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Abstract

Hepatic lipid homeostasis is not only essential for maintain-
ing normal cellular and systemic metabolic function but is 
also closely related to the steatosis of the liver. The contro-
versy over the nomenclature of non-alcoholic fatty liver dis-
ease (NAFLD) in the past three years has once again sparked 
in-depth discussions on the pathogenesis of this disease and 
its impact on systemic metabolism. Pituitary-targeted gland 
axes (PTGA), an important hormone-regulating system, are 
indispensable in lipid homeostasis. This review focuses on 
the roles of thyroid hormones, adrenal hormones, sex hor-
mones, and their receptors in hepatic lipid homeostasis, and 
summarizes recent research on pituitary target gland axes-
related drugs regulating hepatic lipid metabolism. It also 
calls on researchers and clinicians to recognize the concept 
of endocrine-associated fatty liver disease (EAFLD) and to 
re-examine human lipid metabolism from the macroscopic 
perspective of homeostatic balance.
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Introduction
The definition of fatty liver has recently become highly con-
troversial. The liver is an important organ for maintaining 
lipid homeostasis, and disorders in liver lipid metabolism lead 
to hepatic steatosis. In 1980, Ludwig et al. proposed the con-
cept of non-alcoholic steatohepatitis (NASH) to emphasize 
the pathological diagnosis of steatohepatitis in individuals 
without excessive alcohol consumption or other definite liver 
damage factors. In 1986, Schaffner et al. expanded the dis-
ease spectrum of NASH to non-alcoholic fatty liver disease 
(NAFLD), which includes simple fatty liver. However, it was 
not until 1999 that clinicians began to pay attention to the 
hazards and diagnosis of NAFLD/NASH. With the prevalence 
of overweight/abdominal obesity, NAFLD has become the 
world’s largest chronic liver disease, closely related to cir-
rhosis, hepatocellular carcinoma, and liver failure. Whereas 
NAFLD places too much emphasis on alcohol and obesity, 
Professor Jacob George of the University of Sydney and other 
30 experts in the field of fatty liver disease from 22 coun-
tries (mainly in the Asia Pacific region) proposed to change 
the name of NAFLD to metabolism-related fatty liver disease 
(MAFLD) in 2020. Three years later, 53 experts from the 
American Society for the Study of Liver Disease (AASLD), the 
European Society for the Study of the Liver (EASL), and the 
Latin American Society for the Study of the Liver (ALEH) pub-
lished “A multi-society Delphi consensus statement on new 
fatty liver disease nomenclature”, recommending the renam-
ing of NAFLD to metabolic dysfunction-associated steatotic 
liver disease (MASLD). The two proposals to rename NAFLD 
have sparked heated discussions and attracted widespread 
attention from many clinicians.

Intrahepatic lipids are free fatty acids (FFAs) mainly de-
rived from the lipolysis of triglycerides (TG) in adipose tis-
sue or de novo lipogenesis (DNL) from glucose and fructose. 
Lipid removal occurs mainly through mitochondrial fatty acid 
oxidation (FAO) or the production of very low-density lipo-
protein (VLDL).1 The homeostasis of the endocrine system 
is associated with lipid homeostasis and plays crucial roles in 
regulating glucose and lipid metabolism.

In addition to type 2 diabetes mellitus and metabolic syn-
drome, NAFLD is also strongly associated with polycystic ova-
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ry syndrome, growth hormone deficiency, hypopituitarism, 
and hypogonadism. Lonardo et al. first proposed the concept 
of “endocrine NAFLD” in 2006,2 emphasizing the influence of 
endocrine factors, especially sex hormones, on NAFLD. The 
crosstalk between NAFLD and different endocrine diseases 
has been emphasized.3–5 Here, we summarize the current 
studies on the effect of pituitary-targeted gland axes (PTGA) 
on hepatic lipid homeostasis and focus mainly on the three 
targeted gland hormones—adrenal, thyroid, and sex hor-
mones. By re-proposing the concept of EAFLD, we call for 
an in-depth discussion on the concepts and mechanisms of 
MAFLD and NAFLD and to understand liver steatosis from the 
perspective of endocrine regulation and lipid homeostasis.

PTGA and hepatic lipid homeostasis
The pituitary gland includes the adenohypophysis and the 
neurohypophysis. The former consists of the anterior and 
posterior pituitary lobes, which co-ordinate communication 
between different organs in mammals by releasing a wide 
range of hormones through the pituitary hilar system, in-
cluding thyroid-stimulating hormone (TSH), follicle-stim-
ulating hormone (FSH), luteinizing hormone (LH), adreno-
corticotropic hormone (ACTH), prolactin (PRL), and growth 
hormone (GH). The hypothalamic-pituitary-targeted gland 
axis is a regulatory loop that controls the homeostasis of 
hormone secretion and mainly includes the hypothalamic-
pituitary-thyroid axis (HPT), hypothalamic-pituitary-adrenal 
axis (HPA), and hypothalamic-pituitary-gonadal axis (HPG). 
Hormones secreted by target glands exert their effects af-
ter interacting with specific receptors on cells in the liver 
and other tissues to regulate human growth, reproduction, 
stress, and metabolism. The liver is also an important site for 
the synthesis and metabolism of hormones and is susceptible 
to the local microenvironment.

HPT axis and hepatic lipid homeostasis

Thyroid-stimulating hormone (TSH) and hepatic lipid 
homeostasis
TSH works by binding to its receptor (TSHR) on the surface 
of thyroid follicular cells, which stimulates the synthesis and 
release of the active thyroid hormone (TH) triiodothyronine 
(T3), and its precursor, the prohormone thyroxine (T4). TSH 
receptors are also expressed in hepatocytes, where sterol 
regulatory element-binding protein 1c (SREBP1c) serves as 
a key regulator of adipogenesis. TSHR signaling in the liver 
co-activates both SREBP1c and SREBP2.6 On the one hand, 
TSH combined with TSHR activates liver SREBP-1c through 
the cAMP/PKA/PPARα pathway to induce hepatic steatosis; 
on the other hand, it inhibits bile acid synthesis through the 
SREBP2-hepatocyte nuclear factor 4α (HNF4α)-CYP7A1 sign-
aling pathway.7,8 In addition, TSH inhibits cholesterol synthe-
sis by regulating the phosphorylation of HMG-CoA reductase 
(HMGCR) via AMPK.7 The above findings support the idea that 
TSH regulates hepatic lipid homeostasis; however, it is difficult 
to determine whether the direct action of TSH is independent 
of thyroid hormones owing to their mutual influence.9

Controversy exists regarding the relationship between 
TSH levels and NAFLD. A study in a population with normal 
thyroid function found that patients with NAFLD had higher 
FT3 levels, lower FT4 levels, and no significant difference in 
TSH levels.10 The opposite conclusion was reached in an-
other meta-analysis: TSH levels are an important risk factor 
for the development of NAFLD, independent of thyroid hor-
mones.11 M1 macrophage polarization induces phosphopro-

tein 1 (SPP1) secretion, which downregulates TRβ in hepato-
cytes and exacerbates hepatic lipid deposition followed by a 
compensatory increase in serum TSH, which can further lead 
to SPP1 secretion. Thus, the positive feedback crosstalk be-
tween the thyroid and the liver may be linked to the presence 
of TRβ and TSH and plays an important role in maintaining 
and amplifying the pathological process of NAFLD.12

TH and hepatic lipid homeostasis
TH exists in two forms: triiodothyronine (T3), the active form 
of TH, and tetraiodothyronine (T4), a prohormone activated 
by deiodinase at the cellular and circulatory levels. Circulat-
ing T3 is produced by the thyroid (20%) and the liver (80%), 
and T4 is mainly formed by deiodination. T3 action is medi-
ated by the TH receptor (TR), a nuclear receptor. TR has two 
major isomers, TRα and TRβ. TRα is the major receptor locat-
ed in bones and the heart, whereas TRβ is the major receptor 
located in the liver and kidney. TRβ1 controls the metabolism 
of cholesterol and lipoprotein. TR forms heterodimers with 
another nuclear receptor, the retinoid X receptor (RXR), and 
binds to TH response elements (TREs) in the regulatory re-
gions of target genes to regulate their transcription.9,13

Mason et al. first reported the association between thyroid 
disease and serum cholesterol in 1930 and proposed the im-
portant role of thyroid function in cholesterol metabolism.14 
In 1951, Scow et al. demonstrated the critical role of the 
thyroid in the development of “fat-related diseases” using 
a hypothyroidism mouse model.15 The current view is that 
thyroid hormones regulate lipid metabolism mainly by stimu-
lating the mobilization and degradation of lipids and de novo 
synthesis of fatty acids in the liver.

T3 regulates liver cholesterol metabolism mainly through 
regulatory gene expression and cell signaling pathways. Thy-
roid hormones fine-tune hepatic lipogenesis via modulation 
of both SREBP-1 and carbohydrate response element-binding 
protein (ChREBP) gene expression,16 and these effects are 
likely to be mediated through the activation of TRβ in the 
liver and adipocytes.17 Although similar to the effect of T3 
on hepatic lipids, 3,5-diiodo-l-thyronine (T2), the metabolite 
of triiodothyronine (T3), acts by increasing hepatic nuclear 
sirtuin 1 (SIRT1) activity rather than TRβ, mainly targeting 
peroxisome proliferator-activated receptor (PPAR)-γ coacti-
vator (PGC-1α) and SREBP-1c, resulting in the downregula-
tion of lipogenic genes.16,18 This evidence makes T2 a poten-
tial selective agent for the treatment of NAFLD under specific 
metabolic conditions.

Thyroid hormones also produce non-genomic effects that 
typically start at the plasma membrane and are mediated 
mainly by integrin αvβ3, a molecule that may lead to liver 
cancer by mediating a cellular pathway.19 Whether this is re-
lated to the progression of liver cancer in NAFLD remains to 
be determined.

Fatty acid synthase (FAS) is a key enzyme in liver adipo-
genesis, responsible for the synthesis of long-chain saturated 
fatty acids. T3 regulates FAS transcription and increases FAS 
activity through non-genomic interactions that target TRE 
by activating the PI 3-kinase ERK1/2 MAPK-dependent path-
way.20

The effects of TH on hepatic lipid homeostasis are sum-
marized in Figure 1.

HPA axis and hepatic lipid homeostasis

ACTH and hepatic lipid homeostasis
ACTH receptors are widely expressed in the reproductive 
system, bone tissue, sympathetic ganglia, adipocytes, eryth-
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rocytes, keratinocytes, and adrenal glands. In adipose tis-
sue, ACTH stimulates lipolysis in mouse adipose tissue and 
adipocytes via MC2R-dependent cAMP/PKA activation.21 The 
effects on hepatic lipid metabolism are more likely to be 
mediated through the HPA axis. Activation of the HPA axis 
pathway is closely related to insulin resistance (IR), glucose, 
and lipid metabolism disorders in type 2 diabetes mellitus 
(T2DM). Environmental pollution affects the HPA axis. Ambi-
ent PM2.5 exposure inhibits the HPA axis and demonstrates 
sex-associated differences in its effects on IR and disorders of 
hepatic lipid metabolism. Female mice are more susceptible 
than their male counterparts to ambient PM2.5 exposure-in-
duced IR and hepatic lipid accumulation.22 Moreover, altera-
tions in HPA-axis activity and fatty acid (FA)-metabolism oc-
cur in (recurrent) major depressive disorder.23 In conclusion, 
both emotional pressure and stress affect lipid metabolism 
by activating the HPA axis, and the underlying mechanism 
still needs to be further explored.

Glucocorticoids (GCs) and hepatic lipid homeostasis
Adrenal glands are composed of two embryonically, histologi-
cally, and functionally distinct units: the adrenal cortex and 
the medulla. The adrenal cortex secretes mineralocorticoids 
(e.g., aldosterone) that regulate sodium and potassium ho-
meostasis, and GCs (e.g., cortisol) that regulate energy and 
immune homeostasis,24 control inflammation, support repro-

duction25 and regulate stress-related behaviors.26

Adrenal steroid genesis requires cholesterol as a substrate 
for the synthesis of steroid hormones and is controlled by 
two endocrine feedback circuits: the HPA that mainly regu-
lates glucocorticoids and sex steroids, and the renin-angi-
otensin-aldosterone system (RAAS) that mainly regulates 
mineralocorticoids. Because aldosterone is mainly regulated 
by the RAAS system, it will not be discussed in this review; 
interested parties may read the relevant reviews.3 Spirono-
lactone, an aldosterone antagonist, improves IR in patients 
with NAFLD, has anti-inflammatory and antifibrotic effects 
on the liver, and therefore may be an effective therapeutic 
target for NAFLD. However, there are no large-scale clinical 
trials to further validate this hypothesis.3,27,28

GCs are produced by the adrenal gland under the con-
trol of pituitary ACTH secretion. They play a more important 
role in carbohydrate and lipid metabolism than mineralo-
corticoids and are synthesized and secreted from the zona 
fasciculate of the adrenal cortex. GCs have been implicated 
in the regulation of energy homeostasis (carbohydrate and 
lipid), reproduction, and growth as well as in the anti-inflam-
matory and immune responses.29 Increased GC levels have 
been implicated in the pathogenesis of obesity, hyperglyce-
mia, and NAFLD. The liver is the main site of glucocorticoid 
clearance, and 11β-hydroxysteroid dehydrogenase type 1 
(11β-HSD1) and liver 5α-reductase type 1 (SRD5A1) are 

Fig. 1.  Effects of thyroid hormone (TH) on hepatic lipid homeostasis. The thyroid gland mainly produces thyroxine (T4), and a portion of T4 undergoes deiodi-
nase to form active T3. T3 can be further deiodinated and transformed into T2. Active T3 affects hepatic lipid metabolism through genomic and non-genomic effects. 
Non-genomic effects: T3 promotes mitochondrial fatty acid oxidation and affects fatty acid homeostasis through the AMPK pathway, and influences the insulin signaling 
pathway through PI3K/AKT; T3 increases FAS activity targeting TRE by activating the PI3-kinase ERK1/2 pathway. Moreover, T3 increases FAS activity through non-
genomic interactions targeting TRE by integrin αvβ3, a possible molecule that leads to liver cancer. Genomic effects: T3 modulates the expression of SREBP-1 and 
ChREBP to reduce hepatic lipogenesis by activating TRβ. T2 increases mitochondrial activity and lowers cholesterol and TG by increasing SIRT1 activity and deacetylat-
ing PGC-1α subsequently. T2 also increases the expression of ApoB to reduce hepatic excess fat. Meanwhile, T2 also stimulates lipid mobilization by acting on hepatic 
lipases. ↑/↓ shows increasing or decreasing effects respectively. (+) shows activation effects. T4, thyroxine; T3, triiodothyronine; T2, 3,5,-l-diiodothyronine; TRβ, 
thyroid hormone receptor β; FA, fatty acid; TG, triglyceride; FAS, fatty acid synthase; TRE, thyroid hormone response elements; SIRT1, sirtuin 1.
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the main enzymes of glucocorticoid metabolism in the liver. 
11β-HSD1 catalyzes the conversion of cortisone to cortisol. 
These enzyme-mediated metabolic transformations influence 
plasma and intracellular glucocorticoid levels, affecting their 
interaction with receptors30,31 and regulating glucocorticoid-
dependent target gene transcription.32 The effects of GCs on 
lipid metabolism, fat accumulation, and NAFLD development 
are complex. Hepatic dysfunction may impair GC metabolism 
and alter the adrenal axis. The relationship between adrenal 
disorders and NAFLD is complex and bidirectional, whereas 
the underlying mechanisms remain unclear and speculative. 
Adrenal hypersecretion and insufficiency are both linked with 
altered hepatic function and the development of NAFLD.

High circulating GC levels are associated with an in-
creased risk of visceral obesity, IR, diabetes, dyslipidemia, 
hypertension, hepatic steatosis, and coronary heart disease 
(CAD). Increased lipolysis of adipose tissue by GCs leads to 
enhanced release of FFA into circulation.33 FFA are subse-
quently taken up by the liver, leading to increased triglyc-
eride synthesis and hepatic steatosis. GCs also increase de 
novo synthesis of triglycerides (DNL) by inducing genes that 
convert carbohydrates to fatty acids, resulting in a specific 
distribution of adipose tissue throughout the body dominated 
by visceral fat. The correlation between GCs and lipid metab-
olism is well demonstrated in Cushing’s syndrome.34 A small 
study with 50 patients reported that approximately 20% of 
patients with Cushing’s syndrome developed NAFLD. Targher 
et al. found that chronic HPA axis hyperactivity and subclini-
cal hypercortisolism were present in patients with NAFLD.35

In peripheral tissues, such as adipose tissue, liver, kidney, 
and skeletal muscle, GCs can be regenerated from inactive 
11-keto derivatives (cortisone) by 11β-HSD1 in humans.36 
The highest expression of 11β-HSD1 occurs in the liver, and 
liver 11β-HSD1 mRNA levels are both hormonally regulated 
and influenced by gender and diet.37,38 Heterogeneity in hu-
man hepatic 11β-HSD1 activity may be associated with the 
development of IR and specific fatty liver and hypertension 
syndromes, while not significantly correlated with obesity. 
Therefore, 11β-HSD1 inhibitors are candidate treatment 
agents for dyslipidemia and metabolic syndrome. However, 
11β-HSD1 has opposite effects in different histological stages 
of NAFLD, and inhibition of 11β-HSD1 may be beneficial in 
steatosis as it further reduces cortisol levels, whereas inhibi-
tion of 11β-HSD1 in NASH may exacerbate inflammatory re-
sponses. Therefore, the timing of drugs targeting 11β-HSD1 
in NAFLD still needs to be further evaluated.

The effects of GCs on hepatic lipid homeostasis are shown 
in Figure 2.

HPG axis and hepatic lipid homeostasis

FSH, LH, and hepatic lipid homeostasis
FSH receptor (FSHR) is a glycosylated transmembrane pro-
tein belonging to the class of G protein-coupled receptors 
(GPCRs) that is expressed primarily in the gonads but also in 
human and mouse liver. The function of FSH is mediated pri-
marily through FSHR, which regulates the function of ovarian 
granulosa cells and testicular supporting cells. The LH recep-
tor (LHR), which is found primarily in the testis and ovary, 
binds to LH and stimulates androgen production. LHR gene 
expression levels in tissues are similar to those of FSHR.21

The anterior pituitary gland releases the gonadotropins, 
FSH, and LH, to regulate gonadal function. The classical view 
is that the mechanism underlying dyslipidemia in meno-
pausal women is estrogen deficiency. However, it has been 
found that in addition to the gonads, other organs including 

bone, liver, and fat may be directly regulated by FSH. Epide-
miological data suggest that serum FSH levels are positively 
correlated with serum total cholesterol levels. Blocking FSH 
reduces serum cholesterol by inhibiting hepatic cholesterol 
synthesis. In the underlying mechanism, FSH activates the 
Gi2α/β-arrestin-2/Akt pathway by binding to hepatic FSHR 
and preventing FoxO1 from inhibiting SREBP-2 gene tran-
scription, which ultimately leads to the upregulation of 
SREBP-2 and results in increased cholesterol accumulation. 
This study suggests that inhibition of FSH signaling may be a 
novel therapeutic strategy for the treatment of menopausal 
hypercholesterolemia.39 However, FSH in the pituitary gland 
also inhibits hepatic steatosis independently of the ovary 
through paracrine action on corticosteroids, suggesting that 
FSH plays a protective role in the liver. The explanation given 
here is similar to that of the pancreas: the structure and 
function of endocrine cells in the same gland affect the func-
tion of other endocrine cells.40 In addition, the effects of FSH 
on hepatic lipid metabolism show gender dimorphism, and 
this study failed to detect FSHR in the pituitary gland of male 
mice, explaining why FSH does not regulate hepatic steatosis 
in male mice. In conclusion, FSH may affect lipid metabolism 
through paracrine effects outside the HPG axis, making it 
difficult to define the therapeutic value of FSH agonists or 
inhibitors for metabolic syndrome.

The concept of an “atypical pituitary hormone-target tis-
sue axis” has been proposed because multiple types of pitui-
tary hormone receptors are widely expressed in non-classical 
target organs, and each pituitary-derived hormone exhibits 
a wide range of biological effects in non-classical target or-
gans.21 Given the intricate metabolic pathways in the body, 
the role of endocrine hormones in different target organs de-
serves further exploration.

Sex hormones and hepatic lipid homeostasis

Estrogen, estrogen receptors (ER), and GPER
Sex hormones are steroid hormones, mainly including es-
trogen, progesterone, and testosterone. Genes regulated by 
sex hormones are expressed differently in various tissues, 
especially in the liver. The liver is a target organ for sex hor-
mones: liver cells express the ERs ERα, also known as ESR1 
or NR3A, ERβ, and GPER (G protein-coupled ER, also known 
as GPR 30) and the androgen receptor (AR) in both men and 
women. Sexual dimorphism of the liver has received more 
and more attention in recent years.

However, the expression levels of ER in the liver are not 
related to gender, but to age. ER levels are similar in male 
and female rats, with hepatic ER levels being highest in the 
perinatal period and beginning to decrease until puberty.41 
The expression levels of ER in the liver do not change after 
ovariectomy in rats. Interestingly, increasing evidence shows 
that estrogen also has indispensable metabolic functions in 
males. The aromatization of testosterone to E2 prevents the 
accumulation of intra-abdominal adiposity in males, and a 
clinical study showed that aromatase inhibition following de-
creased estrogen production leads to increased abdominal 
fat in men.42

The main isoform of ER in the liver is ERα in both males 
and females, and signaling of this pathway plays an impor-
tant role in regulating adipogenesis in both males and fe-
males. The activity and expression of lipogenic genes, as well 
as the activity of certain enzymes in the liver are regulated 
by estrogen levels, and ERα signaling plays a major role in 
the metabolic protective effect of estrogen.42

Many aspects of metabolic balance, including glucose and 
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lipids, are regulated differently in males and females. Es-
trogen makes women more resistant than men to diseases 
associated with metabolic disorders. The protective effect 
of estrogen is generally considered to be mainly achieved 
through the nuclear receptors ERα and ERβ and the mem-
brane receptor G protein-coupled estrogen receptor 1 
(GPER1).43 The expression of SREBP-1C and lipid transporter 
genes, closely related to hepatic lipid metabolism, increases 
due to a decrease in ERα and liver-specific GPER gene ex-
pression, leading to hepatic steatosis. Chromatin immuno-
precipitation revealed that dozens of lipid genes are tran-
scriptionally regulated by ERα.44 The expression levels of 
genes involved in cholesterol metabolism in the liver vary in 
an ERα-dependent manner with the four-day estrous cycle of 
mice.44,45 Membrane-associated ERα, but not nuclear ERα, is 
associated with protection against hyperlipidemia by reduc-
ing the expression of liver lipid synthesis genes.46 Interest-

ingly, however, ERβ-deficient mice exhibit high body weight 
and low liver weight, which the authors propose may result 
from increased insulin sensitivity and reduced TG aggrega-
tion in the liver.42,47 This suggests that ERβ may be related to 
liver fat deposition and diabetes. In addition, estradiol may 
also promote hepatic FAO by altering hepatic uncoupling pro-
tein 2 (UCP2) expression and increasing fibroblast growth 
factor 21 (FGF21) production by increasing hepatic oxygen 
consumption and ATP production.48 Given that estrogen is 
transformed by the aromatization of testosterone, hepatic 
steatosis has been described in male mice with an aromatase 
gene deletion (Arko), but not in female mice, which can be 
normalized by estrogen treatment.49

GPER is also essential for liver lipid metabolism. GPER-
deficient female mice fed a high-fat diet (HFD) exhibit he-
patic steatosis, but not GPER-deficient males.42 The sexual 
dimorphism of the effect of GPER on hepatic lipid metabolism 

Fig. 2.  Effects of glucocorticoids (GC) on hepatic lipid homeostasis. The adrenal cortex synthesizes and secretes glucocorticoids. On the one hand, GC increases 
lipolysis of adipose tissue, releasing free fatty acids into the circulation, which are subsequently taken up by hepatocytes, increasing TG and promoting hepatic steatosis. 
GC also increases de novo synthesis of triglycerides by recruiting genes that convert carbohydrates to fatty acids and leads to a specific distribution of adipose tissue 
throughout the body, centripetal obesity is the typical manifestation. ↑ shows increasing effects. DNL, de novo lipogenesis; FFA, fatty acid; TG, triglyceride.
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needs to be further explored. In the liver, both GPER and 
membrane-associated ERα are essential for lipid metabo-
lism: the former may have a greater effect on lipid regulation 
in males,45 whereas the latter has a greater effect on lipid 
regulation in females.50 G-1, a GPER agonist, reduces TG ac-
cumulation and fatty acid synthesis in both human and ro-
dent pancreatic β-cells,42,51 but the impact of G-1 application 
on hepatic lipid metabolism still needs further study.

It is worth noting that estrogen regulation varies in differ-
ent tissues. It plays essential roles in reducing peripheral low-
density lipoprotein (LDL), increasing high-density lipoprotein 
(HDL), and promoting cholesterol secretion into bile. Estro-
gen-deficient animals may not have increased cholesterol 
synthesis but have reduced cholesterol catabolism, which is 
related to the decreased activity of 7α-hydroxylase.52 GPER 
tends to regulate LDL rather than HDL metabolism.

Androgens and AR
Androgens, similar to estrogens, act on both nuclear and 
nonnuclear receptors. Their genomic effect is accomplished 
by activating nuclear receptors, which then bind to a specific 
DNA region, the androgen response element (ARE).42,53 In 
addition to the classic ARE-mediated transcription, several 
non-genomic signaling pathways are activated by AR,44 in-
cluding the MAPK and PI3K/Akt pathways that interact with 
cytoplasmic signal transduction pathways. The specific role 
of membrane AR in hepatic metabolism is unknown.

Interestingly, the role of androgens in NAFLD is contro-
versial. Several studies have shown that androgens promote 
NAFLD development and progression,54 whereas the opposite 
finding that androgens protect against NAFLD is described by 
others.55 The reason for such conflicting findings might be 
the various treatments or animal models utilized in different 
studies. Münzker et al. reported that a high testosterone (TT) 
to dihydrotestosterone (DHT) ratio (TT/DHT ratio) predicted 
the development and progression of NAFLD in patients with 
polycystic ovary syndrome (PCOS).56 In contrast, the con-
tribution of AR in hepatic steatosis is less controversial. He-
patic steatosis and IR are still present in hepatic AR knockout 
mice with HFD feeding. Increased lipid synthesis occurs after 
upregulating the expression of hepatic SREBP-1C, ACC, and 
PPARγ, whereas decreased FAO occurs after downregulating 
PPARα; however, such effects are evident in males but ab-
sent in females.57 Therefore, hepatic AR plays a more promi-
nent role in regulating liver lipid metabolism in males than in 
females. Testosterone is a member of the androgen family, 
either being converted to DHT binding to Ars or converted to 
E2 binding to ERs.

Hepatic scavenger receptor class B member 1 (SR-1B) 
plays a crucial role in regulating cholesterol uptake from 
circulating HDL. Androgens control hepatic cholesterol me-
tabolism by affecting SR-1B and cholesterol 7α-hydroxylase, 
including promoting hepatic cholesterol uptake and inhibiting 
cholesterol clearance, which in turn increases cholesterol ac-
cumulation in the liver and thereby reduces serum cholester-
ol and LDL levels. Cholesterol 7α-hydroxylase, a key enzyme 
in the process of cholesterol clearance and bile formation, is 
reduced after DHT treatment.57 SR-1B levels are increased 
in DHT-treated castrated obese mice compared with vector-
treated castrated mice, and LDL secretion is decreased by 
DHT treatment.42

Androgens have different effects on males and females. 
Women with PCOS are at an increased risk for NAFLD ow-
ing to elevated levels of circulating androgens, which may 
be caused directly by a hepatotoxic effect or indirectly by 
obesity and IR.58 It is manifested by elevated alanine ami-
notransferase levels. Normal females have lower levels of ba-

sal androgens compared with males, but elevated androgen 
levels in women increase lipid deposition in the liver. How-
ever, normal androgen levels and signal transduction prevent 
hepatic lipid accumulation in males, and androgen deficiency 
in men promotes fatty liver formation. The role of androgens 
in males and females needs further study.

In addition, the effect of androgens on cholesterol me-
tabolism may vary with treatment duration. A clinical study 
showed that serum cholesterol levels increased after a single 
dose of testosterone by increasing the expression of HMGCR, 
although serum cholesterol levels in the subjects returned to 
baseline levels after some time.59 The physiological mecha-
nisms and effects of androgen-induced transcriptional upreg-
ulation of HMGCR have not been systematically elucidated 
and require further in-depth study.

The effects of sex hormones on hepatic lipid homeostasis 
are summarized in Figure 3. The roles of sex hormones and 
their receptors in lipid metabolism are complex, and some 
studies even contradict each other. It is difficult to obtain con-
vincing conclusions by solely focusing on individual genes and 
proteins. A systematic biological approach to liver cholesterol 
metabolism homeostasis should be a future direction.

GH and hepatic lipid homeostasis
GH is a protein consisting of 191 amino acids secreted by the 
anterior pituitary gland in a pulsatile manner, mainly regu-
lated by GH-releasing hormone (GHRH), which promotes the 
transcription of the GH gene, and growth inhibitor, which in-
hibits GH secretion.60 The liver is a major target organ for 
GH, and this hormone along with its major mediator, insulin-
like growth factor-1 (IGF-1), is under the control of the HPG 
axis, which is involved in metabolic functions in adults. GH 
can act either directly through the GH receptor or indirectly 
through its mediator, IGF-1. Both GH and IGF-1 have direct 
and indirect effects on liver structure and function.61 The GH 
receptor is a cytokine receptor that signals through activation 
of the JAK2/STAT5 and MAPK/ERK pathways and is widely 
expressed in various tissues, including adipose tissue, kid-
ney, bone, liver, brain, and pancreas.62

In adults, the main metabolic effects of GH are to increase 
lipolysis and protein synthesis, while decreasing insulin sen-
sitivity and glucose uptake in the liver and muscle. GH in-
duces TG uptake in the liver by increasing lipoprotein lipase 
(LPL) and hepatic lipase (HL) expression. In addition, GH in-
duces hepatic TG storage by inhibiting intrahepatic lipolysis 
or lipid oxidation or promoting lipogenesis.63

GH deficiency, typically clinically associated with a high 
prevalence of NAFLD, can be reversed by growth hormone 
replacement therapy. This is supported by significant reduc-
tions in serum hepatic enzyme concentrations, improve-
ments in histological changes in the livers of patients with 
NASH, and reduced levels of fibrosis markers.64 Obese pa-
tients with NASH combined with advanced hepatic fibrosis 
have low serum GH levels, and normal GH levels essentially 
rule out advanced hepatic fibrosis.65 Increased DNL occurs in 
hepatocyte-specific growth hormone receptor (GHR) knock-
out mice.66 GH inhibits DNL, as well as the expression of 
peroxisome proliferator-activated receptor γ (PPAR-γ) and 
CD36 (a key regulator of free fatty acid uptake), and blocking 
the GH receptor or downstream signaling pathways (JAK2/
STAT5) affects GH activation and ultimately leads to hepatic 
steatosis.67

Prolactin (PRL) and hepatic lipid homeostasis
PRL is a polypeptide hormone produced by anterior pitui-
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tary PRL cells, and its action is mediated by the PRL receptor 
(PRLR). PRLR is a transmembrane protein expressed in most 
organs of mammals but mainly in the mammary glands and 
ovaries. Functional PRLR is present in hepatocytes.68 PRL/
PRLR levels are negatively correlated with NAFLD, i.e., pa-
tients with severe hepatic steatosis have lower PRL levels. 
PRL ameliorates hepatic steatosis and improves lipid accu-
mulation via hepatic PRLR and fatty acid translocase (FAT)/
CD36.69 In addition, PRL reduces the expression of stearoyl 
coenzyme A desaturase 1 (SCD1), a rate-limiting enzyme in 
monounsaturated fatty acid biosynthesis, thereby reducing 
TG accumulation. Therefore, PRLR-modified PRL is a poten-
tial therapeutic target for NAFLD.70

Discussion
Homeostasis is a mechanism by which organisms control 
their internal environment to keep it relatively stable. Home-
ostasis corresponds to the health state of the human body. 
First, it is a variable state. Second, it changes within a cer-
tain range and is relatively constant. With the development 
of cybernetics and systems biology, homeostasis is not only 
limited to the stable state of the internal environment but 
also extends to many physiological processes that maintain 
coordination and stability in the organic body. It is also used 
for the stable state of different levels (cells, tissues, organs, 
systems, whole organisms, and social groups) and certain 
states that remain for certain periods.

Under the unhealthy condition of homeostasis deviation, 
many attempts have been made to study the role of thyroid, 
adrenal, and gonadal hormone analogs in regulating liver 
lipid metabolism, but no consensus has been reached. Pi-
tuitary target gland axis-related drugs that regulate hepatic 
lipid metabolism are summarized in Table 1.9,13,71–115 The 
development of TH analogs was initially prompted by an at-
tempt to exploit the effects of TH on lipid metabolism while 
avoiding unwanted cardiac effects.71 Several clinical trials of 
TRβ agonists were conducted in patients with hypercholes-
terolemia, but these programs were terminated after reports 
of adverse effects in dogs with cartilage damage. In recent 

years, TRβ agonists have raised new interest in the treat-
ment of NAFLD, and a couple of clinical trials have provided 
encouraging initial results.72,73 11β-HSD1 inhibitors may be 
promising candidates for further development owing to their 
therapeutic reduction in GC levels independent of the HPA 
axis.74 Moreover, estrogen replacement therapy, phytoestro-
gens, and combination therapies may be effective options for 
the regulation of lipid metabolism homeostasis in postmeno-
pausal women. GH ameliorates IR, inflammation, oxidative 
stress, and fibrosis, and patients with GH deficiency (GHD) 
should be screened for NAFLD. Exogenous GH treatment for 
secondary NAFLD appears feasible.

Lipid disorders are closely related to various metabolic and 
cardiovascular diseases. So far, the lipid-lowering drugs used 
in the clinic are all one-sided in lowering blood lipids, and few 
studies have combined the body’s regulatory ability to modu-
late systemic lipid metabolism by playing a coordinated role 
in the homeostasis of the human neuro-endocrine-immune 
systems. Synthesis, absorption, and expulsion of cholesterol 
in the liver maintain the dynamic balance of circulating cho-
lesterol, which constitutes the homeostasis of cholesterol 
metabolism in the liver. Recent studies are also progressively 
revealing the underlying mechanisms by which non-vesicular 
cholesterol flux contributes to hepatic and systemic lipid ho-
meostasis.116 The neuro-endocrine-immunomodulatory net-
work plays an important role in the maintenance of lipid ho-
meostasis in the liver. Recently, the gut-brain-liver axis has 
attracted extensive attention from researchers owing to its 
involvement in the intake of intestinal nutrients and its role 
as the first line of defense against metabolic disorders. As 
one of the neuroendocrine-immune regulatory networks in 
lipid metabolism, it has been extensively reviewed.117–120

Although various lipid-lowering medications are currently 
employed in clinical settings, the human body’s lipid metabo-
lism operates as a finely tuned, dynamic equilibrium. Rigor-
ous regulation of these processes is essential for maintaining 
metabolic balance. Focusing solely on specific pathways or 
relying exclusively on reducing blood lipid levels to manage 
disease occurrence and progression is inevitably ‘one-sided’ 
and triggers a ‘ripple effect.’ Take statins, a representative 

Fig. 3.  Effects of sex hormones on hepatic lipid homeostasis. ↑/↓shows increasing or decreasing effects respectively. (–) shows receptor deficiency effects. 
TG, triglyceride; LDL, low-density lipoprotein; GPER, G protein-coupled estrogen receptor; ER, estrogen receptor; PPAR, peroxisome proliferator-activated receptor; 
FGF21, fibroblast growth factor 21; UCP2, uncoupling protein 2; SREBP-1, sterol regulatory element binding protein-1; SR-1B, scavenger receptor class B member 1.
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class of lipid-lowering drugs. They act on the rate-limiting 
enzyme in cholesterol synthesis—3-hydroxy-3-methylglutar-
yl-coenzyme A reductase (HMGCR)—inhibiting cholesterol 
synthesis and effectively lowering blood lipid levels. However, 
a common drawback is the propensity to elevate transami-
nase levels because of liver damage. Clinical challenges such 
as drug-induced liver injury, resistance or rebound post-dis-
continuation, and disease progression despite normal blood 
cholesterol levels are prevalent.

Therefore, delving into a comprehensive exploration of 
the signaling molecules governing cholesterol metabolism in 
the future is poised to enhance our holistic understanding 
of lipid metabolism homeostasis. Unraveling the ‘non-lipid-
dependent effects’ of lipid-lowering medications will not only 
foster judicious clinical drug administration but also illumi-
nate pathways for the development of novel lipid-lowering 
therapeutics.

In the future, the methods of studying single serum indi-
cators, proteins, or genes of lipid metabolism will be replaced 
by systems biology methods.121 Based on animal homeosta-
sis models in vivo and in vitro, using the data provided by 
“omics” (transcriptomics, proteomics, and functional omics) 
high-throughput detection technology, a more comprehen-
sive assessment of homeostasis regulation regarding altered 
endocrine mechanisms involved in the different endocrine 
axes may be the way forward.
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