalog of disease-specific variation at the genome level. This 
has also encouraged personalized medicine by integrating available 
patient data and genetic information. However, the hypothesis gen-
erated by these high-throughput genomics data requires thorough 
testing and validation using accurate genetic models to develop new 
treatment standards. It is often seen that mutations in genes with 
known functions do not always directly correlate with the disease 
phenotype. To understand such relationships, researchers often need 
a large number of matched patient and regular tissue samples, which 
can be difficult to obtain due to ethical concerns. The advent of 
CRISPR technology has helped researchers to generate isogenic hu-
man knockout/genetically modified cells to address this problem.41 
Likewise, CRISPR technology has been used in many cell types, 
particularly cancer cell lines, primary cells, organoids, and induced 
pluripotent stem cells.41–44 One example where CRISPR is used in 
cancer biology is if a tumor-derived cell line with a genetic lesion is 
thought to be sensitized to a particular therapeutic drug, one can use 

CRISPR to test the hypothesis of synthetic lethality in the appropri-
ate cell line.45–47

Although this technique shows a lot of promise, the rates of 
CRISPR-mediated cell modification vary from cell type to cell 
type, especially HDR. Primary cells such as neurons and other 
non-mitotic cells are challenging to modify especially using 
HDR. The development of microhomology-mediated integration 
has shown promise to bypass HDR-mediated cell line modifica-
tion.48–50 Furthermore, the discovery of newly engineered Cas en-
zymes has also enabled researchers to modify primary cells, alter 
the genome, and change specific bases. For example, the fusion 
of cytidine deaminases to Cas9 has enabled researchers to modify 
RNA-guided base editing,51,52 which has shown promise in editing 
a wide variety of cell types.

CRISPR-Cas9 as a tool to investigate non-coding regulatory 
regions in cancer

The majority of the human genome is comprised of non-protein 
coding regions that consist of various regulatory elements such as 
enhancers, silencers, and insulators. Due to the dearth of robust 
molecular biology tools, these regions have not been fully charac-
terized. The importance of these non-coding regions is highlighted 
by the fact that dysregulation of these elements could contribute to 
oncogenesis.53 Therefore, a comprehensive understanding of these 
regulatory elements may help to understand the genomic land-
scape of cancer cells. Several studies have utilized CRISPR-Cas9 
technology to interrogate the non-coding regions of the genome, 
in particular various cis-regulatory elements such as enhancers, 
super-enhancers, and trans-acting factors.

In one of the landmark studies, researchers utilized pooled 
CRISPR-Cas9 libraries to identify functional non-coding regions 
around CUL3, NF1, and NF2 genes, which have been previously 
shown to be responsible for promoting Vemurafenib resistance to 
melanoma cells harboring the BRAF V600E mutation.54,55 Nota-
bly, the authors found significantly more regulatory regions around 
the CUL3 gene compared to the NF1 and NF2. Furthermore, the 
authors used chromosome conformation capture studies to show a 
direct interaction between these non-coding regions to the 5′ end 
of the CUL3 gene.54

In another interesting study, researchers have performed CRIS-
PR-Cas9 screens to identify several functional elements that regu-
late two transcription factors TP53 and ESR1, which play essential 
roles in tumor initiation and progression.56,57 These pooled CRIS-
PR-Cas9 screens identified six different enhancer elements, one of 
which promoted the activation of the CDKN1A gene during a cell 
cycle arrest program called oncogene-induced senescence, and the 
other one mediated the expression of the CCND1 gene in response 
to ERS1 signaling. The identification of these regulatory elements 
and their associated target genes could lead to tumor diagnostics 
and therapeutics.56

The advent of CRISPR-Cas9 high-throughput screens has also 
provided researchers a versatile tool to interrogate the non-coding 
genome at high resolution, particularly the characterization of sev-
eral non-coding RNAs in cancer and other diseases. Studies have 
utilized genome-wide deletion screens of long-noncoding RNA 
(lncRNAs) using paired sgRNAs to show that knockout of specific 
lncRNAs significantly altered cell proliferation eluding to their 
role in oncogenesis.58 Other studies have used CRISPR interfer-
ence screens on various cell lines to study the effects of lncRNAs 
on cell viability.59 One of these studies identified 499 lncRNAs 
essential for cell proliferation. CRISPR-Cas9 has also been used 
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to visualize lncRNAs in scenarios where the conventional fluo-
rescence in-situ hybridization approaches have failed. One study 
used catalytically dead Cas9-GFP-sgRNA fusion probes to visu-
alize X-inactive specific transcript lncRNA which has a complex 
secondary structure and was highly condensed for the access of 
fluorescence in-situ hybridization probes. The authors used this 

modified Cas9 to efficiently visualize the X-inactive specific tran-
script lncRNA along with repressive H3K27me3 histone marks in 
female fibroblasts.60

Although the role of CRISPR-Cas9-mediated identification of 
lncRNAs shows promise, there is one caveat; since various lncR-
NAs have bidirectional promoters and are located near/within pro-

Fig. 1. Schematic representation of CRISPR-Cas9-mediated genome editing. (a) The Cas9 nuclease is directed to the target DNA by complementary base 
pairing with its bound guide RNA in which the target site is followed by a PAM sequence (NAG, NAG). Cleavage of the dsDNA promotes either error-prone 
NHEJ or HDR. (b) Two guide RNAs (targeting two different sites, namely target A and target B) can be used simultaneously to remove a longer stretch of DNA 
and a new DNA can be inserted using a donor DNA using HDR. (c) Catalytically dead Cas9 (dCas9) can be tagged with transcription activators (or repressors) 
and fluorescent proteins (such as GFP) to regulate gene expression or visualization. CRISPR, clustered regularly interspaced short palindromic repeats; Cas9, 
CRISPR associated protein 9; dCas9, dead CRISPR associated protein 9; gRNA, guide RNA; mRNA, messenger RNA; dsDNA, double stranded deoxyribonucleic 
acid; PAM, protospacer adjacent motif; NHEJ, non-homologous end joining; HDR, homology directed repair; GFP, green fluorescent protein.
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tein-coding genes, targeting them with CRISPR-Cas9 affects the 
expression of these genes.61 Therefore, more complex CRISPR-
Cas9 approaches need to be developed to interrogate the molecular 
function of lncRNAs.

CRISPR-Cas9 as a tool to generate organoid models of cancer

In recent years, organoids have become popular in vitro models 
over two-dimensional cell cultures to study human diseases. Adult 
human stem cells are isolated and stimulated with specific growth 
factors to help them proliferate and subsequently differentiate into 
three-dimensional organoids.62 Traditionally, small molecule ther-
apeutic assays were performed on two-dimensional cell cultures, 
but this did not mirror normal physiological conditions where cells 
are in a three-dimensional microenvironment. These organoids 
mimicked cell-matrix and cell-cell environments compared to cells 
in two-dimensional cultures which helped researchers to develop 
physiologically relevant in vitro systems for their studies.

The advent of CRISPR-Cas9 has aided researchers to generate 
tumorigenic organoid models to interrogate putative mechanisms 
of oncogenesis. The first proof of concept study for genome edit-
ing using CRISPR-Cas9 was carried out in intestinal stem cell or-
ganoids where researchers repaired the CFTR locus from a Cystic 
Fibrosis patient.63 A few years later, healthy human intestinal stem 
cell-derived organoids were transformed into their tumorigenic 
counterparts by introducing several tumor-inducing mutations 
using CRISPR-Cas9. The activation of oncogenes (such as PI3K 
and KRAS, etc.) and the disruption of tumor-suppressors (such as 
TP53, APC, SMAD4, etc.) using CRISPR-Cas9-mediated gene 
editing helped establish organoid models of cancer in vitro.42,44 
Another group used CRISPR-Cas9 to delete an essential DNA re-
pair gene called MLH1 from healthy human stem cell organoids 
to accurately model oncogenesis induced by replication errors and 
mismatch repair.64 Thus the use of CRISPR-Cas9 in generating 
various stem-cell derived organoid models can be used to mimic 
patient-derived samples for functional assays of small-molecule 
and other high-throughput screens.65

CRISPR-Cas9 as a tool to overcome drug resistance in cancer

With the development of CRISPR-Cas9, researchers can modify 
the genome to understand the role of specific genes and molecular 
mechanisms underlying drug resistance in different types of cancer 
such as breast cancer, lung cancer, liver cancers, and gliomas.

Using a genome-wide CRISPR-Cas9 approach, researchers 
showed that deletion of transcriptional factors such as MED1, 
CREBBP, and EP300 increased the efficacy and synergy between 
two drugs, namely erlotinib (an epidermal growth factor recep-
tor (EGFR) inhibitor) and TZH1 (a CDK7/12 inhibitor).66 These 
drugs are used in the treatment of EGFR-dependent lung adeno-
carcinoma. Another study used a combination of CRISPR, short-
hairpin RNA (shRNA), and expression screen in non-small cell 
lung cancer cells to identify a protein called PBRM1 (a subunit 
of SWI/SNF complex) which attenuated the gefitinib mediated 
EGFR inhibition for prolonged cell survival.67

A genome-wide association study in women treated with se-
lective estrogen modulators for breast cancer prevention identi-
fied a single nucleotide polymorphism (rs9940645) in a gene 
called ZNF423. Using CRISPR-Cas9 editing, the authors modified 
ZR75-1 cells to harbor the same variant. Studies on these cell lines 
showed that this variant containing the cell line was more sensi-

tive to raloxifene, olaparib, and cisplatin.68 Another genome-wide 
CRISPR screen revealed the role of BAK in breast cancer. In this 
study, when breast cancer cells with high expression of MCL-1 
were treated with S63845 (an MCL-1 inhibitor), a synergistic rela-
tionship with other drugs such as docetaxel, trastuzumab, and lapa-
tinib which are used in the treatment of triple-negative breast can-
cer and HER2-amplified breast cancer was revealed. The CRISPR 
screen revealed that the deletion of BAK or double deletion of 
BAK and BOX showed resistance to S63845.69

Other genome-wide CRISPR-Cas9 screens have identified fac-
tors involved in drug resistance in liver cancers and glioblastoma. 
One screen identified a protein called SCOL1 (a protein involved in 
mitosis), the loss of which led to sorafenib resistance in hepatocellu-
lar carcinoma. Furthermore, it was shown that loss of SGOL1 from 
hepatocarcinoma cell lines decreased the cytotoxicity of sorafenib.70 
CRISPR-Cas9-mediated knockout of a glioblastoma-associated on-
cogene called GLI1 showed increased apoptosis when combined 
with an antipsychotic drug Penfluridol.71 CRISPR-Cas9-mediated 
depletion of a centriole satellite protein PCM1 revealed that its re-
moval inhibited glioblastoma cell proliferation and had increased 
sensitivity to temozolomide in patient-derived glioblastoma.72 Saber 
et al.73 and Liu et al.74 have reviewed these studies.

Delivery of CRISPR-Cas9 for in vivo editing

One of the significant challenges in CRISPR-mediated gene ther-
apy is how editing components can be delivered into specific tis-
sues in humans without leading to off-targets and activating the 
immune system. Broadly, there are two ways to deliver CRISPR-
Cas9 for in vivo gene editing, namely the non-viral method and 
viral based method using adeno-associated virus (AAV).

Non-viral delivery of CRISPR-Cas9

Several non-viral methods of CRISPR-Cas9 delivery have been 
developed. One of the simplest delivery methods utilizes cell-pen-
etrating peptides conjugated to sgRNA and Cas9 protein. It has 
been shown to edit HEK293T cells with an efficiency of 6.2%75 
and can be a potential delivery approach for in vivo applications 
in future studies. Another delivery method is Lipid nanoparticles 
(LNPs) based. LNPs are produced using a combination of ioniz-
able lipids, cholesterol, and PEGylated lipids. These LNPs are then 
used to deliver sgRNA and Cas9 to the mouse liver to target the 
transthyretin gene. This approach showed a more than 97% reduc-
tion in serum transthyretin levels.76 Polymer-based synthetic na-
nomaterials are also being developed for CRISPR-Cas9 delivery. 
Cationic polymers such as polyethyleneimine are conjugated with 
CRISPR-Cas9 vectors and injected directly into tumors in EGFP 
expressing mice and a significant drop in EGFP has been shown, 
exhibiting high knockout efficiency.77 Additionally, colloidal gold 
nanoparticles are also being used to successfully deliver gRNA-
Cas9 ribonucleoproteins along with HDR template in mice to treat 
Duchenne muscular dystrophy with minimal off-target effects.78 
Although all these approaches have shown promise, further re-
search is required to improve the scalability and efficacy of these 
methods in preclinical and clinical studies.

AAV based delivery of CRISPR-Cas9

In the last decade, a lot of research has been undertaken to study 
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and characterize AAVs. These studies have led to the discovery of 
multiple serotypes of AAVs with distinct tropisms to selectively 
target different tissues in humans for gene therapy.79 Therefore, 
AAVs have become a potent delivery tool for CRISPR-Cas9 to 
specific tissues for gene modification.80 For example, CRISPR-
Cas9 harboring AAVs have been subretinally injected to knock-
down the NRL gene in post-mitotic retinal photoreceptors to pre-
vent retinal degeneration in mice81 and to the striatum to edit the 
huntingtin gene to alleviate Huntington’s disease.82 For systemic 
delivery, two crucial things need to be considered: (a) the serotype 
of the AAV and (b) tissue-specific promoters under which the Cas9 
is cloned. Once these conditions are determined, the engineered 
virus can be used to deliver Cas9 and sgRNA for expression in 
specific tissues. This dual AAV system has been used to edit the 
ornithine transcarbamylase gene in mice liver83 and the dystro-
phin gene in the mouse model for Duchene muscular dystrophy 
and muscle stem cells in mice.84,85 Although the editing efficiency 
was between 10–70%, these experiments had significant pheno-
typic improvements in mice. Recent studies have also shown that 
although AAVs and Cas9 induce an immune response in mice, they 
do not inflict extensive cellular damage,86 making them potentially 
safer delivery methods over other delivery systems.

High titer AAV libraries have been used to target mouse tissues 
in vivo to generate tumors with several mutations in glioblastoma 
and liver tissue.87,88 This approach can help researchers robustly 
study the oncogenic role of individual mutations, helping develop 
patient-specific treatments with genetically matched tumors. This 
technique may also help in the development of tumor heterogene-
ity models, which has been recognized as an important contributor 
to drug resistance and cancer relapse.89,90 Therefore, this technique 
could be used to model, predict and investigate tumor clonal dy-
namics and eventually serve as a platform for novel cancer thera-
pies.

One limitation of using AAV as a delivery tool is that AAVs 
have a limited cargo size, as two separate vectors are used for de-
livery, both directly to the target organ and systemically.91

Researchers are also using LNPs, cell penetrating peptides, and 
polymers-based synthetic nanomaterials to deliver CRISPR-Cas9 
as well (discussed above). Recent studies have used lipid nano-
particles to efficiently deliver CRISPR-Cas9 into mouse liver to 
knockout specific genes76,92,93 and can deliver donor templates for 
HDR-mediated gene editing.78 There are two significant advan-
tages of using lipid nanoparticles as a method of delivery: (a) they 
were previously used to deliver siRNA and mRNA in clinical tri-
als94,95 and (b) they can be industrially manufactured.94 Additional 
research is required to improve the efficiency of ex vivo and in 
vivo CRISPR-Cas9 editing, and new screens are being performed 
to gain new insights on cancer-associated genes.

Clinical trials using CRISPR-Cas9

The idea of somatic gene therapy has been proposed long before 
the advent of gene editing technology was discovered. Somatic 
gene therapy is described as introducing genetic material into so-
matic cells, which will then express that novel gene product. These 
cells can then be put back into patients for therapeutic purposes. 
Before the introduction of modern gene therapy techniques, these 
early trials have been mostly unsuccessful due to problems associ-
ated with the host immune response, gene silencing, and random 
mutagenesis.96 Modern techniques have allowed researchers to 
overcome these problems along with reliable and permanent modi-
fication of patient somatic cells.

The first clinical trials were performed using ZFNs to target 
the human immunodeficiency virus (HIV) receptor called CCR5.97 
ZFNs were used to modify HIV-infected patient’s T-cells ex vivo, 
which were then introduced back into the patients to promote re-
sistance to HIV infection. This resulted in a significant reduction 
of viral particles compared to the control and was well tolerated by 
the patients. Although this treatment did not have a lasting effect,98 
it ushered in an era for several other gene therapy clinical trials.

The first CRISPR-Cas9 trial was performed on non-small 
cell lung cancer patient T-cells, ex vivo modified by CRIS-
PR-Cas9 to knockout programmed cell-death protein (PD-1) 
(NCT02793856).99 PD-1 ligand (PD-L1) is highly expressed on 
various cancer cell types, and it binds PD-1 receptors on the acti-
vated T cells, which leads to the inhibition of the cytotoxic T cells. 
The PD-1/PD-L1 pathway thus represents an immune checkpoint 
mechanism exerted by tumor cells in response to endogenous im-
mune anti-tumor activity.100 Neutralizing antibodies of PD-1 (or 
the PD-L1) have been recently used to treat different types of can-
cer.101 In this gene therapy approach, patient peripheral blood was 
collected and CRISPR-Cas9 was used to knock-out PD-1 ex vivo. 
After rigorous testing, the PD-1 knockout cells were introduced 
back into the patients (Fig. 2). There are speculations as to whether 
the PD-1 modified T-cells are better compared to therapeutic anti-
bodies against PD-L1 or PD-1 since the production of engineered 
T-cells is a costly and laborious process.99

Another clinical trial in its Phase I/II has the PD-1 gene 
knocked out in an Epstein-Barr virus specific autologous T-cell 
for cancers positive for Epstein-Barr virus (NCT03044743). Re-
searchers are now generating chimeric antigen receptor (CAR)-T 
cells with CRISPR-Cas9.102,103 Another preclinical study was con-
ducted where CAR was delivered to the T-cell receptor α-chain 
loci using CRISPR-Cas9 that enhanced its tumor rejection capabil-
ity compared to conventionally produced CAR-T cells in a mouse 
model.104 Multiple other clinical trials have also been registered in 
patients with other types of cancer such as renal, esophageal, and 
bladder cancer, some of which are phase II clinical trials (clinical-
trials.gov) (Table 1).

Although a fair number of studies are ongoing with clinical tri-
als using ex vivo genome editing, only two are being implement-
ed for in vivo clinical trials. One trial (NCT03057912), which is 
still in the process of recruiting patients, involves the delivery of 
constructs targeting HPV16 and HPV18 using either TALENs or 
CRISPR-Cas9 using a gel that will be locally applied to the pa-
tient’s infected cervix. Further research is needed to improve the 
specificity and delivery of CRISPR-Cas9 to target specific tissues, 
and this will promote the development of CRISPR based clinical 
trials in the future.

Future perspectives

CRISPR/Cas9 technology has evolved as a versatile tool to ma-
nipulate and edit the genome and epigenome across a broad range 
of cell types and organisms. The applications of CRISPR/Cas9 in 
both basic and translational cancer research are beginning to un-
fold. In the future, applications of various CRISPR-based genome-
wide screens may help to unravel novel genes, new biomarkers, 
and regulatory pathways(s) that can be therapeutically targeted in 
cancer. Integrating the information from these screens with avail-
able data on the genetic and epigenetic landscape of various cancer 
types may help identify synthetic lethal interactions and discover 
novel drug targets. However, this will require considerable re-
search to thoroughly dissect the biological mechanisms underlying 
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a multitude of genetic/epigenetic interactions revealed by CRISPR 
screens.

Furthermore, the ability of CRISPR/Cas9 to manipulate non-
coding regions of the genome will augment the functional explora-
tion of these less characterized features of the cancer genome. The 
precise engineering of pathogenic and driver mutations will en-

able researchers to gain deeper insights into the biological changes 
elicited by these mutations in cancer. Although there has been an 
increasing interest of the scientific community to examine and 
broaden the translational potential of CRISPR/Cas9 tools, translat-
ing these into the clinic successfully remains a challenge. Some 
of the major concerns are safety, including uncontrolled off-target 

Fig. 2. CRISPR-Cas9 is used to knockout PD-1 in T cells from patients. T-cells are isolated from the blood of a cancer patient. CRISPR-Cas9 ribonuclear pro-
teins are electroporated into the T-cells and the TRAC, TRBC1, TRBC2, and PDCD1 loci are edited. The cells are then transduced with a lentiviral vector to 
express TCR-specific cancer testis antigens NY-ESO-1 and LAGE-1. These cells are then infused back into the patients and are safely monitored to check the 
safety and efficacy of treatment. T cell, thymus lymphocyte cell; PD-1, programmed cell death protein 1; TCR, T cells receptor; CRISPR, clustered regularly 
interspaced short palindromic repeats; Cas9, CRISPR associated protein 9; PAM, protospacer adjacent motif; NY-ESO-1, New York esophageal squamous cell 
carcinoma-1; TRAC, T cell receptor alpha constant; TRBC, T cell receptor beta constant; PDCD1, programmed cell death protein 1.

Table 1.  A table summarizing the different clinical trials using CRISPR-Cas9 in progress

Clinical trial 
identifier Cancer type Phase Treatment strategy

NCT02867345 Hormone refractory prostate cancer I PD-1 knockout T cells

NCT02867332 Renal cell carcinoma I PD-1 knockout T cells

NCT03081715 Esophageal cancer II PD-1 knockout T cells

NCT02863913 Bladder cancer I PD-1 knockout T cells

NCT02793856 Non-small cell lung cancer I PD-1 knockout T cells

NCT03044743 EBV positive advanced stage malignancies I/II PD-1 knockout EBV-CTL

NCT03166878 B cell lymphoma / leukemia I/II CRISPR-Cas9 edited CAR-T Cells Targeting CD19 and CD20 or CD22

NCT03057912 HPV related cervical intraepithelial neoplasia I CRISPR-Cas9-sg HPV E6/E7 gel to disrupt HPV DNA

NCT03398967 B cell lymphoma / leukemia I/II CRISPR-Cas9 edited CAR-T cells targeting CD19

NCT03057912 HPV related cervical intraepithelial neoplasia I CRISPR-Cas9-sg HPV E6/E7 gel to disrupt HPV DNA

NCT, national clinical trial; EBV, Epstein–Barr virus; HPV, human papillomavirus; PD-1, programmed cell death protein 1; EBV-CTL, Epstein-Barr virus (EBV) specific cytotoxic T 
cells; CAR-T, chimeric antigen receptor T cells; CD, cluster of differentiation; CRISPR, clustered regularly interspaced short palindromic repeats; Cas9, CRISPR associated protein 9.
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effect, the immunogenicity of Cas nucleases, and the carcinogenic 
effect of CRISPR components, adverse immunological effects, 
and so forth. Many challenges associated with CRISPR technology 
still exist, particularly in clinical use. The future use of CRISPR/
Cas9 technology will rely on its precision and efficacy and efforts 
to develop novel Cas9 variants with minimal off-target effects and 
enable precise editing of the genome. Furthermore, new advance-
ments in the methods to deliver CRISPR components, improve-
ments in viral and non-viral delivery methods will accelerate the in 
vivo application of the CRISPR-Cas9 system.

Conclusions

The CRISPR-Cas9 technology has evolved rapidly and has revolu-
tionized the scientific field from basic research to clinical applica-
tions. Undoubtedly, this technology has provided many promis-
ing avenues for a greater understanding of cancer and treatments. 
Innovations in the CRISPR technology are likely to increase its 
precision, effectiveness, and safety for its future preclinical and 
clinical applications in cancer. In the next decade or so these tech-
nologies will play a pivotal role in identifying new drug targets, 
and developing dependable therapeutic strategies for several dis-
eases, including cancer.
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