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Abstract

Oropharyngeal squamous cell carcinomas (OPSCCs) have 
shown an alarming rate of increase in incidence over the 
past several decades, markedly in men. In the United States, 
transcriptionally-active human papillomavirus (HPV), par-
ticularly HPV 16, has become the highest contributive agent 
of OPSCCs, affecting approximately 16,000 people a year. 
Compared to patients with HPV-negative OPSCCs, patients 
with HPV-positive OPSCCs exhibit better health responses 
to chemoradiotherapy and an overall increase in long-term 
survival. Despite promising treatment options, many OP-
SCCs are discovered at an advanced stage, and ∼20% of 
cases will recur after definitive treatment. Therefore, exten-
sive research is ongoing to identify new targets for precision 
treatment and to stratify tumor prognosis. The aim of this 
review is to capture the most updated research on HPV-
positive OPSCCs, emphasizing their relevance as potential 
new targets for precision medicine and survival prognosis.

Citation of this article: Crane J, Shi Q, Xi Y, Lai J, Pham 
K, Wang H. Emerging Trends in the Pathological Research of 
Human Papillomavirus-positive Oropharyngeal Squamous 
Cell Carcinoma. J Clin Transl Pathol 2022;2(2):31–36. doi: 
10.14218/JCTP.2022.00004.

Introduction

Approximately 80% of oropharyngeal squamous cell carci-
nomas (OPSCCs), which include oropharyngeal wall, tonsil-
lar, and base-of-tongue tumors, are induced by high-risk 
human papillomavirus (HPV) (Fig. 1).1–3 HPV-positive OP-
SCC patients are typically younger, male (approximately 

75%), and usually nonsmokers.4,5 HPV-positive OPSCCs 
show distinctive biology and have better prognoses than 
HPV-negative OPSCCs, which has initiated the development 
of de-escalation treatment clinical trials that aim to pro-
mote positive results while reducing treatment-associated 
comorbidities.6,7 Despite the better prognosis, about 20% 
of OPSCC patients will recur after 5 years of initial treat-
ment, with an additional percentage of fatal cases.6,8 Nev-
ertheless, recent progress in OPSCC research has identified 
potential novel targets for precision medicine and early tu-
mor detection.

Tumor microenvironment

The tumor microenvironment is the system around a tumor, 
including the blood vessels, immune cells, fibroblasts, sign-
aling molecules, and the extracellular matrix. Most high-risk 
HPV infections are eliminated by the body’s robust immune 
system, which recognizes viral antigens by T lymphocytes.9 
However, viral infections in HPV-positive OPSCCs persist 
by manipulating the immune system and surrounding mi-
cro-system. The tumor microenvironment (TME) includes 
various stromal cells such as rich lymphocytes and myeloid 
cells, fibroblasts, and endothelial cells, which interact with 
tumor cells.9–12 The TME of OPSCCs is highly immunosup-
pressive by presenting immune checkpoint ligands, down-
regulating human leukocyte antigen expression, inactivat-
ing the nuclear factor-kappa B pathway, causing cytotoxic 
T lymphocytes to malfunction, and activating immunosup-
pressive cell types, such as regulatory T cells, tumor-asso-
ciated macrophages, and myeloid-derived suppressor cells 
(Fig. 2).10–15 The immunomodulatory effect of HPV-related 
OPSCCs is also related to the HPV integration status. Com-
pared to HPV-integrated OPSCCs, integration-negative tu-
mors demonstrate significant elevation of genes expressed 
in natural killer cells, T-cells (CD4+, regulatory, CD3+, and 
CD8+), and B cells. Integration-negative tumors are asso-
ciated with better prognoses.16 In HPV-positive OPSCCs, 
tumor-infiltrating lymphocytes (TILs) are reported to exert 
a protective function by way of an adaptive host immune 
response that targets viral antigens, leading to the identifi-
cation of a specific subpopulation of lymphocytes that fights 
against HPV-associated cancer (HPV-16 E7 T cells).17

A series of efforts have been made to employ biomark-
ers from the TME, including TILs, to guide prognosis and 
precision immunotherapies for OPSCCs. Using the enrich-
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ment scores of 33 immune cell types based on the gene 
expression data of OPSCC tissues and the surrounding 
benign tissues, Mito et al.18 identified three types of im-
mune signatures—cold, lymphocyte, and myeloid/dendritic 
cell. Most HPV-positive OPSCCs exhibit lymphocyte signa-
tures, with several immune cell types, including CD4+ T 
cells, CD8+ T cells, B cells, and plasma cells, showing the 
highest scores. HPV-positive OPSCCs also demonstrate the 
longest overall survival.18 Faraji et al.19 also have revealed 
that an increased TIL density correlates with a low risk of 
recurrence in low-stage HPV-positive OPSCC. In contrast, 
decreased TIL infiltration, associated with cigarette expo-
sure, has been linked to a higher stage at presentation and 
regional recurrence.20 The spatial architecture patterns of 
TILs and the surrounding nucleated cells in hematoxylin and 
eosin-stained images of HPV-positive OPSCC patients can 
be characterized using P-TIL, an imaging biomarker, which 
can help differentiate stage I HPV-positive OPSCC patients 
into low- and high-risk subgroups and help patient triage for 
de-escalation.21

Aberrant DNA methylation and prognosis

HPV E6 and E7 regulate DNA methylation of the host ge-
nome in addition to inactivating p53 and retinoblastoma 
protein, respectively.22–24 Earlier studies indicate that HPV-
positive OPSCCs tend to contain higher amounts of aber-
rantly methylated DNA in the individual genes involved in 

cell-cycle regulation, cellular adhesion, cellular migration, 
apoptosis, and differentiation.25,26 Recent comprehensive 
DNA methylation studies at the whole-genome level also 
have revealed an HPV-positive OPSCC subtype with DNA 
hypermethylation. Moreover, Ando et al.27 have investigat-
ed the methylation profiles of HPV-positive head and neck 
squamous cell carcinomas (HNSCCs) and healthy mucosal 
samples and identified a group of 59 genes with a negative 
correlation between DNA methylation and RNA expression; 
furthermore, unsupervised hierarchical clustering analysis 
of the genes revealed a high-DNA-methylation phenotype 
in HPV-positive cases. Additional analysis of the 59 genes 
in The Cancer Genome Atlas (TCGA) OPSCC samples dem-
onstrated the high-DNA-methylation phenotype. Likewise, 
Nakagawa et al.28 found a high-DNA-methylation subtype 
in HPV-positive OPSCCs, which was positively correlated 
with an improved prognosis. After performing Infinium 450 
k array analysis on 170 OPSCC samples, unsupervised hi-
erarchical clustering with >1,000 probes showed that HPV-
positive OPSCCs were stratified into two epigenotypes with 
distinct clinicopathological features. The HPV-positive, high-
DNA-methylation phenotype had the best outcome among 
the HPV-positive OPSCC cases. It is known that HPV-positive 
HNSCCs have two different types of HPV infection patterns—
HPV integration-positive and HPV integration-negative (epi-
somal). In addition, Ren et al.29 have shown that infection 
patterns correlate with HPV gene expression patterns. In 
HPV-positive HNSCC cases from the TCGA dataset, those 
with HPV integration-positive tumors showed a high expres-

Fig. 1.  Oropharyngeal squamous cell carcinoma. (a) A 66-year-old male with a 4-centimeter mass (T) involving the left base of the tongue and oropharynx with 
focal ulceration. (b–d) The computed tomography scan (b, axial), magnetic resonance image (c, T1, axial), and positron emission tomography/computed tomography 
scan (d, axial) showing a hyperintense base of the tongue lesion that extends into the floor of the mouth (arrows) and left neck level 2 lymph node metastasis (arrow 
heads).
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sion of E6/E7 and a low expression of E2/E4/E5. In contrast, 
those with HPV integration-negative tumors showed an in-
creased expression of E2/E4/E5 and a low expression of 
E6/E7. These findings were validated using an independent 
HPV-related OPSCC set and a TCGA cervical cancer cohort. 
When the HPV genome integrates into the human genome, 
E2 is usually disrupted, resulting in the upregulation of E6/
E7.30–32 Although further analysis is needed, the upregu-
lated E6 and E7 genes may be associated with the different 
HNSCC subtype DNA methylation patterns.

Apolipoprotein B mRNA editing enzyme catalytic sub-
unit-like protein 3

Whole-genome sequencing studies of various cancers over 
the last decade have led to an important conclusion: almost 
all HPV-positive head/neck cancer (HNC), in addition to 
many HPV-negative HNC and cancers from several other or-
gan systems, have a high percentage of somatic mutations 
linked to members of the apolipoprotein B mRNA editing 
enzyme catalytic subunit-like protein 3 (APOBEC3, A3) fam-
ily.33–38 APOBEC3-induced mutations include cancer driver 
mutations like the activating mutations in PIK3CA.39,40 
APOBEC-mediated mutational signatures are found, 
with striking similarity, in viral and cancer genomes. The 
APOBEC3 mutation signature is defined by C-to-T and C-
to-G changes in 5′-TCA and 5′-TCT trinucleotide motifs.37,38 
The human APOBEC3 family includes seven enzymes, A3A–
D and A3F–H. In HPV-positive and HPV-negative HNCs, cur-

rent evidence points to APOBEC3A (A3A) and APOBEC3B 
(A3B) as the most likely sources of the overall APOBEC mu-
tation signature. As part of the innate immune response 
following high-risk HPV infections, both A3A and A3B are 
upregulated by HPV oncoproteins (E6 and E7) and by inter-
feron,40–45 potentially to promote viral genetic diversifica-
tion, while collateral host genomic DNA damage contributes 
to carcinogenesis. Law et al.46 have demonstrated that in a 
murine adenomatous polyposis coli multiple intestinal neo-
plasia model, transgenic overexpression of human A3A, but 
not A3G, resulted in an increased incidence of polyp for-
mation and induced C-to-T mutations in APOBEC-signature 
trinucleotide motifs. All seven human A3 enzymes in the 
murine fumaryl-acetoacetate hydrolase model for hepa-
tocellular carcinoma, including A3A, A3B, and A3H, were 
tested sequentially. However, only human A3A significantly 
increased the frequencies of hepatocellular tumors to above 
control levels. The most substantial evidence that APOBEC3 
enzymes drive tumor evolution in humans is their positive 
associations with poor clinical outcomes47,48 and significant 
increases in the proportion of APOBEC3 signature mutations 
from primary to metastatic disease.49,50

One remaining question is whether viral editing and host 
genome mutations are concurrently linked events mediated 
by the same A3. In one recent study, Faden et al.51 quanti-
fied the AAPOBEC mutational burden and activity in both 
the host and virus by sequencing the host somatic exomes, 
transcriptomes, and HPV16 genomes from 79 HPV-positive 
human OPSCC specimens. They concluded that the primary 
mutational signature in somatic exomes is APOBEC. While 
there is a mean of five (range: 0–29) mutations per genome 

Fig. 2.  Oropharyngeal squamous cell carcinoma. (a, b) Biopsy of the base of the tongue mass (stained with hematoxylin and eosin), shown in Figure 1, demon-
strating the morphology of human papillomavirus-related squamous cell carcinoma with tumor-infiltrating lymphocytes (b, inset). (c, d) Immunohistochemistry showing 
that the tumor cells are positive for p40 (c) and p16 (d). (a, 100× magnification; b–d, 400× magnification).
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in viral genomes, APOBEC mutations have a mean of one 
(range: 0–5). Compared to non-APOBEC mutations, viral 
APOBEC mutations are more often low-variant allele frac-
tion mutations, indicating that APOBEC mutagenesis active-
ly occurs in viral genomes during infection. HPV/APOBEC-
induced mutation patterns in OPSCCs are similar to the 
mutation patterns observed in cervical tumors. Additionally, 
paired host and viral analyses reveal that APOBEC-enriched 
tumor samples have higher viral APOBEC mutation rates 
(p=0.028) and APOBEC-associated RNA editing (p=0.008), 
which further indicates that APOBEC mutagenesis in host 
and viral genomes is directly linked and likely occurs during 
infection. The above observation supports the general hy-
pothesis52 that HPV induces A3 activity, possibly to generate 
variation in viral progeny. However, albeit infrequently, mu-
tations in cancer-causing genes such as PIK3CA can result 
from other viral activities such as the induction of replica-
tion stress, which can cause A3 activity against the host ge-
nome. Although cells with these mutations gain a selective 
survival advantage, they can be suppressed for years by 
the host immune system. Therefore, tumor development, 
even in the beginning stages of HPV infection, can result 
from A3 activity.

Novel therapeutic approaches for HPV-positive OP-
SCCs

By promoting de novo or potentiating pre-existing antitu-
mor immune responses, immune therapy for HPV-positive 
OPSCC has been developed based on our expanding knowl-
edge of tumor immunology and the TME. As mentioned ear-
lier, HPV-positive OPSCC belongs to the most immune-rich 
category of tumors,53 and it is associated with infiltration of 
type I macrophages, natural killer cells, CD4+ CD25+ Tregs, 
CD8+ PD-1+ T cells, and high expression of PD-1, CTLA-4, 
and TIM-3 on the T cells.54 Not surprisingly, HPV-positive 
OPSCC has repeatedly shown favorable responses to im-
mune checkpoint inhibitors in animal models and clinical tri-
als. For example, one clinical trial (Keynote-012) that evalu-
ated pembrolizumab (an anti-PD-1 antibody) in refractory/
metastatic HNSCC patients showed that although the over-
all objective response rate was 18%, subgroup analyses il-
lustrated that the response rate was 25% in HPV-positive 
patients versus 14% in HPV-negative HNSCC patients.54–56 
In another multi-institutional, international durvalumab trial 
with an anti-PD-L1 antibody, the trial NCT02207530 showed 
an objective response rate of 16.2%, which translates into 
29.4% in HPV-positive patients and 10.8% in HPV-nega-
tive patients.57 Although immunotherapies do not directly 
target driver oncogenic mutations, they do affect immune 
cells in tumor nests and can influence tumor responses to 
treatments. Various immune checkpoint inhibitors, includ-
ing anti-PD1, anti-PDL1, and CTLA-4 antibodies, have been 
tested to treat HNSCC; however, thus far, only anti-PD-1/
PD-L1 antibodies have been approved for clinical use.58–60 
The anti-PD-1 antibodies nivolumab and pembrolizumab 
were granted Federal Drug Administration approval in 2016 
to treat patients with metastatic, platinum-refractory HN-
SCC, with supporting data from the CheckMate-141 and 
KEYNOTE-040 trials, respectively. In 2019, pembrolizumab 
was further approved as a first-line therapy for patients with 
PD-L1-positive metastatic or unresectable HNSCC, with 
supporting data from the KEYNOTE-048 trial.61–63

Therapeutic vaccines transfer antigens to antigen-pre-
senting cells and trigger cytotoxic T-cell and/or helper T-
cell responses to get rid of existing tumors. A variety of 
therapeutic vaccines have been developed, including live 
vector (bacterial or viral vector), peptide, DNA/RNA, and 
whole cell-based vaccines.64 In recent years, a series of 

therapeutic vaccines have been evaluated in clinical trials to 
treat patients with HPV-positive OPSCC. In addition, many 
studies are now evaluating the therapeutic effect of vac-
cines in combination with an immune checkpoint inhibitor 
or other immunomodulatory agent.60,65 Early results from a 
few trials show promising results. For example, an objective 
response rate of 36% and a median overall duration of 17.5 
months were observed in 22 HPV-positive OPSCC patients in 
a trial combining nivolumab with an HPV-16 E6/E7 peptide 
vaccine, and these results were superior to those from trials 
evaluating nivolumab alone.66 In addition, in the MEDI0457 
trial, a DNA vaccine encoding the E6 and E7 antigens was 
administered with DNA encoding interleukin-12, which in-
duced lasting HPV-specific immune activity in 18 of 21 pa-
tients with locally advanced p16-positive HNSCC.67 Another 
ongoing clinical trial is testing an E7-targeting mRNA vac-
cine delivered in combination with an agonistic anti-CD40 
antibody. Moreover, a novel E6/E7-targeting vaccine, with 
or without immune checkpoint inhibitors, is being tested. 
The results of these vaccine trials will be the next corner-
stone of immunotherapies for HPV-positive OPSCC patients.

DNA methylation is widespread in OPSCCs and sub-
stantially impacts tumor prognosis, so methylation seems 
to be a natural therapeutic target for HPV-positive OPSCC 
treatment. Epigenetic therapies of 5-azacytidine and 5-aza-
20-deoxycytidine, which are cytidine analogs incorporated 
into DNA, lead to covalent adduct formation and work as 
DNA methyltransferase inhibitors.68 The Federal Drug Ad-
ministration has approved these therapies to treat certain 
myelodysplastic syndromes and chronic myelomonocytic 
leukemia cases, but their efficacy for solid cancers is still 
under consideration.69 One ongoing clinical trial of 5-azacy-
tidine aims to treat HPV-positive and HPV-negative HNSCCs 
(NCT02178072).

One critical question before making A3 a therapeutic tar-
get for HPV-positive OPSCC patients is whether A3 activ-
ity against the host genome is occurring at diagnosis and 
during treatment. More and more evidence suggests that 
A3 activity continues to generate mutations during treat-
ment.70,71 For example, a recent study in which suppression 
of A3B expression by inducible RNA interference delayed the 
acquisition of tamoxifen resistance in an in vivo xenografted 
breast cancer model supports the concept that A3 activity 
contributes to the evolution of therapeutic resistance.72 This 
observation suggests a therapeutic benefit of inhibiting A3B 
and other A3 enzymes as an adjuvant to chemotherapy, a 
notion actively pursued in academia and industry alike.72,73

Conclusions

Significant progress has been made over the last five years 
in understanding the pathogenesis of HPV-positive OPSCCs, 
especially in the TME, APOBEC3-induced somatic muta-
tions, aberrant DNA methylation, as well as novel thera-
peutics. Biomarkers based on the in-depth understanding 
of the abovementioned pathological processes, such as the 
density of tumor-infiltrating lymphocytes and high-DNA-
methylation profiles, serve as new and refined prognostic 
markers for OPSCC patient survival, thus guiding the treat-
ment strategy. In addition, emerging therapies based on the 
latest discoveries, including immune checkpoint inhibitors, 
APOBEC3B inhibitors, and DNA methyltransferase inhibi-
tors, will provide additional precision treatments for OPSCC 
patients.
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