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Introduction

The on-going coronavirus disease 2019 (COVID-19) pandemic is 
a threat to human health. Cases of COVID-19 were first reported in 
December 2019, Wuhan, China.1 Then, gene sequencing identified 
that COVID-19 was caused by an enveloped RNA Beta-coronavi-
rus,2 the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The COVID-19 was declared a pandemic on 11 March 
2020 by the World Health Organization. The SARS-CoV-2 virus 
has phylogenetic similarity to SARS-CoV that caused an outbreak 

of SARS that was reported in 2002.3,4

In February 2021, there were >100 million people with SARS-
CoV-2 virus infection and >2.2 million COVID-19 patients had 
died worldwide. The US and Europe share the maximum burden of 
this pandemic, which accounts for 85% of new cases and 86% of 
new deaths globally.5 In many countries, the death rate is increas-
ing due to severe lungs damage and relevant multiple organ failure 
syndromes.6,7

COVID-19 is highly transmissible, especially in immune-com-
promised individuals and older people with preexisting chronic 
diseases, such as diabetes, cardiovascular diseases, hypertension, 
and any terminal cancers.8 In the US, people aged >65 years ac-
count for 31% of cases and people aged >85 years for 6% of cases. 
This is alarming because these patients account for 53% of inten-
sive care unit administration and 80% of deaths.9 Case-fatality rate 
increases with age.10,11 Therefore, it is important to discover new 
therapies to save patients from COVID-19 related death.

Approved therapeutic strategies for COVID-19 and limitations

SARS-CoV-2 infection currently depends on the detection of vi-
ral RNA by RT-PCR and virus-specific antibodies. Therapeutic 
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strategies for COVID-19 include the inhibition of SARS-CoV-2 
replication and inflammation to limit tissue damages.12 The drugs 
include antiviral drugs, Veklury (remdesivir), Favipiravir, Ar-
bidol, Janus Kinase (JAK) inhibitor, Baricitinib (Olumiant), and 
convalescent plasma for hospitalized COVID-19 patients.13,14 
Second, monoclonal antibodies, such as bamlanivimab, casiriv-
imab, and imdevimab have been approved for emergency use for 
severe COVID-19 patients.15 Other treatments, such as autophagy 
inhibitor chloroquinine, anti-inflammatory dexamethasone, and 
methylprednisolone, have been used in clinics.16

Recently, out of 52 potential vaccine candidates two vaccines, 
BNT162b2 from Pfizer/BioNTech and mRNA-1273 from Mod-
erna have received Emergency Use Authorization from the FDA 
and other vaccines are in clinical Phase 3 trials.17,18 Two COV-
ID-19 mRNA vaccines, BNT162b2 and mRNA-1273, have been 
approved for use in patients aged ≥18 years.19,20 The main side 
effects of the vaccines are fatigue, fever, muscle or joint pain, and 
headache, which are mild and self-limited. Infrequently, some vac-
cine recipients might develop seizures and anaphylaxis and need to 
be carefully monitored immediately after vaccination. Due to the 
limited number of vaccines and the difficult conditions required 
for transportation, it will take a long time to vaccinate most of the 
population in western countries and it might be difficult to supply 
it to many developing countries. This, combined with new SARS-
CoV-2 mutant variants that have recently appeared, means that it 
is difficult to used vaccines to control the COVID-19 pandemic 
worldwide in a short time.17,19,21

Hydroxychloroquine and chloroquine are antimalarial drugs 
that have been used for the treatment of chronic discoid lupus ery-
thematosus, rheumatoid arthritis, and systemic lupus erythemato-
sus in adults. Because of their anti-autophagy activity, they have 
been used in the treatment of COVID-19 patients. However, the 
therapeutic efficacy remains under debate and the US FDA cau-
tions against using them for the treatment of COVID-19 patients 
due to their potential cardiac side effects, including QT prolonga-
tion, ventricular arrhythmias, and cardiac toxicity.22–24 In addition, 
corticosteroid types of drugs for COVID-19 might increase lung 
injury.25,26 Therefore, it is crucial to identify an alternate approach 
to COVID-19 treatment, in particular, for seriously ill patients. Be-
cause the development of a new drug usually takes many years,27 
repurposing the existing therapeutics that are effective against vi-
ruses that are similar to SARS-CoV-2, could be valuable to save 
lives.

Principle of photodynamic therapy (PDT)

PDT has been known for over a century and has been used for 
the treatment of various cancers, diseases, and infections. PDT 
employs photosensitizer dyes to absorb visible light to primar-
ily form the excited singlet state, which eventually transforms 
into the excited triplet state. This is subjected to photochemi-
cal reactions with oxygen to produce reactive oxygen species 
(ROS) that are toxic to pathogenic microorganisms, cancer cells, 
and injured tissue.28 PDT is a unique technique to kill various 
pathogens, including bacteria, fungi, viruses, and parasites.29 
Therefore, PDT is called photodynamic antimicrobial chemo-
therapy (PACT) and photodynamic inactivation (PDI).30,31 PDT 
was recognized as a therapy a century ago when it was observed 
to kill Paramecia and this was attributed to the combined action 
of drugs, for instance, acridine orange (a photosensitizer dye) 
and sunlight.32 Then, in 1930 this therapy was shown to display 
antiviral activity.33,34

The principle of PDT involves the activation of a photosen-
sitizer, which responds to light and leads to the production of 
ROS that kills microbes.35,36 Therefore, to kill microbes PDT 
depends on the photosensitizer (PS), photons, and ROS. Every 
PS absorbs a specific wavelength of light. On activation, PS is 
in the specific excited state, which is short-lived and lasts for 
nanoseconds. After electron transfer from one state to another, 
this short-lived state converts into the triplet state, which lasts 
microseconds, for instance, long-lived. Then, it enters Types 1 
and 2 photochemical pathways to promote ROS production. In 
the Type 1 pathway, electron transfer occurs from the triplet state 
of PS, which leads to the formation of hydroxyl groups (HO) 
and the Type 2 pathway follows the energy transfer that produces 
singlet oxygen radicals (1O2). The resulting ROS is highly reac-
tive and causes oxidative stress, which leads to serious damage to 
biomolecules, such as nucleic acids, proteins, and lipids as well 
as microbes.36,37

Factors regulating PDT action

Several factors regulate the efficacy of PDT, such as the concentra-
tion, nature, shape, number of PS, number and nature of radicals, 
and the intensity, nature, type, and wavelength of photons.35,38–41 
The PSs are nontoxic and they become toxic to target tissues after 
illumination by light at a specific wavelength. Currently, different 
types of endogenous and exogenous PSs have been developed and 
used for interventions in different diseases.42 Therefore, the char-
acteristics of PS and light are important in PDT to treat a variety of 
diseases, which depends on the causative agents.43

The best PS must absorb light efficiently at a fixed wavelength 
between 630 and 700 nm. The PS must have appropriate energy 
in the triplet state; therefore, it can provide sufficient energy to 
produce ROS when transferring to its ground state. In addition, 
the PS should have a high quantum yield of ROS due to its high 
photosensitivity.44 The PS must exhibit non-toxic properties in the 
absence of light. The ideal property of PS is that it should have a 
cationic charge, which is more effective than negatively charged 
biomolecules.45,46 In addition, PS can be delivered intravenous-
ly, topically, or by another route into the body, such as via light 
sources through an endoscope, needle, and fiber.47,48 Chlorophyll 
derivatives, curcumin, vitamin B2, methylene blue (MB), and por-
phyrins have been used as PS.49–51

The therapeutic effect of PDT on solid tumors in a deep organ 
depends on the intensity of excitation light. NIR light and X-rays 
have profound permeation depth into the tissues and NIR lasers 
directly excite several PSs.52 In contrast, UV-VIS excite most 
clinically approved PSs.53 Laser lights, halogen lamps, LEDs, and 
plasma discharge lamps that have different wavelengths of ultra-
violet, blue, and violet lights have been used in PDT.51,54,55 Laser 
lights that have multiple wavelengths have specific targeted ac-
tions and laser lights with a blue wavelength are more effective for 
viral inactivation and reduction. However, laser lights with a green 
or red wavelength are best for oxygenation and ATP production, 
respectively. To achieve instant microbial inactivation, light sourc-
es with violet and ultraviolet wavelengths usually have strong an-
timicrobial activity.51 Lasers, such as argon, quartz halogen, and 
xenon, are efficient at 488–514 nm, 620–640 nm, and 600–700 
nm, respectively.56 In antimicrobial activity, UVA lamp UV801 KL 
at 315–400 nm, LEDs at 470 and 625 nm, and white light lamp at 
380–770 nm are the most efficient against Clostridioides difficile, 
Escherichia coli, Staphylococcus aureus, Pseudomonas aerugi-
nosa, respectively.57–60
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PDT for antimicrobial pathogen treatment

PDT has been used to inactivate viruses as a substitute treatment 
for diseases that are induced by virus infection and as a strategy 
for environmental viral decontamination.61 The mechanisms that 
underlie the action of PDT are the irradiation of a dye with light 
and the successive production of ROS that destroy the virus by 
targeting viral nucleic acids, lipids, and proteins.62 In clinics, PDT 
has been used for the refinement of blood and the treatment of 
human papillomavirus (HPV) infection. In public health, PDT has 
been used for water and surface decontamination and biosafety.63 
Herpesvirus infection can induce different types of diseases, which 
depend on the type and where herpesvirus infection occurs. Previ-
ous studies have shown that the PDT is effective for some Herpes 
simplex virus (HSV1 and 2) infection-induced mucous membrane 
and skin diseases, such as Herpes labialis (oral),64 keratitis (ocu-
lar), as well as Herpes zoster infection.65,66 In addition, PDT is 
effective for HPV infection-induced laryngeal papillomata using 
dihematoporphyrin ether and hematoporphyrin derivative.67 How-
ever, whether PDT could benefit patients with HPV-induced early 
stages of cervical cancer needs to be investigated.

Because pathogenic organisms develop resistance to antibiot-
ics,68 alternative strategies have been implemented to control in-
fectious diseases. PDT is promising to control infectious diseases 
that are caused by bacteria, yeasts, and protozoa. Furthermore, PDT 
stimulates the immune response to enhance the defense against 
infectious pathogens.69 PDT has been used to treat eye disorders 
and dermatological diseases in India, Egypt, and China for many 
years.70 Recently, PDT has been used in several localized microbial 
infections, in particular, for multidrug-resistant microbes due to its 
rapid efficacy.71,72 More importantly, PDT is effective in fighting 
biofilms, such as dental biofilms, chronic wound infections, oral 
candidiasis, ventilator-associated pneumonia, and chronic rhinosi-
nusitis. Microbial biofilms are involved in approximately 80% of 
all bacterial and fungal infections in humans.73,74 Pathogens that 
involve biofilm formation are usually resistant to commonly used 
antibiotics. The biofilms contain many bacteria and fungi and occur 
in different functional organs of the body and are associated with 
middle-ear infection, gingivitis, urinary tract infection, periodonti-
tis, catheter infection, and others.75 In addition, PDT can eliminate 
wound infections that are induced by S. aureus, coagulase-negative 
staphylococci, Enterococcus faecalis, P. aeruginosa, Enterobacter 
cloacae, Peptococcus magnus, and anaerobic bacteria.76

The mechanisms that underlie antimicrobial pathogens depend 
on the different actions of PS and light. MB can penetrate viral 
membranes and damages the DNA of viruses, such as HSV-1 and 
bacteriophage M13 with distinct concentrations in response to var-
ying intensities of light.77–79 MB is involved in RNA and enveloped 
protein damage in various viruses, such as human immunodeficien-
cy virus (HIV) and vesicular stomatitis virus.77,80 Many radicals 
have different results, Type 1 radicals target sugar moieties, for in-
stance, singlet oxygen is sensitive to the guanine nucleotide.81 MB 
and riboflavin inactivate coronaviruses and might target SARS-
CoV-2. Ruthenium and osmium-based compounds are activated by 
light in the range of 400–675 nm and selectively destroy different 
types of tumor cells.82 The action of different PS components with 
respective viral molecular targets is given in Table 1.50,61,77–81,83–92

Potential use of PDT against COVID-19

Research data has supported the theory that PDT is one of the saf-
est procedures to combat viral infections.93 Due to the spread of 

COVID-19, researchers are developing new therapies to fight it.94 
Some treatments and medicines have shown promising outcomes 
in clinical trials and have been approved for clinical applications to 
combat SARS-CoV-2.95 Of interest, a recent study suggested PDT 
as an alternative therapy for SARS-CoV-2 infection in 2020.51 
However, no clinical study has been reported.

The SARS-CoV-2 virus is a new enveloped beta-coronavirus 
and 82% of its genomic sequence is similar to SARS-CoV.96 A 
previous study demonstrated that PDT inactivates SARS-CoV.97 
The SARS-CoV-2 virus consists of four structural proteins: (1) en-
velope (E); (2) membrane (M); (3) nucleocapsid (N); and (4) spike 
(S).Theoretically, the enveloped proteins of the SARS-CoV-2 virus 
could be deposited by PS because PDT induces ROS, which de-
stroys many biomolecules with an optimal PS and light, in particu-
lar, for the enveloped SARS-CoV-2 virus.98,99

It is noted that the molecular structure and charge of micro-
bial pathogens are crucial for the efficacy of PDT because PS usu-
ally has a positive charge.100 ROS targets the guanine nucleotide 
to inhibit viral replication.79 The activated PS could easily target 
cysteine, L-histidine, tyrosine, methionine, and tryptophan to 
change their associated protein structure and functions.101,102 The 
hydroxyl group and singlet oxygen radical react differently to their 
targets. The singlet oxygen reacts more efficiently on viruses than 
other radicals,103 and effectively targets guanine residues and ty-
rosine; histidine and tryptophan.83,93 It was speculated that PDT, 
through ROS and singlet oxygen, might target guanine residue and 
cysteine, L-histidine, tyrosine, methionine, and tryptophan to de-
stroy the SARS-CoV-2 virus and limit the spread of COVID-19.

Previous studies demonstrated that PS, such as MB and ribo-
flavin inactivate coronaviruses.84,85 Schikora et al.104 speculated 
that some PS might be effective at destroying SARS-CoV-2 virus, 
similar to photobiomodulation (PBM) therapy, by combining dif-
ferent wavelengths of lights including blue, ultraviolet, and violet 
with several PS, such as curcumin, chlorophyll derivatives, vita-
min B2, and MB.49 An intravenous approach with blue light might 
be efficient using green-based PS, such as indocyanine.51 It was 
speculated that a combination of PDT and PBM might achieve bet-
ter results for the treatment of COVID-19 (Fig. 1).

Cytokine storm and treatment options

Aberrant cytokine responses or cytokine storm are associated with 
disease progression and death in COVID-19 patients.105 It is well 
known that viral infections enter the cells through a specific recep-
tor on the targeted cell membrane surface. It then releases compo-
nents, such as RNA and DNA as pathogen-associated molecular 
patterns, which are recognized by pattern recognition receptors on 
innate immune cells, which stimulates inflammatory cytokine and 
chemokine production.106 Therefore, the control of the cytokine 
storm is critical to reducing the death rate of COVID-19 patients. 
Corticosteroid, intravenous immunoglobulin, and Ulinastatin have 
been used for the treatment of severe COVID-19 patients, because 
of their strong anti-inflammatory activity.105,107–111 Because the 
high levels of ROS might destroy innate immune cells, PDT, or 
a combination of PDT and PBM might be effective to control the 
aberrant inflammatory responses.

Sonodynamic Therapy: Analogous therapeutic approach

Sonodynamic therapy (SDT), a specific type of PDT, uses ultra-
sound as a light to activate PS. Of note, ultrasound penetrates the 
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deep tissues to irradiate sensitizer molecules.112 In addition, ul-
trasound causes the poration phenomenon of the cell membrane, 
termed sonoporation.113 Previous studies have shown that SDT 
combined with PS, such as porphyrin xantene, TiO2, and fluoro-
quinolone antibiotics, effectively inactivate bacteria.114,115 Other 
data indicates that SDT eradicates bacteria, viruses, parasites, and 
other microbial entities.112 However, there are no reports available 
on whether SDT inactivates the SARS-CoV-2 virus.

Clinical application of PDT for SARS-CoV-2 treatment

During the pathogenic process of COVID-19, the SARS-CoV-2 
virus infects nasal and oropharyngeal membrane epithelial cells 
through its receptor, angiotensin-converting enzyme 2, which 
spreads into alveolar epithelial cells, in particular, type II alveolar 
epithelial cells. SARS-CoV-2 virus infection damages these cells 
and causes inflammation and pneumonia, and their disease pro-
gression leads to a cytokine storm and multiple organ dysfunc-
tion syndromes, as well as death.7,116 Therefore, the control of 
SARS-CoV-2 virus replication is crucial to limit the progress of 
COVID-19. PDT might be effective because it inactivates viruses 
and reduces viral load in nasal and oropharyngeal membrane epi-
thelial cells.117 PDT can be carried out by the nebulization of PS 
into the respiratory tract or by using a catheter to deliver light.118 
Many groups are establishing a PDT protocol for the treatment 
of COVID-19119 as PDT inactivates other virus-related respiratory 
diseases,120 and an RNA virus is also more sensitive to PDT in-
activation.121,122 Recently, a study reported the successful use of 
PDT in the disinfection of oral and nasal cavities in patients with 

early-stage COVID-19.104 Further studies are required to validate 
the findings and test the therapeutic efficacy in patients at different 
stages of COVID-19.

Future directions

Although PDT has been used in clinics for many years, there is 
limited information on the feasibility and therapeutic efficacy in 
the treatment of COVID-19. Because of the high safety profile, 
PDT should be tested in patients at different stages of COVID-19. 
There are many types of PSs and photons that have a variety of 
outcomes and targets. It is important to test which PS and light 
are feasible and effective at inactivating the SARS-CoV-2 virus, in 
particular, some PS and photons that are effective at inactivating 
RNA viruses and microbial pathogens. A combination of PDT with 
PBM might be valuable, especially by combining different PSs. 
New advances in PDT might be discovered to control the spread of 
the SARS-CoV-2 virus and the COVID-19 pandemic.

Conclusions

PDT is a safe, cost-effective, and easy to handle therapy without 
obvious side effects. PDT is target specific and unlikely to induce 
resistance in the SARS-CoV-2 virus. An intravenous approach for 
a light source and PS might be feasible, and PDT might be a po-
tential rapidly applicable therapy for intervention in COVID-19 
patients in the clinic.

Fig. 1. Thematic diagram of PDT for COVID-19 therapy. This diagram was designed based on various published studies, which suggested the ideal condi-
tions of the PDT for COVID-19 therapy. Enveloped protein negatively charged biomolecules, guanine residues, and five amino acids (tyrosine, histidine, 
tryptophan, cysteine, and methionine), are ideal properties of viruses that are present in SARS-CoV-2. In addition, singlet oxygen could be a good radical 
against SARS-CoV-2 because it is destructive towards guanine residues and histidine, tryptophan, and tyrosine amino acids. Fekrazad (2020) suggested the 
use of blue wavelength light with green-based photosensitizer indocyanine for COVID-19 therapy.51 All these actions result in cell death. PDT, photodynamic 
therapy; PS, photosensitizer; ROS, reactive oxygen species.
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