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Abstract

Hepatocellular carcinoma (HCC) is a common tumor. Al-
though the diagnosis and treatment of HCC have made 
great progress, the overall prognosis remains poor. As the 
core component of artificial intelligence, machine learning 
(ML) has developed rapidly in the past decade. In particular, 
ML has become widely used in the medical field, and it has 
helped in the diagnosis and treatment of cancer. Different 
algorithms of ML have different roles in diagnosis, treatment, 
and prognosis. This article reviews recent research, explains 
the application of different ML models in HCC, and provides 
suggestions for follow-up research.

Citation of this article: Feng S, Wang J, Wang L, Qiu Q, 
Chen D, Su H, et al. Current Status and Analysis of Machine 
Learning in Hepatocellular Carcinoma. J Clin Transl Hepatol 
2023;11(5):1184–1191. doi: 10.14218/JCTH.2022.00077S.

Introduction
Hepatocellular carcinoma (HCC) is the most common pri-
mary liver malignancy and one of the four most common 
causes of cancer-related death worldwide.1,2 HCC is the fast-
est-growing cause of cancer-related deaths in the USA, and 
it is possible that HCC will become the third largest cause 
in 2030.3 In recent years, hepatitis B vaccine and antiviral 
treatment have been widely used,4,5 and the treatments of 
HCC are various, including surgery, ablation, transcatheter 
arterial chemoembolization (TACE), chemotherapy target-
ed immunotherapy and others.3,6 However, the symptoms 
of HCC are not easy to detect, and the overall prognosis is 
poor.7 HCC needs early detection, accurate prediction, indi-
vidualized treatment and follow-up.

Artificial intelligence (AI) is a new subject that studies 
and develops theories, methods, technologies, and applica-
tion systems for simulating, extending, and expanding hu-
man intelligence. Machine learning (ML) is the core of AI. ML 
can make the computer simulate or realize human learning 
behavior to acquire new knowledge or skills and reorgan-
ize existing knowledge to improve its own performance.8 In 
the past decade, ML has been gradually applied to medical 
research, and has made progress in many aspects.9 In par-
ticular, cancer-related research, including lung cancer, breast 
cancer and so on, and HCC-related research is increasing. ML 
studies in HCC involve not only diagnosis, treatment, prog-
nosis, and other aspects, but also a variety of algorithm mod-
els including decision trees, support vector machines (SVMs), 
random forest and deep learning.10 The application of ML in 
HCC can reveal the relationship between AI and HCC and 
also be instrumental in the prevention and treatment of HCC. 
This review focuses on the application of ML in the aspects of 
diagnosis, treatment, and prognosis of HCC.

ML for the Diagnosis of HCC
The diagnosis of HCC depends on pathology, for patients with 
chronic hepatitis B and liver cirrhosis, radiology can also help 
with diagnosis.3 However, radiologic diagnosis requires typi-
cal imaging features,11 but more than 10% of tumors lack 
imaging hallmarks of HCC. If the imaging is not typical, a 
biopsy or second contrast-enhanced study should be per-
formed.12 Biopsy is an invasive procedure with a sensitivity 
of about 70%, and lower for tumors with a diameter <2 cm. 
Sometimes it is difficult to distinguish well-differentiated HCC 
from dysplastic nodules. The diagnosis model of HCC can be 
established through ML, which can help to diagnose and treat 
the disease in clinic early and easily. For the diagnosis, it is 
convenient to obtain clinical data, like albumin, platelet (PLT), 
total bilirubin, alpha-fetoprotein (AFP), alkaline phosphatase 
(ALP), γ-glutamyl transferase (GGT), aspartate transami-
nase (AST), portal vein thrombosis, and others. Phan et al.13 
established a convolutional neural network (CNN) model to 
predict the occurrence of HCC in HBV infected patients by 
selecting clinical data from Taiwan Health database. The AUC 
of the model was 0.886 and the accuracy was 0.980. Nam 
et al.14 constructed a deep neural network to predict the in-
cidence rate of HCC in patients with HBV-related cirrhosis 
who received entecavir antiviral treatment. The c-index of 
the model was 0.782, which was significantly better than 
the traditional six scores (PAGE-B, CU-HCC, HCC-RESCUE, 
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ADRESS-HCC, mPAGE-B, and THRI).
In addition, the accuracy of ML models varies significantly. 

Sato et al.15 collected relevant clinical data from patients di-
agnosed with HCC at the first visit and HBV infected patients 
who developed HCC during the follow-up period. They used 
logistic regression model for linear classification, SVM, gradi-
ent boosting, random forest, neural network, deep learning, 
and other algorithms for nonlinear classification, and estab-
lished HCC diagnosis prediction model based on clinical data. 
Then, all the models were verified in the test set. They found 
that the gradient boosting model had the highest accuracy. 
Similarly, Angelis et al.16 used six algorithms including de-
cision tree, random forest, SVM, k-nearest neighbor (KNN) 
classification, AdaBoost, and gradient boosting to make 
models based on the collected clinical data. They also found 
that the gradient boosting had the highest accuracy of 84% 
and a sensitivity of 92%. Kim et al.17 used gradient boosting 
machine (referred to as GBM), which is one of the boosting 

algorithms, to establish a model for the follow-up results of 
patients with HBV hepatitis treated with entecavir or tenofo-
vir. The model predicted high or low risk of HCC in patients 
with HBV hepatitis, and it has been externally verified in 
Western cohorts. However, the study of Wong et al.18 on HCC 
prediction models of HBV and HCV patients in Hong Kong 
reported that among logistic regression model, ridge regres-
sion model, AdaBoost algorithm model, decision tree model, 
and random forest model, the accuracy of ridge regression 
[area under the receiver operating characteristic (AUROC) 
0.844] and random forest model (AUROC: 0.837) were sta-
ble, and better than other traditional scores (CU-HCC, GAG-
HCC, REACH-B, PAGE-B, and REAL-B) (Table 1).19–27

For high-risk patients with chronic hepatitis B and cirrho-
sis, the diagnosis can be established by imaging. However, 
it is difficult to identify when the image characteristics are 
not typical. ML is good at processing images, so it has ad-
vantages in imaging identification. Bharti et al.28 obtained 

Table 1.  Details of traditional scores mentioned in this article

Scores Author 
and year Function Based indicators Research 

center Results

PAGE-B Papatheodoridis 
et al. 201619

Score for prediction 
of the 5-year HCC 
risk in Caucasian 
CHB patients under 
entecavir/tenofovir

Age, sex, and 
platelets

Multicenter c-index :0.82

CU-HCC Wong et al. 
201020

Clinical score in 
predicting the risk of 
HCC among HBV carriers

Age, albumin, 
bilirubin, HBV DNA, 
and cirrhosis

Multicenter Negative predictive 
value: 97.8% and 
97.3% in the training 
and validation cohorts

HCC-
RESCUE

Sohn et al. 
201721

Prediction model for the 
development of HCC in 
treatment-naïve patients 
receiving oral antiviral 
treatment for CHB

Age, sex, and 
cirrhosis.

Multicenter AUROCs :1 year, 3 years, 
and 5 years were 0.798, 
0.788, and 0.817 in 
the testing cohort and 
0.817, 0.810 and 0.809 
in the validation cohort

ADRESS-
HCC

Flemming et 
al. 201422

Risk prediction model 
to estimate the 1-year 
probability of HCC

Age, diabetes, race, 
etiology of cirrhosis, 
sex, and severity of 
liver dysfunction

Multicenter

mPAGE-B Kim et al. 
201823

Modified PAGE-B 
scores to improve the 
predictive performance

Age, sex, platelet 
counts, and serum 
albumin levels

Multicenter c-index 0.704 and 0.691 
in the testing cohort and 
the validation cohort

THRI Sharma et 
al. 201724

Scoring system to 
predict HCC risk for 
patients with cirrhosis

Age, sex, etiology, 
and platelets

Multicenter AUROC: 0.82 and 0.72 
in the testing cohort and 
the validation cohort

GAG-HCC Yuen et al. 
200925

Score to identify 
high-risk CHB patients 
for treatment and 
screening of HCC

Age, sex, HBV 
DNA levels, core 
promoter mutations, 
and cirrhosis

Multicenter c-index: 0.77

REACH-B Yang et al. 
201126

Score to estimate the 
risk of developing 
HCC at 3, 5, and 10 
years in patients with 
chronic hepatitis B

Sex, age, 
serum alanine 
aminotransferase 
concentration, HBeAg 
status, and serum 
HBV DNA level

Multicenter AUROC: 0.902, 
0.783 and 0.806

REAL-B Yang et al. 
202027

HCC risk score 
using routine clinical 
variables among a 
treated Asian cohort

Sex, age, alcohol 
use, diabetes, 
baseline cirrhosis, 
platelet count, and 
alpha-fetoprotein

Multicenter AUROC: >0.80

AUROC, area under the receiver operating characteristic; HCC, hepatocellular carcinoma.
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754 regions of interest (ROI) through the echotexture and 
roughness of the liver surface in the ultrasound imaging, and 
constructed a CNN model to distinguish normal liver, chronic 
hepatitis, cirrhosis, and HCC. The classification accuracy of 
the model was 96.6%. Similarly, other studies have sug-
gested that the model established by ultrasound imaging 
features has good accuracy in distinguishing benign and ma-
lignant liver nodules.29,30 Moreover, Brehar et al.31 compared 
HCC detection models based on ultrasound imaging. They 
compared the CNN model with the traditional multilayer per-
ceptron, SVM, random forest, and AdaBoost algorithm, and 
found that the accuracy, sensitivity and specificity of CNN 
were good, and it was significantly better than the traditional 
ML algorithm. Recently, Jin et al.32 established a deep learn-
ing model through two-dimensional shear wave elastography 
and corresponding ultrasound images, which can predict the 
possibility of hepatitis B patients developing into HCC within 
5 years. This provides an important reference for the treat-
ment and follow-up of patients with chronic hepatitis B. HCC 
and intrahepatic cholangiocarcinoma (ICC) both occur in the 
liver, but their biological behavior, treatment methods, and 
prognosis are very different. The overall prognosis of ICC is 
poor. Most patients present with advanced tumors, and only 
15% of patients with ICC underwent resection.33 Even for 
patients who are indicated for surgical resection, the study 
suggests that the probability of cure is about 10%.34 The 
resection mode, chemotherapy and targeted treatment of 
ICC are very different from those of HCC.35,36 Therefore, it 
has significant to be able to distinguish HCC and ICC in a 
noninvasive manner. Ren et al.37 established a SVM model 
by selecting the ROI of lesion on the ultrasound imaging to 
identify HCC and ICC. The results showed that the accuracy, 
specificity, and sensitivity of the model were above 0.800, 
and it had good generalization ability.

Enhanced CT is of great significance in the diagnosis of 
HCC. When it is controversial to discriminate the nature of 
nodules with CT images, a good ML model can improve the 
reliability of diagnosis. The CNN model established by Ya-
saka et al.38 effectively identified the types of liver masses 
through enhanced CT, and masses can be divided into five 
categories using this model. They are category A, classic 
HCCs; category B, malignant liver tumors other than classic 
and early HCCs; category C, indeterminate masses or mass-
like lesions including early HCCs and dysplastic nodules and 
rare benign liver masses other than hemangiomas and cysts; 
category D, hemangiomas; and category E, cysts. Mokrane 
et al.39 extracted quantitative imaging features from CT im-
ages to establish candidate models for diagnosing uncertain 
liver nodules in patients with liver cirrhosis using three ML 
algorithms (KNN, SVM, and random forest). They selected 
the best model using the AUC and Youden index. The mod-
el helped to judge uncertain liver nodules in a noninvasive 
manner. MRI has a similar role. Hamm et al.40 established 
a CNN model using MRI images, and it divided liver lesions 
into six categories (simple cyst, cavernous hemangioma, fo-
cal nodular hyperplasia (FNH), HCC, ICC, and colorectal can-
cer metastasis). The discrimination result of the model was 
better than that of the radiologist, and the specificity and 
sensitivity were greater than 90%. Liu et al.41 made a SVM 
model to distinguish combined hepatocellular cholangiocar-
cinoma, ICC, and HCC using the radiological characteristics 
of MRI and CT. At the same time, they found that enhanced 
phase MRI and nonenhanced phase and portal vein phase CT 
were more helpful for differentiation. Because of the devel-
opment of ML, it is also possible to predict the pathological 
grade of HCC by noninvasive evaluation by imaging. Mao et 
al.42 manually extracted radiomics features and synthesized 

features using recursive feature elimination, and then es-
tablished a prediction model of HCC pathological grade with 
AUC of 0.8014 using the XGBoost model. Nebbia et al.43 es-
tablished a ML model using multiparameter MRI images to 
achieve preoperative prediction of microvascular infiltration 
(MVI) status. The researchers also compared the effects of 
extracting only from the tumor region, extracting only from 
the peritumor edge region and combining them. The result 
showed that preoperative MRI is feasible to predict MVI, and 
multiparameter MRI sequences are complementary in rec-
ognition.

The results of pathological examination depend to a cer-
tain extent on the selection of specimens and pathologist 
judgment. Using ML can not only reduce the error of results 
but also shorten the time to diagnosis. Lin et al.44 estab-
lished a CNN model using multiphoton microscopic imaging 
of unstained specimens to judge the degree of HCC differ-
entiation. Chen et al.45 established a CNN model using HE 
stained pathological images. The accuracy of the model in 
distinguishing benign and malignant HCC was 96.0%, and 
it predicted HCC mutated genes (including CTNNB1, FMN2, 
TP53 and ZFX4) from the images. Kiani et al.46 made a CNN 
model based on hematoxylin and eosin stained specimen im-
ages that effectively helped in the pathological differentia-
tion of HCC and ICC. In addition, on the molecular level, ML 
training through mutations in related genes can also assist 
in HCC diagnosis. The research of Zhang et al.47 established 
a SVM model based on 11 selected genes that distinguished 
HCC, adjacent noncancerous tissues, and hepatitis cirrhosis.

Chen et al.48 explored the significance of HBV reverse 
transcriptase (RT) gene for HCC patients. They used four 
ML methods to establish HBV RT sequences to predict HCC. 
The results show that the random forest model based on 10 
combined features had the best predictive performance, and 
the individual HCC risk score obtained by the random for-
est model distinguished HCC and HBV patients. Circulating 
tumor gene (ctDNA) detection makes it possible to detect 
tumors early and noninvasively and helps to match suitable 
targeted drugs. The study of Tao et al.49 established a ran-
dom forest model that distinguished HCC and HBV patients 
by somatic copy number aberrations of ctDNA through low-
depth whole-genome sequencing of plasma samples from 
HBV-related HCC patients and cancer-free HBV patients. 
The diagnosis of HCC is not limited to “diagnosis.” Diagnosis, 
including etiology and disease severity, greatly affects the 
treatment plan and prognosis. Especially in clinical practice, 
diseases are often atypical. The application of ML of HCC has 
a huge impact on the diagnosis and differential diagnosis of 
HCC (Table 2).13–15,17,18,29–32,37–49

ML for the treatment of HCC
The preferred treatment for HCC is surgical resection, and 
R0 resection should be performed in patients who can un-
dergo surgery. TACE or radiofrequency ablation (RFA) is rec-
ommended for nonresectable HCC patients, and targeted or 
immunotherapy and other systemic treatment schemes can 
be used for patients who cannot undergo the above treat-
ment.3 In clinical practice, doctors may encounter some pa-
tients whose treatment methods are difficult to decide. For 
individual patients, there is only one choice, which therefore 
needs to be made carefully. Properly used, ML can help pa-
tients to choose treatment methods.

Choi et al.50 established a clinical decision support system 
based on 20 clinical indicators selected using a random forest 
model. The system recommended the initial treatment plan 
for HCC patients and predicted the overall survival of the 
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Table 2.  Details of machine learning for the diagnosis of hepatocellular carcinoma

Author and year Data type Sample number Machine learning 
model/algorithm Results

Phan et al. 202013 Clinical 
data

N: 6,052 (training set: 
70%; test set: 30%)

Convolutional 
neural network

AUC: 0.886

Nam et al. 202014 Clinical 
data

Training set: 424; validation set 
(independent external cohort): 316

Deep neural network c-index: 0.782

Sato et al. 201915 Clinical 
data

N: 1,580 (training set: 80%; 
development set and test set: 20%)

SVM, gradient boosting, 
random forest, neural 
network, deep learning, 
and other algorithms

Gradient boosting 
model had the 
highest accuracy 
(87.34%) AUC: 0.94

Kim et al. 202117 Clinical 
data

Training set: 6,051; validation 
set (external validation cohorts): 
(5,817 patients from Korean centers 
and 1,640 from Western centers)

GBM c-index: 0.79

Wong et al. 202218 Clinical 
data

N: 124,006 (training set: 
70%; test set: 30%)

AdaBoost, decision tree 
and random forest

Accuracy of random 
forest (AUROC: 
0.837) was stable

Schmauch et 
al. 201929

Imaging Training set: 367; 
validation set: 177

Deep learning Weighted mean ROC-
AUC scores of 0.891

Li et al. 202130 Imaging N: 226 (training set: 
80%; test set: 20%)

SVM AUC: 0.86

Brehar et al. 202031 Imaging N: 268 (training set: 66%; test 
set: 20%; validation set: 14%)

CNN, SVM, random 
forest, and AdaBoost

CNN was the best 
(accuracy of 91% 
with AUC of 95%)

Jin et al. 202132 Imaging Training set: 262; validation 
set: 86; testing set: 86

Deep learning AUCs: 0.981, 0.942 
and 0.900 in training, 
validation, and 
testing cohorts

Ren et al. 202137 Imaging Training set: 149; test set: 
38; validation set: 39

SVM AUC: 0.936

Yasaka et al. 201838 Imaging Training set: 460; test set: 100 CNN AUC: 0.92

Mokrane et 
al. 202039

Imaging Discovery set: 142; 
validation set: 36

KNN, SVM, and 
random forest

AUC: 0.70 and 0.66 
in discovery and 
validation cohorts

Hamm et al. 201940 Imaging Training set: 434; test set: 60 CNN AUC: 0.992

Liu et al. 202141 Imaging N: 86 SVM AUC: 0.77

Mao et al. 202042 Imaging Training set: 237; test set: 60 XGBoost AUC: 0.8014

Nebbia et al. 202043 Imaging N: 99 SVM Highest AUC: 0.8669 
(multiparametric MRI 
combination yield)

Lin et al. 201944 Pathology N: 113 CNN Accuracy>90%

Chen et al. 202045 Pathology Training set: 261; test set: 50; 
internal validation set: 155; 
external validation set: 101

CNN Accuracy: 96.0%

Kiani et al. 202046 Pathology Training set: 70; test set: 
80; validation set: 26

CNN Accuracy: 0.885

Zhang et al. 202047 Gene Training set: 1,333; test set: 336 SVM Sensitivity: 91.93%, 
specificity: 100%, 
and AUC: 0.9597

Chen et al. 202148 Genes Training set: 361; 
validation set: 183

Random forest, 
SVM, KNN

Best predictive 
performances: 
random forest (AUC: 
0.96; accuracy, 0.90)

Tao et al. 202049 Genes Training set: 209; 
validation sets: 76/99

Random forest AUC>0.800

AUROC, area under the receiver operating characteristic; CNN, convolutional neural network; GBM, gradient boosting machine; SVM, support vector machine.
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corresponding treatment methods. Liu et al.51 established a 
radiomics model using ultrasound images of HCC patients 
to predict the efficacy of TACE. The model AUC was 0.93. It 
predicted progression-free survival of patients and optimized 
their treatment. On the basis of predicting the first TACE 
treatment response of HCC patients, Dong et al.52 used six 
ML models and compared them to select the most appropri-
ate model. The results showed that the random forest model 
performed best and accurately predicted the early response 
to the first TACE treatment. With the development of target-
ed therapy and immunotherapy, the application of ML for the 
treatment may tend to the selection of targeted Immunologic 
drugs for HCC patients. ML will provide reference for patients 
to select suitable targeted drugs in the future (Table 3).50–52

ML for the prognosis of HCC
Since the 21st century, HCC has been the fastest-growing 
cause of cancer-related death in the USA, and it is expected 
that HCC will become the third largest cause by 2030.53 The 
long-term prognosis of liver transplantation is better than 
that of hepatectomy, with a recurrence rate of 70% and a 
10-year survival rate of 7–15%.54 Liver transplantation is an 
ideal surgical method for HCC patients, but it is still limited 
by a small number of donors and high medical costs. How 
to choose these two treatment methods for people with ap-
propriate indications? Schoenberg et al.55 established a ran-
dom forest model based on clinical data. The predictive value 
of the model for early disease-free survival was 0.788. The 
model divides the patients into high-risk and low-risk groups. 
The low-risk patients are suitable for liver resection, and the 
high-risk patients are considered suitable for liver transplan-
tation, so as to guide the selection of treatment.

Ji et al.56 established a prediction model for the prognosis 
of patients with tumors ≤ 5 cm and no evidence of extra-
hepatic disease or large vessel invasion after resection. The 
model determined a critical value using eight clinical char-
acteristics including age, race, AFP, tumor size, tumor num-
ber, vascular invasion, histological grade and fibrosis score, 
and divided the prognosis into low risk, medium risk, and 
high risk. The results showed that there was no significant 
difference in the prognosis of low-risk patients undergoing 
tumor resection or liver transplantation. The model provided 
a reference for patients as to whether they should undergo 
neoadjuvant therapy. Huang et al.57 also used the clinical 
data of patients after hepatectomy to establish a model, but 
their study compared multiple models (DeepSurv, XGBoost 
and Random Survival Forest) and found that XGBoost was 
the best one. They used a heat map to individualize the re-
currence risk. The study also divided the prognostic variables 

of patients in more detail, according to time. Within 1 year 
after surgery, the importance of cancer thrombus was the 
highest. At 1 to 2 years after surgery, the number of tumors 
was the most important variable related to the prognosis of 
patients, followed by the type of resection, tumor thrombus, 
and tumor diameter. In the two periods of 2 to 3 years and 3 
to 5 years, in addition to the number of tumors, HBV infec-
tion was a relatively important variable. Smoking was also 
associated with late recurrence. A model established by Jiang 
et al.58 using CT radiomics features not only predicted the 
MVI status of patients before surgery, but also judged the 
difference in recurrence-free survival of patients by group-
ing. Regarding RFA, an SVM model established by Liang et 
al.59 can effectively identify HCC patients with relatively high 
recurrence risk after ablation therapy, which is helpful for 
postoperative follow-up and management of patients.

There are also many studies that used clinical data, patho-
logical information, radiomics characteristics and other data 
to establish ML models.60–65 They effectively predicted the 
prognosis of patients and provided great help in the selection 
of treatment methods, the requirements of postoperative 
review, and the avoidance of high-risk factors. For patients 
with Barcelona Clinic Liver Cancer stage B, the international 
guidelines recommend TACE. However, there is great het-
erogeneity in patients at that stage, and the efficacy of TACE 
is different. Lin et al.66 selected the clinical data of patients 
with BCLC stage B, and extracted five indicators including 
tumor size, tumor number, BCLC-B substage, AFP, and ALB to 
establish a random forest model. The model can predict the 
prognosis of patients after TACE treatment, and distinguish 
the middle-term HCC patients who are suitable for TACE. The 
CNN model established by Peng et al.67 also effectively pre-
dicted the efficacy of TACE. A model established by Jin et 
al.68 by extracting the features of enhanced CT effectively 
predicted the possibility of extrahepatic diffusion or vascu-
lar invasion of the patients after the initial TACE treatment 
(EVIT).

In terms of genes, many studies have explored the model 
of predicting the prognosis of HCC patients. Chaudhary et 
al.69 used deep learning for the first time to explore the dif-
ference in survival time of HCC patients. They established a 
model using RNA sequencing (RNA Seq), microRNA sequenc-
ing (miRNA Seq), and methylation data that reliably pre-
dicted the survival times of six different cohorts. Liu et al.70 
selected immune genes with differences between normal 
and HCC. The model established with those genes predicted 
the 5-year survival HCC patients. Bedon et al.71 classified 
HCC patients with progression-free survival with methyla-
tion maps, and constructed a model. High-risk and low-risk 
patients with early cancer progression were classified. Prog-

Table 3.  Details of machine learning for the treatment of hepatocellular carcinoma

Author 
and year Data type Sample number Machine learning 

model/algorithm Results

Choi et al. 
202050

Clinical data Training set: 813; 
validation set: 208

Random forest c-index: 0.725 (RFA/PEIT), 0.695 (resection), 
0.803 (TACE), 0.676 (TACE + EBRT), 0.684 
(sorafenib), 0.710 (supportive care), 0.959 
(transplantation), 0.850 (other therapies)

Liu et al. 
202051

Imaging N: 419 (training and 
validation cohorts 
by a ratio of 2:1)

CNN AUC: 0.93

Dong et 
al. 202152

Clinical data& 
Imaging

N: 110 (training 
set: 80%; validation 
set: 20%)

XGBoost, decision 
tree, SVM, random 
forest, KNN, fully 
convolutional networks

Best performance: random forest (AUC: 
0.802 accuracy: 0.784, sensitivity: 0.904,  
and specificity: 0.480)

AUROC, area under the receiver operating characteristic; CNN, convolutional neural network; TACE, transcatheter arterial chemoembolization.
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nosis is a common concern of patients and doctors. The ex-
tensive application of ML makes the prognosis more specific, 
and provides great help for follow-up guidance of patients 
(Table 4).55–59,66,67,69–71

Conclusion
The study of ML in HCC involves a variety of data such as pa-
tient clinical information, imaging information, pathological 
information, and gene loci. ML can provide guidance and help 
in the diagnosis of HCC, the selection of patient treatment 
methods, and prognosis prediction. Especially for noninva-
sive diagnosis. Its advantages include accuracy in processing 
images. ML can avoid the contraindications and complica-
tions of biopsy, as well as the possibility of tumor rupture and 
disseminated metastasis. Because of the different treatment 
methods of HCC and ICC, preoperative differentiation of HCC 
and ICC by ML can help preoperative assessment of whether 
surgery can be performed as well as the surgical procedure.

ML has brought great guiding significance to the diagnosis 
and treatment of HCC from many aspects. In particular, it is 
not based on subjective assessment and experience to de-
termine the diagnosis and treatment method, but is based on 
actual data and accuracy to provide evidence. Currently, as 
described above, there are many types of data available for 
the application of ML of HCC, including basic clinical informa-
tion (sex, hepatitis history, blood biochemical examination, 
and others), imaging data including ultrasound, CT, and MRI, 
pathology data, and gene data. Moreover, there are many 
models and algorithms that can be used in the application of 
ML for HCC. For example, random forest, SVM, deep learn-
ing, and so on. It is uncertain which model is suitable for the 
research problem, but ML models can be selected according 

to the type of research data. SVM, random forest, artificial 
neural network, boosting, and bagging algorithms are com-
mon models in ML, which are more suitable for the traditional 
“learning mode,” and so are more suitable for processing nu-
merical data. While the essence of deep learning, including 
CNN, and others, is complex, along with the complexity of 
learning and training models, the algorithm are closer to hu-
man brain models. Deep learning may be more suitable for 
processing complex data types. However, there are short-
comings of ML. The learning process is still a black box. It 
is hard to understand its essence, which may have potential 
harm. The interpretability of AI is still a problem that needs 
to be solved. In addition, models are always based on a part 
of the population. Then the extensive application of the mod-
els is facing a huge test and needs to be constantly improved.

There are many types of ML algorithms, different data 
types, and research methods. However, researchers have 
been exploring suitable algorithms and models, and have 
achieved much. It is believed that with the continuous de-
velopment of AI and ML, HCC-related research models of ML 
will also be improved and bring good news to HCC patients.
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Table 4.  Details of machine learning for the prognosis of hepatocellular carcinoma

Author and year Data type Sample number Machine learning 
model/algorithm Results

Schoenberg et 
al. 202055

Clinical data Training set: 127; test set: 53 Random forest AUC: 0.788

Ji et al. 202156 Clinical data Training/validation set: 
1,899; test set: 879

GBM c-index: >0.72

Huang et al. 202157 Clinical data Training set: 5,928; internal 
validation set: 1,483; 
external validation set: 508

DeepSurv, XGBoost, 
random survival forest

Best performance: 
XGBoost (c-index: 
0.713)

Jiang et al. 202158 Clinical data 
& imaging

Training set: 324; 
validation set: 81

XGBoost, 3D-CNN AUROCs: training 
set 0.952 and 
0.980; validation: 
0.887 and 0.906

Liang et al. 201459 Clinical data N: 83 SVM AUC: 0.69

Lin et al. 202166 Clinical data Training set: 602; internal 
validation set: 301; external 
validation set: 343

Random forest c-index: 0.69, 
AUROC>0.71

Peng et al. 202067 Imaging Training set: 562; 
validation sets: 89/138

CNN AUC:>0.95

Chaudhary et 
al. 201869

Gene Training set: 360; validation 
sets (5 external datasets): 
230/221/166/40/27

Deep learning c-index: 0.68

Liu et al. 202170 Gene N (3 databases): TCGA 365; 
ICGC 232; GSE14520 209

Random forest AUC:>0.7

Bedon et al. 202171 Gene Training set: 300; test set: 74 Random forest Accuracy: 0.80

AUROC, area under the receiver operating characteristic; CNN, convolutional neural network; GBM, gradient boosting machine; ICGC, International Cancer Genome 
Consortium; TCGA, The Cancer Genome Atlas.
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