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Abstract

Hepatocellular carcinoma (HCC) is a common malignant 
tumor with high incidence and cancer mortality worldwide. 
Post-translational modifications (PTMs) of proteins have a 
great impact on protein function. Almost all proteins can un-
dergo PTMs, including phosphorylation, acetylation, methyla-
tion, glycosylation, ubiquitination, and so on. Many studies 
have shown that PTMs are related to the occurrence and de-
velopment of cancers. The findings provide novel therapeutic 
targets for cancers, such as glypican-3 and mucin-1. Other 
clinical implications are also found in the studies of PTMs. 
Diagnostic or prognostic value, and response to therapy have 
been identified. In HCC, it has been shown that glycosylated 
alpha-fetoprotein (AFP) has a higher detection rate for early 
liver cancer than conventional AFP. In this review, we mainly 
focused on the diagnostic and prognostic value of PTM, in 
order to provide new insights into the clinical implication of 
PTM in HCC.
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Introduction
About 80% of primary liver cancers are hepatocellular car-
cinomas (HCCs), which are malignant neoplasms of hepato-
cytes. One of the leading causes of cancer-related mortality 
around the world is HCC.1 In developing countries, the inci-
dence of HCC is higher compared with developed countries. 
HCC occurs mainly in East Asia, Southeast Asia, and Africa.2 
There is an association between chronic hepatitis B virus 
(HBV) or hepatitis C virus (HCV) infection and approximately 
80% of cases of HCC.3,4 Additionally, alcoholism, aflatoxin 
infection, smoking, and various metabolic diseases all con-
tribute to HCC risk. However, the causes of liver cancer are 
gradually changing from viral and alcoholic liver disease to 
obesity, type 2 diabetes mellitus and nonalcoholic fatty liver 
disease (NAFLD).5 The resulting molecular and signal trans-
duction network disturbances, genomic instability, and mi-
croenvironmental differences account for HCC heterogeneity. 
Various therapies have been developed for the treatment of 
liver cancer, including local area therapy, systemic chemo-
therapy, hormone therapy, molecular targeted therapy, im-
mune checkpoint therapy, surgical resection, and liver trans-
plantation.6,7 Although these methods can be used to treat 
HCC, the side effects of various drugs, high recurrence rate 
after treatment, and low rate of transplantation all lead to a 
low HCC cure rate.8–10

During translation, proteins undergo a series of chemical 
modifications. These post-translational modifications (PTMs) 
have a great impact on protein function, including enzyme 
activation and inactivation, protein stability, subcellular lo-
calization, interaction, and PTM crosstalk.11 At present, many 
studies have shown that the development of a wide range 
of diseases is linked to PTMs, such as tumors, neurological 
diseases, metabolic diseases, and immune diseases.12–15 
Currently, approximately 400 types of PTMs are known to 
exist. Almost all proteins can undergo PTMs, including phos-
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phorylation, acetylation, methylation, glycosylation, ubiqui-
tination, and so on.16,17 Phosphorylation is one of the most 
common and well-studied PTMs. Protein phosphorylation is 
a reversible process. Protein kinase can covalently transfer 
a phosphate group to an amino acid residue, while protein 
phosphatase removes the phosphate group.18 Phosphoryla-
tion of proteins can further lead to activation of some sign-
aling pathways, which then affect downstream molecules 
and promote the occurrence, proliferation, migration, and 
invasion of tumors.19 Acetylation modification of proteins 
mainly includes histone and nonhistone acetylation modi-
fication. At present, histone acetylation is more studied in 
liver cancer than nonhistone acetylation.20 A balance exists 
between histone acetyltransferases (HATs) and histone dea-
cetylase (HDAC) activities that regulate histone acetylation. 
Gene silencing occurs through histone deacetylation induced 
by HDAC, while histone acetylation induced by HAT is linked 
to gene transcription.21 Protein acetylations have been re-
ported to be abnormally expressed in HCC tumor tissues and 
have shown a connection with clinical stage, prognosis, and 
survival. Tumor cells with altered glycosylation are common 
in humans and the heterogeneity and functional diversity of 
tumor molecules are mainly derived from the diversity of 
glycosylation.22 At least nine basic amino acid residues can 
have their structure changed by sugar groups. There are two 
main protein glycosylation pathways, namely N-linked and 
O-linked. The most common glycosidic bond in nature is N-
glycosylation and the part of the asparagine (Asn) part of the 
protein that is linked to the carbohydrate is the N-glycosidic 
bond.23 O-glycosylation usually refers to the ligation of O-
glycans to Ser or Thr residues on proteins by enzymatic reac-
tions.24 Altered glycosylation profiles have been proved to as-
sociated with many cancers including liver, breast, and lung.

PTM studies provide new insights into the diagnosis, prog-
nosis, and therapy of cancers. The clinical implication of PTMs 
in HCC have been identified in a number of articles. The gly-
coprotein, alpha-fetoprotein (AFP), has been used widely as 
a biomarker for HCC. The clinical utility of AFP has been re-
cently reviewed.25–28 Glypican-3 (GPC3), as a member of the 
proteoglycan family, is a promising therapeutic target and 
biomarker for the diagnosis and prognosis of HCC. Further 
discussion of the clinical value of GPC3 in HCC can be found in 
several reviews.29–32 This review provides an overview of the 
diagnostic and prognostic value of major types of PTM in HCC.

Diagnostic value of PTM in HCC
A set of glycoproteins, including AFP, AFP-L3, Golgi phospho-
protein 73 (GP73), GPC3, Fuc-GP73 and fucosylated paraox-
onase 1 (Fuc-PON1), are considered to be diagnostic mark-
ers for HCC.

AFP and its fucosylation
AFP, as a glycoprotein, is the most widely used serum bio-
marker for the diagnosis of HCC worldwide. However, the 
elevation of AFP is not detected in many HCC patients, and 
AFP may be elevated in cirrhosis or hepatitis cases.33 Many 
studies aim to search for meaningful diagnostic markers in 
patients with liver cancer whose AFP is negative.34 The N-
glycosylated isoform of AFP (AFP-L3), which contains core 
fucosylation on its N-linked glycans, shows potential ability 
for diagnosing AFP-negative HCC. Zhang et al.35 detected 
AFP-L3 in the serum of 50% patients with liver cancer, only 
3.33% of patients with other liver diseases, and 2.00% of 
healthy participants. Studies shown that AFP-L3 promoted 
the proliferation of cancer cells by activating the Wnt-β-

catenin pathway and promoted the invasion and metastasis 
of liver cancer cells by activating the downstream TGF-β and 
VEGF pathways.36

GP73 and its fucosylation
GP73, a transmembrane glycoprotein, was detected in 66% 
of AFP-negative HCC, 10% of non-HCC participants, and 0% 
of healthy participants.35 Hu et al.37 measured serum levels of 
GP73 in a hepatitis B-endemic Asian population and showed 
the area under the curve of the receiver operating charac-
teristic (AUROC) was 0.89. GP73 downregulation led to the 
accumulation of matrix metalloproteinase-2 (MMP2), which 
inhibited the activation of AAPK/JNK and P53-P21 pathways, 
and attenuated cell invasion. The two pathways also regulat-
ed MMP2 activity by a negative feedback mechanism.38 Fuco-
sylation is a type of glycosylation. Zhao et al.39 found that the 
AUROC of fucosylated GP73 (Fuc-GP73) for diagnosis of HCC 
was 0.885, with a specificity of 95% and a sensitivity of 82%.

APOH, ORM2, and C3
Cao et al.40 designed a straightforward and highly efficient 
scheme to identify glycoprotein biomarkers using a nongly-
copeptide-based mass spectrometry pipeline. The diagnostic 
sensitivities were 0.901 for APOH, 0.945 for ORM2, 0.944 for 
C3, while the diagnostic sensitivity of AFP was only 0.633. The 
results showed that three glycoproteins, β-2-glycoprotein 1 
(APOH), α-1-acid glycoprotein 2 (ORM2), and complement 
C3 (C3) could be used as biomarkers to distinguish HCC pa-
tients from healthy individuals. APOH interacted with hepati-
tis B surface antigen (HBsAg) to activate the NF-κB pathway, 
thus promoting tumor cell proliferation.41 Fang et al.42 re-
ported that ORM2 was regulated by CCAAT/enhancer-binding 
protein β and inhibited the progression of liver cancer. Gly-
cosylation of C3 affected various biological functions of C3. 
C3 activated the P38-MAPK signaling pathway, thus inhibiting 
the secretion of cytotoxic T cells and leading to tumor cell 
proliferation.43

Glycosylation of α-1-acid glycoprotein (AGP)
AGP, with an official name of orosomucoid (ORM), is also 
known as AAP. Tanabe et al.44 assessed glycopeptides obtained 
from serum proteins of 42 HCC patients and 80 controls by 
liquid chromatography time-of-flight mass spectrometry and 
revealed that AGP with multifucosylated tetra-antennary N-
glycans was higher in HCC patients. High levels of sialylated 
and fucosylated peptides from AGP were reported in HCC pa-
tients compared to controls. The diagnostic potential of these 
glycopeptides was reported to differentiate HCC patients from 
cirrhosis participants with AUCs greater than 0.9.45

Fucosylated paraoxonase 1 (Fuc-PON1)
Zhang et al.46 used an ELISA index to assess the fucosyla-
tion level of PON1. The utility of Fuc-PON1 in distinguishing 
HCC from liver cirrhosis was indicated by an AUC of 0.803, 
sensitivity of 80% and specificity of 64.4%. In addition, the 
data showed a better AUROC curve and higher sensitivity 
and specificity in AFP-negative patients.

Fucosylation of alpha-1-antitrypsin (A1AT)
Glycosylation of A1AT increases with the development of HCC, 
and there are five major isoforms. A patient cohort of 458 
patients was used to evaluate the lever of fucosylated A1AT 
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compared with 375 patients with other liver diseases and 20 
with no evidence of liver disease. Core fucosylation was ob-
served only in patients with HCC. The AUROC of fucosylated 
A1AT was 0.871, suggesting core fucosylation of A1AT had 
the ability to be used as a diagnostic biomarker for HCC.47

Glycosylation of haptoglobin (Hp)
Hp is an acute-phase response protein secreted by the liv-
er. Various types of glycosylation of Hp were reported to be 
higher in HCC. Ang et al.48 performed a systematic analysis 
of serum concentrations of Hp and its glycosylation in HCC 
patients and chronic liver diseases. Using Hp for HCC diagno-
sis, the sensitivity could be 79% with the specificity of 95%. 
Serum Hp concentrations of hypersialylated fucosylated and 
hyposialylated fucosylated species were significantly in-
creased in patients with advanced HCC. Five N-glycopeptides 
at sites N184 and N241 of Hp were found to be significantly 
increased during the progression of cirrhosis to HCC. The gly-
copeptides had a diagnostic potential in detection of HCC, 
with an AUC greater than AFP.49 In addition, a total of 26 
complete O-glyopeptides that could be used to distinguish 
HCC from liver cirrhosis were discovered on Hp using mass 
spectrometry.50

C3, CE, HRG, CD14, HGF
Ceruloplasmin (CE), a glycoprotein, played an important role 
in iron homeostasis. In liver cancer cells, the absence of CE 
promoted the accumulation of lipid reactive oxygen species, 
which led to ferroptosis.51 In the presence of tumor necrosis 
factor receptor 1 (TNFR1), HRG bound to TNFR1 to promote 
apoptosis and inhibit the activation of NF-κB signaling path-
way and the expression of survival-promoting genes.52 In 
addition, it was reported that HRG inhibited cell prolifera-
tion by inhibiting FGF-ERK1/2 phosphorylation.53 Liu et al.54 
developed an integrated platform to discover glycoprotein 
biomarkers in early HCC. The data indicated C3, CE, histi-
dine-rich glycoprotein (HRG), CD14, and hepatocyte growth 
factor (HGF) were biomarker candidates for distinguishing 
early-stage HCC from cirrhosis. The combination of the five 
proteins had an AUROC of 0.811 and the AUROC curve of 
each glycoprotein were better than AFP of 0.661.

Combination of biomarkers
Meta-analyses and studies of combinations of biomarkers or 
patient characteristics were applied to investigate the diag-
nosis of HCC. AFP-L3 % is the ratio of AFP-L3 to total AFP in 
serum. Marrero et al.55 performed a phase 2 biomarker case-
control study with 836 patients at seven academic medical 
centers. The results showed that the AUC of AFP was bet-
ter than that of AFP-L3% in ROC analysis for the diagno-
sis of early-stage HCC.55 However, Leerapun et al.56 found 
that when AFP-L3% was greater than 35%, the specificity 
reached 100% for HCC patients with AFP values of 10–200 
ng/ml.56 In a meta-analysis that included 2,447 patients, 
Zhou et al.57 reported that AFP-L3% had a high pooled spec-
ificity (92%), low pooled sensitivity (34%), and moderate 
AUC of the summary ROC curve (0.755) for HCC diagnosis. 
The results suggested that AFP-L3% could be used as an 
adjunct biomarker for HCC diagnosis. In a recent prospec-
tive phase III biomarker study of 534 patients. Tayob et al.58 
showed that GALAD (a combination of Gender, Age, AFP-L3, 
AFP, and DCP) significantly improved the sensitivity of HCC 
detection, but with an increasement in the false-positive 
rate.58 The results of two meta-analyses indicate that a com-

bination of AFP and GP73 had the best AUCs in the diagnosis 
of HCC among AFP, AFP-L3, GP73, and DCP alone or com-
bined.59,60 The combination of AGP and AFP had an AUC of 
0.943, whereas AFP and AAG had AUCs of 0.750 and 0.907 
respectively, to differentiate HCC from chronic liver disease. 
The data indicate that combining of AAG and AFP improved 
the diagnostic potential of HCC.61

H2A.Z acetylation and ALDOA phosphorylation
In addition to glycoproteins, other types of posttranslational 
modifications of protein are involved in HCC development and 
be potential biomarkers. Histone variant H2A.Z is involved in 
the proliferation, cell cycle, apoptosis, and metastasis of HCC 
cells. Acetylated HA2.Z inhibited the transcription of down-
stream target genes and thus affected various tumor behav-
iors. Yuan et al.62 measured the acetylation level of H2A.Z 
and found that it was elevated in HCC cells and tissue sam-
ples. The results indicate that H2A.Z and its acetylation had 
diagnostic potential for HCC. Gao et al.63 conducted a prote-
ogenomic study of HBV-associated HCC. The results showed 
that in CTNNB1-mutated tumors, glucose metabolism was 
regulated by Ser36 phosphorylation of ALDOA and further 
affected cell proliferation. Increased Ser36 phosphorylation 
of ALDOA was found in CTNNB1-mutated tumors and was 
used as a potential diagnostic biomarker for such tumors.63

Prognostic value of PTM in HCC

Phosphorylation of p53 at serine 15 (p53 Ser15-P)
Phosphorylation of p53 at serine 15 (p53 Ser15-P) may be a 
prognostic marker of HCC. P53 Ser15-P was found to inhibit 
tumor progression by binding with p21 to stop cell cycle pro-
gression. Yang et al.64 performed an immunohistochemistry 
analysis to determine the prognostic value of PCNA, p53, p53 
phosphorylation at serine 15 (p53 Ser15-P) and Ser392 (p53 
Ser392-P) in 199 patients with HCC. The results showed that 
the levels of p53 Ser15-P, but not p53 or p53 Ser392-P, were 
correlated with 5-year survival of HCC. Moreover, patients 
with positive PCNA and negative p53 Ser15-P had worse sur-
vival outcomes than those with positive PCNA and positive 
p53 Ser15-P. The results indicate that p53 Ser15-P was a 
prognosis marker not only of overall HCC but also of patients 
with positive PCNA.64 Identification of poor survival groups 
by monitoring p53 Ser15-P in PCNA-positive patients may 
contribute to the treatment of liver cancer, especially in PC-
NA-positive patients.

Phosphorylation of PCK1, INSIG1, and INSIG2
Phosphorylated PCK1 was shown to reduce binding of IN-
SIG1/2 to SCAP, leading to translocation of the SCAP/SREBP 
complex to the Golgi. Activation of SREBP proteins was relat-
ed to transcription of downstream lipid-related genes, tumor 
cell proliferation, and tumorigenesis in mice. Xu et al.65 re-
ported the phosphorylation at Ser90 of phosphoenolpyruvate 
carboxykinase 1(PCK1), Ser207 of INSIG1, and Ser151 of 
INSIG2 was positively correlated with nuclear accumulation 
of SREBP1 in HCC samples. IHC analysis showed that in-
creased levels of phosphorylation of PCK1 Ser90 and INSIG1 
Ser207/INSIG2 Ser151 were associated with reduced overall 
survival in 90 HCC patients.

Androgen receptor (AR) phosphorylation at Ser96
Ren et al.66 performed IHC staining on human steatosis liver 
tissue and HCC samples using anti-ARpS96 antibodies. High 
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AR S96 phosphorylation was found in human liver adipose 
tissue and HCC tissue. Survival analysis showed that p-AR 
S96 expression was associated with HCC survival and was an 
independent risk factor for OS in HCC patients. MTOR signal-
ing stimulated AR phosphorylation. Phosphorylation at Ser96 
increased the stability and transcriptional activity of AR and 
activated downstream SREBP signaling, which enhanced liver 
steatosis and hepatocarcinogenesis in mice.66

Recombinant Human Eukaryotic Translation Initia-
tion Factor 4E-Binding Protein 1 (4E-BP1) phospho-
rylation at Thr46
HCC with early formation of portal vein tumor thrombosis 
(PVTT) had a higher risk of metastasis. Lin et al.67 performed 
a phosphorylated proteomic analysis and identified a total 
of 1,745 phosphoproteins in HCC tissues, normal tissues, 
and PVTT tissues. The results showed that HCC and PVTT 
tissues had higher phosphorylation levels of 4E-BP1 than 
surrounding noncancerous tissues. The expression of phos-
phorylated 4E-BP1 in patients who relapsed within 1 year 
was significantly higher than that in patients who relapsed 
after 3 years. The reduction of mTOR signal stimulated phos-
phorylation of 4EBP1. Phosphorylation of 4E-BP1 weaken its 
binding to eukaryotic translation initiation factor 4E, thereby 
promoting the initiation of protein translation and promot-
ing tumor cell proliferation. Therefore, the prediction of early 
recurrence of HCC may be assisted by 4E-BP1 with phospho-
rylation at Thr46 as a reliable biomarker.67

Acetylation of AFP
Acetylation at lysines 194, 211, and 242 of AFP were reported 
to enhance the protein stability of AFP and strengthen its on-
cogenic function by inhibition of binding to the phosphatase 
PTEN and the pro-apoptotic protein caspase-3. Results of 
the immunostaining of 70 HCC liver specimens showed that 
patients with higher levels of AcK194-AFP, AcK211-AFP, and 
AcK242-AFP had poorer progression-free and overall sur-
vival. Moreover, elevated acetylation levels of AFP were cor-
related with metastasis and HBV infection. The data suggest 
that acetylation of AFP played a vital role in HCC develop-
ment and could serve as a novel potential marker for the 
prognosis of HCC.68

Acetylation and methylation of histone
Histone-related modifications also have an important role 
in tumors. Acetylation of lysine 120 on histone H2B (H2B-
K120ac), lysine 18 on histone H3.3 (H3.3K18ac), and lysine 
77 on histone H4 (H4K77ac) was upregulated in HCCs com-
pared with paracancerous or normal liver tissues. Patients 
with high acetylation levels of all three histones had obvi-
ously worse OS than patients with low acetylation levels.69 
He et al.70 performed immunohistochemical experiments 
and statistical analysis to assess the expression and clinico-
pathologic association of methylation of lysine 4 in histone 
H3 (H3K4me3) in two cohorts of HCC patients. The results 
revealed that high expression of H3K4me3 was associated 
with worse survival in both the testing cohort and validation 
cohort. However, high level of H3K4me3 discriminated differ-
ences in OS for the subset of patients with TNM stage III/IV 
only in the testing cohort. Multivariate analysis was carried 
out to indicate that the expression of H3K4me3 was a signifi-
cant independent prognosis factor for poor overall survival in 
both the testing cohort and validation cohort.

Mac-2-binding protein glycosylation isomer (M2BPGi)
Serum Mac-2-binding protein glycosylation isomer (M2BPGi) 

is a novel glycoprotein biomarker for liver fibrosis or cirrho-
sis. M2BPGi enhanced the migration and invasion of HCC via 
the mTOR signaling pathway.71 Tak et al.72 studied the serum 
M2BPGi levels of 226 HCC patients received transcatheter 
arterial chemoembolization (TACE). The study demonstrated 
that patients with low M2BPGi levels had significantly bet-
ter OS and PFS than those with high M2BPGi levels. The 
hepatoma arterial embolization prognostic (HAP) score is a 
prognostic tool based on albumin, bilirubin, AFP, levels, and 
tumor size.73 Combination of serum M2BPGi and the HAP 
score increased the prognostic ability. Serum M2BPGi level 
is a useful prognostic indicator for survival of HCC patients 
treated with TACE.

Human C3
Human C3 in HCC plasma was reported to have high-man-
nose and hybrid glycoforms at Asn85 with the utility of post-
proteomic site-specific N-glycan analysis. The level of plasma 
mannose-5 or mannose-6 glycoform at Asn85 of C3 was sig-
nificantly associated with the HCC tumor grade. Low tumor 
recurrence and mortality rates were found in the plasma of 
HCC patients with C3 with a hybrid glycoform at Asn85. The 
results suggest that specific plasma N-glycoproteins are po-
tential noninvasive markers of HCC prognosis.74

Conclusions and perspectives
PTM of proteins affects the biology of almost all normal 
cells and the pathogenesis of various diseases. Differences 
in PTMs provide novel insights into the clinical of HCC. In 
this review, various PTMs, mainly including phosphoryla-
tion, glycosylation, acetylation, and methylation of proteins 
that had diagnostic and prognostic value for HCC were sum-
marized (Fig. 1, Tables 1 and 235,37,39,40,44-50,54,57,59,60,64-
70,72,74). Some PTMs had clinical value for the therapy of 
HCC. GPC3, as a member of the proteoglycan family, was 
a promising therapeutic target of HCC. A total of 33 GPC3-
targeted CAR-T trials were registered at ClinicalTrials.gov 
(https://clinicaltrials.gov/) as of December 21, 2022. The 
initial safety of CAR-GPC3 T cell therapy has been dem-
onstrated in phase I Trials.75 Phase II clinical trials for two 
GPC3-targeted therapies for HCC are presently underway. 
One patient with advanced HCC had complete tumor resolu-
tion 30 days after intratumoral injection of anti-GPC3-7 × 
19 CAR-T (a CAR-T cell expressing IL7 and CCL19).76 Wu et 
al.77 constructed a mouse model to demonstrate the poten-
tial of sorafenib in combination with GPC3-targeted CAR-T 
cells for the treatment of HCC. Meanwhile, because of the 
shedding of GPC3 from the cell surface, the content of GPC3 
in the serum of HCC patients is high. Sun et al.78 found that 
shed GPC3 competed with GPC3 on the cell membrane for 
CAR-T binding, thus contributing to immune escape of HCC 
cells. Further discussion on the clinical value of GPC3 in HCC 
can be found in r reecent views.29,30 Mucin 1 (MUC 1), as a 
tumor-associated antigen with high glycosylation, is highly 
expressed in HCC. Currently, a few promising clinical tri-
als of immunotherapies targeting MUC 1 are ongoing.79 A 
phase I clinical trial of MUC1-targeting TILs/CAR-TILs cells 
treatment for HCC was initiated in 2021. In addition, some 
targets have clinical therapeutic potential, but have not yet 
entered the clinical trial stage. Animal studies have found 
that the interaction between phosphorylated p62 and Keap1 
can inhibit tumor development, and thus inhibitors of this 
process have the potential to be used as therapeutic drugs 
for human HCC.80 Inhibition of NF-κBp65 phosphoryla-
tion might inhibit the occurrence of HCC, suggesting that 
NF-κBp65 phosphorylation as a new therapeutic target for 

https://clinicaltrials.gov/
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HCC.81 In a study by Li et al.,82 computer-aided screen-
ing and inhibition assays were used to identify inhibitors 
of CD147 glycosylation, and finally, compound 72 (methyl 
3′-(4-chlorophenyl)-4′,5′-dihydro-[3,5′-biisoxazole]-5-
carboxylate), was the best candidate for CD147 inhibition, 
which provided new ideas for the design of CD147 glycosyla-
tion targeting drugs in HCC treatment.82

In addition, many enzymes that regulate PTMs are prom-
ising targets for HCC treatment. Protein arginase methyl-
transferase 5 (PRMT5), a protein methyltransferase, had an 
important role in carcinogenesis. A novel PRMT5 inhibitor, 
DW14800, suppressed tumor growth in vitro and in vivo by 
promoting the transcription of HNF4α.83 Luo et al.84 found 
that another inhibitor of PRMT5, GSK3326595, increased 
the infiltration of immune cells in tumors of mouse models 
and improved therapeutic effects in HCC. In the treatment 
of cancer, drug resistance is a major problem. Therefore, 
improving the drug sensitivity of tumors is an important 
research direction. HDAC was found to deacetylate histones 
and to have an important role in chromosome structural 
modification and gene expression regulation. Bi et al.85 
found that patients treated with sorafenib therapy with low 
levels of HDAC11 had an increased OS. In addition, various 
cytological and mouse experiments have demonstrated that 
HDAC11 could protect HCC cells from sorafenib-induced cy-
totoxicity, providing a new target for addressing sorafenib 
resistance during HCC treatment. 5-FU is a substrate of 
organic anion transporter 2 (OAT2). HDAC inhibitor SAHA 
reversed the histone deacetylation status of OAT2 and en-
hanced its interaction with 5-FU, thereby increasing the sen-
sitivity of liver cancer cells to 5-FU.86 The ubiquitin-specific 
protease (USP)family is the largest class of deubiquitination 
enzymes and is related to a variety of signaling pathways in 
biological processes. USP7 inhibitor P22077 could inhibit tu-

mor growth in nude mice.87 Ubiquitin-conjugating enzyme 
UBE2S was found to promote the development of HCC by 
accelerating the cell cycle. Zhang et al.88 demonstrated 
that the small-molecule cephalomannine attenuate the ma-
lignant progression of HCC by inhibiting the expression of 
UBE2S both in vitro and in vivo.

There are also some post-translational modification pro-
tein-targeting drugs in clinical trials in cancer types other 
than HCC. CD52 is an anchor glycoprotein mainly distrib-
uted on lymphocytes and lymphoid tumor cells. Anti-CD52 
monoclonal antibodies (Campath and Lemtreda) have been 
approved for the treatment of chronic B-cell leukemias and 
multiple sclerosis in the USA and the European Union. CD47 
is an important tumor antigen that is involved in the occur-
rence and development of various cancers. The anti-CD47 
monoclonal antibody CC-90002 was investigated in a phase I 
study in patients with relapsed/refractory acute myeloid leu-
kemia and high-risk myelodysplastic syndromes.89 SRF231, 
a fully human IgG4 anti-CD47 antibody, has completed 
phase I clinical trials in advanced solid and hematologic 
cancers (NCT03512340). Currently, there are a total of 32 
CD70-targeting agents in clinical trials, mainly for renal cell 
carcinoma and hematological tumors. Although these targets 
were not reported in HCC, these therapeutics might also pro-
vide insight into HCC.

In addition to the PTMs described in this review, there are 
some modification types with certain clinical implications in 
HCC. S-nitrosylation of endothelial proteins may regulate 
angiogenesis, adhesion of tumor cells to the endothelium, 
intra- and extravasation of tumor cells, and contribute to 
metastasis.90 Khan et al.91 used anti-SNO-cysteine for im-
munoblotting and identified a novel and biologically relevant 
post-translational modification of CYB5A thiol only in HCC 
specimens. Two other nuclear envelope proteins, ATP syn-

Fig. 1.  The mechanisms affecting tumor behavior by diagnostic and prognostic PTMs in HCC. PTM, post-translational modification; HCC, hepatocellular 
carcinoma.
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thase subunit beta (ATPB) and hemoglobin subunit beta 
(HBB) were found to be nitrosylated in HCC. S-nitrosylation 
of mitochondrial chaperone TRAP1 led to loss of S-nitros-
oglutathione reductase (GSNOR) and increased succinate 
dehydrogenase (SDH) levels and activity. Thus, S-nitros-
ylation of mitochondrial chaperone TRAP1 enhanced the 
sensitivity of HCC cells to succinate dehydrogenase inhibi-
tors.92 S-palmitoylation is is the attachment of fatty ac-
ids (lipidylation), such as palmitic acid, to cysteine of pro-
teins. Oncoproteins such as RAS-family GTPases require 
palmitoylation to promote tumor formation.93 Sun et al.94 
designed a peptide containing a mutant site to compete 
for S-palmitoylation of PCSK9 in vivo, and confirmed that 
the inhibitor enhanced the inhibitory effect of sorafenib on 
hepatoma cells by both in vivo and in vitro experiments.94 
The data suggest that some uncommon PTMs may also 
have clinical significance in HCC.

Because of the diversity and dynamics of the immune sys-
tem and the heterogeneity between and within tumors, to re-
ceive a sustained response for cancer therapy in all patients 
is challenging.95 Single-cell technologies, including single-
cell proteomics, make it possible to assess the heterogene-
ity of tumor, microenvironmental cell type composition, and 
cell state transitions that influence therapeutic response.96 
Krieg et al.97 determined subsets of immune cells in periph-
eral blood samples from patients with metastatic melanoma 

before and after 12 weeks of immunotherapy against PD-1 
using high-dimensional single-cell mass cytometry. With this 
single-cell proteomic profiling, a class of monocyte was iden-
tified that was associated with better treatment response and 
patient survival prior to anti-PD-1 therapy. With the advance-
ment of single-cell proteomics, the clinical value of single-cell 
PTM is achievable.

There have been many studies on post-translational mod-
ification of liver cancer, but there are still few biomarkers 
or drugs available for clinical use. It is important to identify 
novel PTM biomarkers of diagnosis or prognosis and to con-
duct clinical trials to test the clinical value of the present 
studies. Finding abnormal PTM of molecular targets in cancer 
and understanding the mechanisms of the modification after 
translation is helpful to reveal the process of tumor progres-
sion and provide novel target of therapy.
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Table 1.  Diagnostic value of post-translational modification of proteins in hepatocellular carcinoma

Protein Modified type No. of 
sample Sensitivity Speci-

ficity AUC Reference

AFP-L3 Glycosylation 130 50.0% 97.5% – 35

GP73 Glycoprotein 130 66.0% 96.2% – 35

Fuc-GP73 Fucosylation 124 77.4% 83.9% 0.89 37

Fuc-GP73 Fucosylation 150 82% 95% 0.885 39

APOH Glycoprotein 62 90.1% – Combination of the three 
glycoproteins and AFP was 0.978

40

ORM2 Glycoprotein 62 94.5% –

C3 Glycoprotein 62 94.4% –

AGP Glycosylation 122 93% 86% 0.98 44

AGP Sialylation and 
fucosylation

259 – – Over than 0.9 45

Fuc-PON1 Fucosylation 180 80% 64.4% 0.803 46

A1AT Fucosylation 853 70% 86% 0.871 47

Hp Fucosylation 96 79% 95% 0.733 48

Hp Glycosylation at 
sites N184 and N24

70 73% 70% 0.733, 0.775 49

Hp Glycosylation 158 – – – 50

C3, CE, HRG, 
CD14, HGF

Glycoprotein 74 72% 79% Combination of five 
proteins was 0.811

54

AFP-L3% Glycoprotein 2,447 34% 92% 0.755 57

AFP+GP73 Glycoprotein 28 
articles

The sum of sensitivity 
and specificity was 1.76

0.93 59

AFP+GP73 Glycoprotein 40 
articles

– – 0.943 60

AFP, Alpha-fetoprotein; AFP-L3, N-glycosylated isoform of AFP; AGP, α-1-acid glycoprotein; APOH: β-2-glycoprotein 1; AUROC, area under the curve of receiver 
operating characteristic; A1AT, Alpha-1-antitrypsin; CE, ceruloplasmin; C3, complement C3; Fuc-GP73, fucosylated GP73; Fuc-PON1, fucosylated paraoxonase 1; 
GP73, Golgi phosphoprotein 73; HCC, hepatocellular carcinoma; HGF, hepatocyte growth factor; Hp, haptoglobin; HRG, histidine-rich glycoprotein; ORM2, α-1-acid 
glycoprotein 2.
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