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Abstract

Cardiovascular diseases (CVDs) remain the leading cause 
of morbidity and mortality worldwide. Recently, accumulat-
ing evidence has revealed hepatic mediators, termed as liver-
derived secretory factors (LDSFs), play an important role in 
regulating CVDs such as atherosclerosis, coronary artery dis-
ease, thrombosis, myocardial infarction, heart failure, meta-
bolic cardiomyopathy, arterial hypertension, and pulmonary 
hypertension. LDSFs presented here consisted of microbial 
metabolite, extracellular vesicles, proteins, and microRNA, 
they are primarily or exclusively synthesized and released by 
the liver, and have been shown to exert pleiotropic actions 
on cardiovascular system. LDSFs mainly target vascular en-
dothelial cell, vascular smooth muscle cells, cardiomyocytes, 
fibroblasts, macrophages and platelets, and further modu-
late endothelial nitric oxide synthase/nitric oxide, endothelial 
function, energy metabolism, inflammation, oxidative stress, 

and dystrophic calcification. Although some LDSFs are known 
to be detrimental/beneficial, controversial findings were also 
reported for many. Therefore, more studies are required to 
further explore the causal relationships between LDSFs and 
CVDs and uncover the exact mechanisms, which is expected 
to extend our understanding of the crosstalk between the liver 
and cardiovascular system and identify potential therapeutic 
targets. Furthermore, in the case of patients with liver dis-
ease, awareness should be given to the implications of these 
abnormalities in the cardiovascular system. These studies also 
underline the importance of early recognition and intervention 
of liver abnormalities in the practice of cardiovascular care, 
and a multidisciplinary approach combining hepatologists and 
cardiologists would be more preferable for such patients.
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Introduction
Although remarkable advances have been made in clinical 
and basic research fields, cardiovascular diseases (CVDs) re-
main the leading cause of morbidity and mortality, and im-
pose a significant global health care burden. The prevalence 
of CVDs cases nearly doubled from 1990 to 2019, with more 
than 500 million cases being reported in 2019. And the num-
ber of CVDs deaths has steadily increased over the same 
period, reaching 18.6 million in 2019.1 The liver is the largest 
internal organ and plays a vital role in various physiologi-
cal and pathophysiological processes by providing essential 
metabolic, exocrine, and endocrine functions.2 Studies have 
revealed extensive crosstalk networks within the liver tissue3 
and between the liver and other organs/tissues such as gut4 
and skeletal muscle.5 The complex interactions between the 
liver and cardiovascular system have been studied exten-
sively,6 especially in the context of metabolic disorder.7 An 
example is nonalcoholic fatty liver disease (NAFLD), which 
has become a serious public health problem affecting up to 
one-third of the world’s adult population and shown to be 
significantly associated with a greater risk of CVDs. These 
in turn, contribute to increased mortality among patients 
with NAFLD.7 Not only that, a growing body of evidence has 
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revealed an essential role of liver-derived secretory factors 
(LDSFs) in regulating cardiovascular physiology and dis-
eases. In this review, we summarize the current molecular 
evidence linking the liver to cardiovascular system with a fo-
cus on LDSFs, which may extend our understanding of the 
crosstalk between the liver and cardiovascular system and 
highlight the importance of these emerging novel mediators 
as potential biomarkers and therapeutic targets.

Trimethylamine N-oxide
Over the years, the gut microbiota and its metabolites have 
attracted increasing attention owing to their crucial roles 
in cardiovascular health and diseases by interacting with 
the host.8 Of these, trimethylamine N-oxide (TMAO) is an 
important and well-studied metabolite. It was reported that 
dietary phosphatidylcholine, choline and L-carnitine are me-
tabolized by intestinal microbiota into trimethylamine and 
then further oxidized into TMAO by flavin monooxygenases 
in the liver.9,10 Many clinical investigations have shown that 
circulating TMAO is an independent risk factor for CVDs such 
as atherosclerosis, thrombosis, acute coronary syndromes, 
heart failure (HF) and myocardial infarction (MI).9–14 Mech-
anistically, TMAO was able to accelerate the progression of 
atherosclerosis by inducing vascular endothelial cells (VECs) 
pyroptosis through SDHB/ROS pathway,15 contribute to en-
dothelial dysfunction by increasing HMGB1 expression and 
disrupting cell-cell junction proteins,16 promote vascular 
calcification by inducing osteogenic differentiation of vas-
cular smooth muscle cells (VSMCs) via NLRP3 inflamma-
some and NF-κB pathway,17 and exacerbate cardiac func-
tion and cardiac fibrosis after MI by promoting the transition 
of fibroblasts into myofibroblasts through TGF-βRI/Smad2 
axis.18 Moreover, it was found that TMAO levels were sig-
nificantly correlated with the activity of tissue factor in 
patients with ST-elevation MI, and the activation of NF-κB 
signaling was necessary for TMAO-mediated tissue factor 
expression.19 Additionally, in the middle-aged/older groups, 
TMAO was markedly elevated and associated with impaired 
brachial artery flow-mediated dilation, which could be re-
versed in mice supplemented with TMAO.20 Similarly, circu-
lating TMAO levels were found to increase with aging, and 
further study demonstrated that TMAO accelerated VECs 
senescence and vascular aging by reducing SIRT1 expres-
sion and enhancing oxidative stress,21 which caused aging-
associated endothelial insufficiency by impairing endothelial 
nitric oxide synthase (eNOS) and enhancing the production 
of inflammatory cytokine and superoxide.22 Increased in-
flammation and oxidative stress were also responsible for 
TMAO-induced inhibition of angiogenesis and perfusion re-
cover after hindlimb ischemia.23

Although there are many studies devoted to revealing 
the effects of TMAO on CVDs, little information is available 
about its influence on the liver. It was showed that TMAO at 
the physiological concentration is able to promote metabolic 
dysfunction by directly binding the hepatic PERK and thus 
activating the unfolded protein response. The authors sug-
gested that hepatic TMAO-PERK pathway may represent a 
therapeutic target for this disorder.24 In addition, TMAO has 
been reported to affect the miRNA composition and function 
of the exosomes secreted from hepatocytes.25,26 These stud-
ies provided evidence that, although TMAO is generated in 
the liver, this metabolite can in turn act on the hepatocytes 
and exert systemic influence. However, liver may differ in its 
generative capacity and responsiveness for TMAO, particu-
larly across disease state, and future studies should take this 
into account.

Extracellular vesicles
Extracellular vesicles (EVs) are membrane-bound vesicles 
secreted by almost all types of cells and include microparti-
cles/microvesicles, exosomes, and apoptotic bodies depend-
ing on size, biogenesis, and cargo. EVs have been shown 
to have a key role in mediating intercellular communication 
by carrying a variety of bioactive molecules, surface recep-
tors, and genetic information.27 Evidence of the cardiovascu-
lar effects of liver-secreted EVs is growing. A study report-
ed that circulating hepatocyte-derived microparticles were 
found in patients with cirrhosis but not in healthy controls, 
and that they contributed to impairment of vasoconstrictor 
responses and reduction of blood pressure (BP).28 Hepatic 
EVs derived from mice with NAFLD were shown to augment 
coronary microvascular permeability by transferring novel-
miR-7 and regulating the LAMP1/cathepsin B/NLRP3 inflam-
masome pathway.29 Jiang and colleagues30 found that EVs 
isolated from palmitic acid-treated hepatocytes can pro-
mote inflammation and atherogenesis by delivering miR-1 
to VECs, thereby inhibiting KLF4 expression and activating 
NF-κB signaling. In addition, increased arginase activity was 
detected in the EVs produced by hepatocytes challenged with 
hepatotoxicant, and was responsible for EVs-induced impair-
ment of endothelium-dependent relaxation.31 Also, among 
patients with low-coronary flow reserve, miR-224-5p levels 
were found to be remarkably increased in the plasma EVs 
that supposed to be released by the liver and negatively cor-
related with coronary flow reserve. EVs isolated from a liver 
cell line stimulated with TNF-α enhanced ICAM-1 expression 
in VECs.32 Additionally, liver-secreted exosomal miR-122 was 
found to contribute to the development of metabolic cardio-
myopathy by inhibiting Arl-2 and affecting cardiac mitochon-
drial function.33 Hepatocyte-derived exosomal miR-194 was 
reported to be involved in hepatopulmonary syndrome by 
targeting pulmonary microvascular endothelial cells and pro-
moting cell proliferation, migration, and tube formation as 
well as in vivo angiogenesis.34 Similarly, exosomes produced 
by TMAO-activated hepatocytes promoted the expression of 
inflammatory markers, impaired endothelial function and in-
hibited angiogenesis, which may have been related to the 
enriched miRNAs in the exosomes, such as miR-302d-3p, 
miR-302b-3p, miR-302a-3p, and miR-103-3p.25,26 Not only 
that, exosome-based therapy may be a promising approach 
for CVDs treatment in clinical practice. It was demonstrated 
that overexpression of Ldlr mRNA in the donor AML12 cells 
contributed to secretion of exosomes carried Ldlr mRNA, 
which increased the production of LDLR protein in the liver 
and reduced the number and size of atherosclerotic plaques 
in Ldlr−/− mice.35 The above studies provide evidence that 
EVs may not only be biomarkers of liver damage, but also 
effectors of the cardiovascular system. Knowledge of the 
cargo transported by the EVs appears to be decisive for un-
derstanding their biological function and molecular mecha-
nism. Based on that, EVs-modifying therapies are emerging 
as potential treatments for CVDs.

Hepatokines
Hepatokines are a diverse family of cytokines secreted by the 
liver, and have been shown to exert autocrine, paracrine, and 
endocrine functions in metabolic disorders.36 Accumulating 
evidence shows that many of them are important to CVDs.

Adropin
Adropin is a peptide hormone secreted primarily by the liver 
and has been shown to have a significant role in regulating 
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glucose and lipid homeostasis.37 Notably, the impact of adro-
pin on cardiovascular physiology and disease has recently 
gained increasing attention. Adropin levels were found to 
be significantly lower in obese adolescents and adults and 
markedly increased following aerobic exercise, and its con-
centration had negative correlation with arterial stiffness and 
abdominal visceral fat and positive correlation with plasma 
nitrite/nitrate content, cardiorespiratory fitness as well as 
vascular reactive hyperemia indexes.38,39 Among individu-
als with type 2 diabetes mellitus (DM) and metabolic syn-
drome, the blood concentration of adropin was significantly 
declined and inversely associated with the coronary angio-
graphic severity,40 and even lower values were found in the 
endothelial dysfunction group and had a positive correlation 
with the flow-mediated dilatation values.41,42 Additionally, 
serum adropin was reduced in patients with coronary artery 
disease (CHD),43 and lower levels were associated with hy-
perhomocysteinemia and more severe coronary disease44 
and poor coronary collateral circulation.45 Also, in patients 
underwent drug-eluting stent implantation, serum adropin 
concentrations were significantly decreased among the in-
stent restenosis (ISR) group, and its levels were inversely 
correlated with the neointimal volume in both groups.46 
Moreover, plasma adropin concentrations were significantly 
decreased in hypertensive patients compared with normo-
tensive subjects,47,48 and showed a negative correlation 
with endothelin-1, an indicator for endothelial dysfunction.48 
However, another study reported opposite results regarding 
the association between adropin and hypertension.49 And in 
obese children, no correlation was observed between serum 
adropin levels and BP variables.50

Mechanically, adropin has been confirmed to regulate 
mitochondrial energy metabolism through GPR19-p44/42-
PDK4 pathway,51 activate cardiac insulin signaling and im-
prove cardiac efficiency,52 enhance cardiac glucose oxidation 
under high fat diet conditions53 and improve diastolic function 
by alleviating myocardial fibrosis in diabetic cardiomyopathy 
rats.54 Although short-term administration of adropin may 
fail to exert a protective effect on cardiac function in obese 
animals.55 Besides, adropin could promote eNOS activation 
and perfusion recovery after hindlimb ischemia by upregulat-
ing VEGFR2,56 suppress proliferation and phenotypic mod-
ulation of VSMCs induced by angiotensin II via AMPK/ACC 
signaling,46 and attenuate vascular calcification by repress-
ing VSMCs osteogenic differentiation through JAK2/STAT3 
signaling,57 as well as inhibit TNF-α-induced THP1 monocyte 
adhesion to VECs, prevent macrophages from polarizing into 
a pro-inflammatory phenotype and reduce the formation of 
atherosclerotic lesions in apoE−/− mice.58 Additionally, expo-
sure to cell-free hemoglobin resulted in decreased expres-
sions of adropin and increased paracellular permeability of 
VECs, and treatment with adropin was able to protect against 
the hyperpermeability and suppress macrophage trans-en-
dothelial migration.59

In contrast, another study demonstrated that adropin lev-
els were increased in serum from patients with Kawasaki dis-
ease and even higher in those with coronary artery lesions, 
and showed positive correlation with inflammatory markers 
and D-dimer.60 And among patients with HF, circulating adro-
pin levels were significantly increased with the progressive 
deterioration in cardiac function,61 which could be effectively 
decreased by HF treatment.62

Fibroblast growth factor 21
Fibroblast growth factor 21 (FGF21), a peptide hormone 
synthesized primarily in the liver, adipose tissue, pancreas, 
and heart, has been found to exert pleiotropic functions, de-

pending upon which organ is implicated.63 Liver was believed 
to be the major endocrine source of plasma FGF21 during 
bacterial inflammation, and elevated FGF21 was required for 
survival by contributing to the maintenance of thermogen-
esis and cardiac function.64 And the releases of FGF21 from 
hepatic cells and adipocytes were showed to be increased 
in mice after myocardial ischemia/reperfusion (I/R) injury, 
thus reducing cell death and MI as well as improving myocar-
dial function through FGFR1/β-Klotho-PI3K-Akt1-BAD signal-
ing.65 Also, Pan et al.66 demonstrated that liver may be the 
primary site for the production of circulating FGF21 in an-
giotensin II-induced hypertension, and increased expression 
of FGF21 could counteract angiotensin II-induced hyperten-
sion and vascular dysfunction by enhancing the generation of 
angiotensin-converting enzyme 2. FGF21 deficiency resulted 
in aggravation of atherosclerosis and premature death in 
apoE−/− mice, and FGF21 supplement could attenuate vas-
cular inflammation and atherosclerotic plaque formation.67 
Similar results were found in a study of atherosclerotic rats, 
in which FGF21 was able to alleviate inflammation and oxida-
tive stress by activating the Nrf1-ARE pathway.68 FGF21 has 
also been reported to protect against diabetic cardiomyopathy 
in part through the activation of the AMPK-PON1 signaling69 
and cardiac hypertrophy and fibrosis during hypertension,70 
as well as suppress lipid- or diabetes-stimulated cardiac apo-
ptosis via ERK1/2-p38 MAPK-AMPK pathway.71 Additionally, 
FGF21 could alleviate doxorubicin-induced cardiac insults by 
inhibiting oxidative stress, inflammation, and apoptosis via 
SIRT1/LKB1/AMPK pathway.72 However, it should be noted 
that, in the mouse model of myocardial hypertrophy, FGF21 
levels were increased in cardiac tissue but remained un-
changed in the circulation, suggesting that FGF21 may inhib-
it cardiac hypertrophy predominantly through its autocrine 
effects.73 Indeed, there is evidence suggesting that FGF21 
can be expressed and secreted by the heart following cardiac 
damages such as cardiac hypertrophy, oxidative stress and 
MI, and exerts its diverse cardioprotective functions in an 
autocrine manner.74 Therefore, tissue-specific knock-out of 
FGF21 is necessary to elucidate its autocrine, paracrine, and 
endocrine effects, which may vary depending on the context.

Selenoprotein P
Selenoprotein P is a transport protein that is mainly syn-
thesized and released by the liver, and plays an essential 
role in delivering selenium from the liver to other tissues.75 
The population with lowest plasma concentrations of seleno-
protein P have a higher risk of cardiovascular morbidity and 
mortality,76 and among patients with CVDs, circulating sele-
noprotein P levels were significantly lower in individuals with 
metabolic syndrome.77 And another study has suggested 
that plasma selenoprotein P can bind to proteoglycans on the 
vascular endothelium and form a protective layer against oxi-
dants.78 Further, selenoprotein P was showed to protect low 
density lipids (LDLs) from oxidation79 and prevent tert-butyl-
hydroperoxide-induced oxidative injury and loss of cellular 
membrane integrity by restoring the enzymatic activity of 
glutathione peroxidase in human endothelial cells.80 In addi-
tion, selenoprotein P was reported to exert a protective effect 
in cardiac fibrosis.81 However, the influence of selenoprotein 
P on the cardiovascular system reminds controversial, with 
opposed results in different studies. Elevation of selenopro-
tein P was observed in patients with HF, and its levels were 
associated with adverse cardiac outcomes.82 And inhibition of 
selenoprotein P protected the heart from I/R injury by acti-
vating RISK pathway.83 It was also found that the serum con-
centrations of selenoprotein P were significantly increased in 
patients with pulmonary hypertension and its levels were 



Journal of Clinical and Translational Hepatology 2023 vol. 11(5)  |  1246–1255 1249

Liu X. et al: LDSFs are critical to cardiovascular disease

able to predict all-cause death and lung transplantation. Fur-
thermore, the absolute changes in selenoprotein P after ini-
tial therapy were correlated with the hemodynamic changes 
and prognosis.84 Of note, however, it was demonstrated that 
selenoprotein P produced by pulmonary artery smooth mus-
cle cells, but not by the liver, promoted the development of 
pulmonary arterial hypertension.85 Thus, further research is 
needed to clarify the sources of selenoprotein P and its roles 
in the pathogenesis of CVDs.

Fetuin-A
Fetuin-A is a multifunctional glycoprotein secreted by the 
liver, and has been shown to be an important inhibitor of 
mitral annular calcification in persons with CHD and without 
severe kidney disease86 and valvular calcification in patients 
with end-stage renal disease.87 In patients on dialysis, low 
serum fetuin-A was reported to increase the risk of all-cause 
and cardiovascular mortality.88 Data from patients with type 
2 DM and without renal dysfunction further suggested that 
fetuin-A may suppresses the calcification of atherosclerotic 
plaques independently of the dialysis conditions.89 Moreover, 
fetuin-A-deficient mice spontaneously developed significant 
myocardial calcification, characterized by myocardial stiff-
ness, cardiac remodeling and fibrosis, and diastolic dysfunc-
tion.90 In addition to acting as a calcification inhibitor, howev-
er, it may also act as an atherogenic factor. In a case-cohort 
study, significantly increased risks of MI and ischemic stroke 
were found in subjects with higher plasma fetuin-A levels.91 
Fetuin-A also influenced the expression of proinflammatory 
and angiogenic proteins associated with atherosclerosis.92 
These inconsistent behaviors raise the important questions 
about the potential protective or exacerbating role of fetuin-A 
in CVDs, which may be complicated by its multiple function-
alities, and more research are therefore definitely needed to 
elucidate these aspects.

Fetuin-B
Fetuin-B, a liver-derived secretory protein, has been report-
ed to have an adverse effect on the cardiovascular system. It 
was found that serum fetuin-B concentrations were indepen-
dently associated with the presence of CHD and acute coro-
nary syndromes,93 and urinary fetuin-B levels were higher 
in individuals with cardiovascular risk factors than healthy 
subjects.94 A recent study showed that plasma fetuin-B lev-
els were significantly elevated in patients with ISR compared 
with non-ISR patients and healthy controls.95 Also, circulat-
ing fetuin-B levels were increased in patients with acute MI, 
and also that fetuin-B was regulate the migration of mono-
cytes and macrophages, levels of vascular plaque-stabiliz-
ing factors, and increased atherosclerotic plaque rupture in 
mice.96 A subsequent study revealed that fetuin-B contrib-
uted to plaque rupture by inducing the expression of PAI-1 
and MMP-2 in VSMCs through TGF-βR/Smad signaling.97 In-
creased levels of fetuin-B also led to the inhibition of cardiac 
insulin-induced signaling and thus exacerbating myocardial 
I/R injury.98

α1-microglobulin
α1-microglobulin is a glycoprotein synthesized and secreted 
mainly by the liver and serves as an indicator of renal tu-
bular dysfunction.99 There is accumulating evidence link-
ing α1-microglobulin to CVDs. In a retrospective analysis of 
patients with ST-elevation MI, urinary α1-microglobulin at 
admission was showed to be an independent predictor of in-
hospital mortality.100 In patients with acute HF, urinary α1-
microglobulin concentrations at admission were associated 

with all-cause mortality independent of glomerular func-
tion and provided additional prognostic value.101 In non-
diabetic patients with chronic kidney disease, urinary α1-
microglobulin levels were also found to be associated with 
CVDs events and mortality.102 In addition, despite increased 
urinary excretion of α1-microglobulin has been reported in 
patients undergoing myocardial revascularization surgery 
with cardiopulmonary bypass,103 and the increases were 
greater with longer duration of cardiopulmonary bypass,104 
it was shown that preoperative but not postoperative uri-
nary α1-microglobulin levels were positively associated with 
acute kidney injury, progressive chronic kidney disease, 
and all-cause mortality after cardiac surgery.105 However, 
the role of α1-microglobulin on CVDs is still controversial. 
Hakuno et al.106 demonstrated that α1-microglobulin can 
promote macrophage infiltration and inflammation and im-
pair fibrotic repair after MI in mice. Nevertheless, it was 
shown to suppress oxidation of LDL, hemoglobin and lipids 
isolated from atherosclerotic plaques, and protect the en-
dothelial cells from oxidative damage.107,108 More studies 
are needed to confirm the causal relationships between α1-
microglobulin and CVDs.

MicroRNA-122
MicroRNAs (miRNAs) are a class of endogenous small non-
coding RNA molecules that are evolutionarily conserved and 
have a critical role in regulating gene expression at the post-
transcriptional level.109 It was found that plasma miRNAs are 
not only diagnostic biomarkers but also potential therapeutic 
targets for CVDs.110 MiR-122 is predominantly generated in 
the liver and constantly released into the circulation111 and 
has been shown to be significantly elevated in patients with 
acute HF.112 In a cohort study of population who experienced 
sudden cardiac arrest due to ventricular fibrillation, miR-122 
levels were found to be higher in participants who died in 
hospital or survived to discharge compared with those who 
died in the field.113 However, the plasma levels of miR-122-
5p at admission did not correlate to shock at admission or 
all-cause mortality among patients admitted due to out-of-
hospital cardiac arrest.114 By contrast, circulating miR-122 
was found to predict all-cause and cardiovascular mortality 
in patients with chronic systolic HF, and also improve cur-
rent risk stratification.115 However, the roles and underlying 
mechanisms of circulating miR-122 in these pathophysiologi-
cal processes remain to be elucidated. Because a significant 
increase in plasma miR-122 has been observed after liver in-
jury,116 it is unclear whether the elevated miR-122 in the cir-
culation have regulatory roles in the pathogenesis of CVDs or 
are simply biomarkers of hepatic damages. And the findings 
presented by Wang et al. might shed some light on this.33 
In addition, based on its high content in the liver, miR-122 
has been used to increase the specificity of adeno-associated 
virus-mediated cardiac gene transfer, while minimizing liver 
exposure to the vectors.117

Others
Very recently, coagulation factor XI was found to be capable 
of protecting against cardiac diastolic dysfunction by sup-
pressing inflammation and fibrosis through cleaving BMP7 
precursor and activating the BMP7-SMAD1/5 pathway.118 The 
effects of plasma protein factor XII (FXII) on vascular func-
tion have previously been thoroughly reviewed by Mailer and 
colleagues.119 FXII is synthesized by the liver and released 
as an inactive zymogen into the circulation, and plays an 
important role in promoting endothelial dysfunction, vascu-
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lar inflammation, and atherosclerosis. By using Drosophila 
oenocytes as a hepatocyte model, Huang et al. found that 
peroxisomal import was impaired in aged oenocytes, thus 
promoting the release of upd3, an IL-6-like proinflammatory 
cytokine, from oenocytes and inducing cardiac arrhythmia.120

Conclusion
LDSFs presented here are a group of hepatic mediators that 
exclusively or mainly produced and released by the liver, in-
cluding TMAO, EVs, proteins and miR-122, and are thought 
to exert their pleiotropic actions on cardiovascular system 
through an endocrine manner (Fig. 1). Accumulating evi-
dence highlights the importance of these LDSFs in CVDs, 
such as atherosclerosis, CHD, thrombosis, MI, HF, meta-
bolic cardiomyopathy, arterial hypertension, and pulmonary 
hypertension. These LDSFs primarily act on VECs, VSMCs, 

cardiomyocytes, fibroblasts, macrophages and platelets, and 
the predominant underlying mechanisms involve the regula-
tion of eNOS/NO, endothelial function, energy metabolism, 
inflammation, oxidative stress, and dystrophic calcification 
(Fig. 2). Some LDSFs, including TMAO, EVs, fetuin-B, FXII 
and upd3 have been proven to be detrimental, and some, 
including adropin, FGF21 and factor XI, are protective. The 
activity of others, including selenoprotein P, fetuin-A, α1-
microglobulin and miR-122, is not clear. A variety of factors 
may be responsible. First, the composition of the investi-
gated populations was not the same across studies. Sec-
ond, source of these LDSFs was not restricted to the liver, 
they can have their origins from other organs/tissues. The 
situation is complicated under pathophysiological conditions. 
Third, each LDSF may influence multiple targets within the 
cardiovascular system and show pleiotropic effects through 
different molecular mechanisms. Therefore, more studies are 

Fig. 1.  Representative scheme of the release of liver-derived secretory factors in different physiological and pathophysiological states and their roles 
in cardiovascular disease. Parts of the figure were obtained from Servier Medical Art (https://smart.servier.com/). Servier Medical Art by Servier is licensed under a 
Creative Commons Attribution 3.0 Unported License. CVDs, cardiovascular diseases; EVs, extracellular vesicles; Exos, exosomes; MPs, microparticles; NAFLD, nonal-
coholic fatty liver disease; TMAO, trimethylamine N-oxide; VECs, vascular endothelial cells; VSMCs, vascular smooth muscle cells.

https://smart.servier.com/
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Fig. 2.  Effects of liver-derived secretory factors on targeted cells and the underlying mechanisms. These factors mainly act on VECs, VSMCs, CMs, FBs, Mo/
Mϕ and platelets, and the effects and mechanisms presented in the studies are summarized. Parts of the figure were obtained from Servier Medical Art (https://smart.
servier.com/). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License. CMs, cardiomyocytes; EVs, extracellular vesicles; 
FBs, fibroblasts; Mo/Mϕ, monocytes/macrophages; TMAO, trimethylamine N-oxide; VECs, vascular endothelial cells; VSMCs, vascular smooth muscle cells.

(continued)
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https://smart.servier.com/


Journal of Clinical and Translational Hepatology 2023 vol. 11(5)  |  1246–12551252

Liu X. et al: LDSFs are critical to cardiovascular disease

required to further identify the causal relationships between 
LDSFs and CVDs and elucidate the exact mechanisms, which 
may reveal novel molecular targets for the prevention and 
treatment of CVDs. Furthermore, in the case of patients with 
liver disease, awareness should be given to the implications 
of these abnormalities in the cardiovascular system. These 
studies also underline the importance of early recognition 
and intervention of liver abnormalities in the practice of car-
diovascular care, and a multidisciplinary approach combining 
hepatologists and cardiologists would be more preferable for 
such patients. There are, however, some limitations of this 
review. First, the liver and the heart can crosstalk and af-
fect each other to contribute to various diseases, and the 
underlying pathways are diverse. Here, we just addressed 
the unidirectional impact of liver on heart with a focus on 

LDSFs. Secondly, the definition of LDSFs might have been 
too broad, and there is a possibility that some important fac-
tors or literature may be missed. Thirdly, many of the studies 
included were observational, and only provided evidence of 
association, not cause. Further investigations are required to 
determine the roles and precise mechanisms of some LDSFs 
such as α1-microglobulin and miR-122. Finally, the functional 
states of the liver may determine the activities of LDSFs, 
but its histopathological and biochemical alterations were not 
clearly reported in many studies.
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