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Abstract

Hepatocellular carcinoma (HCC) being a leading cause of 
cancer-related death, has high associated mortality and re-
currence rates. It has been of great necessity and urgency to 
find effective HCC diagnosis and treatment measures. Stud-
ies have shown that microvascular invasion (MVI) is an in-
dependent risk factor for poor prognosis after hepatectomy. 
The abnormal expression of biomacromolecules such as circ-
RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly 
correlated with MVI. Deregulation of several markers men-

tioned in this review affects the proliferation, invasion, me-
tastasis, EMT, and anti-apoptotic processes of HCC cells 
through multiple complex mechanisms. Therefore, these 
biomarkers may have an important clinical role and serve 
as promising interventional targets for HCC. In this review, 
we provide a comprehensive overview on the functions and 
regulatory mechanisms of MVI-related biomarkers in HCC.

Citation of this article: Zhao X, Wang Y, Xia H, Liu S, Huang 
Z, He R, et al. Roles and Molecular Mechanisms of Biomark-
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Introduction
Primary liver cancer is a common malignant tumor of the 
digestive system, and its morbidity and mortality rank sixth 
and third in the world. According to the classification of path-
ological types, primary liver cancer can be divided into hepa-
tocellular carcinoma (HCC), intrahepatic cholangiocarcinoma 
(ICC), and HCC-ICC mixed type, of which HCC accounts for 
85–90%. In this article, liver cancer refers specifically to 
HCC.1 At present, radical resection of liver cancer (R0 resec-
tion) is the main treatment method for HCC. Advances in 
imaging procedures such as three-dimensional reconstruc-
tion, indocyanine green fluorescence fusion image guidance 
and other technologies led to better prognosis and treatment 
modalities. Nevertheless, high mortality and postoperative 
recurrence rate remain unsatisfactory.

Microvascular invasion (MVI) refers to the invasion of can-
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cer cells into vascular spaces lined by endothelial cells and 
can only be observed by microscopy. MVI is graded based 
on the number and invasion sites to determine tumor stage, 
prognosis and provide basis for treatment selections: M0 is 
no MVI found; M1 (low-risk group) is ≤5 MVI and occurs in 
adjacent liver tissue that is <1 cm away; M2 (high-risk group) 
is >5 MVI, or MVI that occurs at a distance of >1 cm from 
the adjacent liver tissue.2 The presence of MVI is strongly 
associated with aggressive tumor behavior and distant me-
tastasis.3,4 It is also a key prognostic factor for mortality and 
HCC recurrence. Studies have shown that recurrence rate in 
MVI-positive patients doubles that of MVI-negative patients.5 
Moreover, it has been suggested that MVI is an important 
pathological hallmark in the process of intrahepatic metas-
tasis of HCC, hence future studies should further explore the 
mechanisms of MVI-induced HCC development.6,7

To date, a large body of literature has suggested the up-
regulation of several biomarkers in the presence of MVI. Xu 
et al.8 found that the upregulation of circular RNA ciRS-7 
(ciRS-7) in HCC tissue is an independent risk factor for liver 
MVI. Lu et al.9 found that by high-throughput sequencing, 
patients with significantly up-regulated expression of long 
noncoding RNA TSPAN12 (lncTSPAN12) showed a higher MVI 
positive rate (p=0.022). Ma et al.10 found that patients with 
high stress-induced phosphoprotein 1 (STIP1) expression 
had a poor prognosis, and that the expression of STIP1 was 
strongly correlated with MVI (p<0.001). Calderaro et al.11 
found that high expression of PD-L1 in HCC was strongly as-
sociated with MVI (p<0.001). Nevertheless, previous studies 
have not been able to draw relationships between candidate 
biomarkers of HCC and MVI, and herein we will review the 
current understanding of these biomarkers and their associa-
tion with MVI (Tables 1 and 29,12–46).

Biomarkers related to MVI

Circular RNAs
CiRS-7/CDr1as: CiRS-7/CDr1 as is an endogenous circular 
RNA (circ-RNA) with a closed loop structure. Since Hansen 
et al.47 first demonstrated that ciRS-7 can act as a compet-
ing endogenous RNA (ceRNA) in 2013, more studies have at-
tempted to elucidate its function. Yu et al.12 were the first to 
demonstrate that the expression level of ciRS-7 in HCC cells is 
higher than that of adjacent nontumor tissues. Moreover, HCC 
proliferation and invasion were significantly diminished follow-
ing ciRS-7 knockout. Xu et al.8 found that the expression of 
ciRS-7 was significantly associated with the clinicopathologi-
cal including age <40 years, serum alpha-fetoprotein (AFP) 
≥400 ng/µL, and the presence of MVI (p=0.03).In terms of 
prognosis, overexpression of ciRS-7 was strongly associated 
with poorer overall survival (OS), and to a lesser extent dis-
ease-free survival (DFS).48 It should be noted that this less 
significant correlation between ciRS-7 and DFS may be due 
to the small number of single-center samples that have been 
collected, whereas multicenter samples would have yielded a 
more significant result. In terms of molecular mechanisms, 
ciRS-7 acts as a ceRNA or the super spongemiR-7 that se-
questered and subsequently inhibited the activity of miR-7. 
Target genes of miR-7 include several important oncogenes 
(CCNE1 and PIK3CD) in HCC, hence overexpression of ciRS-7 
can promote HCC proliferation and invasion by increasing the 
expression of oncogenes while inhibiting tumor suppressor 
genes (Fig. 1). In conclusion, ciRS-7 has an oncogenic role 
and may represent an important biomarker in HCC with MVI.

AKT3 (circAKT3): CircAKT3 is a circular RNA generated 
from exons 3–7 of the AKT3 gene by back-splicing of mRNA. 

Xue et al.49 showed that circAKT3 functions as a tumor sup-
pressor in clear cell renal cell carcinoma (ccRCC). Specifically, 
circAKT3 acts as a sponge and sequesters miR-296-3p, a mi-
croRNA that plays an important role in promoting metastasis 
of ccRCC cells. Huang et al.50 showed that in gastric cancer, 
circAKT3 acts as a sponge for the microRNA miR-198, which 
abolishes its suppressive effect on the target gene PIK3R1 and 
allows the upregulation of tumor suppressor gene BRCA1. The 
above studies suggested that the expression of circAKT3 is 
cancer-specific. Luo et al.51 found that compared with healthy 
subjects, circAKT3 expression was significantly increased in 
HCC patients, and was expressed in 65% of HCC patients. 
Pathologically, circAKT3 level was positively correlated with 
tumor sizes and MVI (p=0.0145). In terms of prognosis, over-
expression of circAKT3 was associated with poorer OS and 
DFS in patients. In terms of molecular mechanisms, it was 
found that circAKT3 promotes HCC proliferation and invasion 
by downregulating the tumor suppressor miR-335. Future 
studies should continue to investigate the potential involve-
ment of circAKT3 in MVI development, including downstream 
targets of miR-335 and other proteins involved in the signaling 
pathways.13 In conclusion, circAKT3 plays an oncogenic role 
and may represent an important biomarker in HCC with MVI.

Long noncoding RNAs (lncRNAs) that are related to 
MVI
Lnc-TSPAN12: Lnc-TSPAN12 is a long noncoding RNA that 
does not encode proteins. It has 1,577 bp and is located on 
chromosome 7q31.31. Lnc-TSPAN12 was first discovered in 
the abnormal expression profile of long noncoding RNA in 
HCC cells. The expression of lnc-TSPAN12 was significantly 
upregulated in HCC cells compared to adjacent nontumor 
tissues. Pathologically, lnc-TSPAN12 level was positively cor-
related with tumor sizes, advanced TNM stages and MVI 
(p<0.001). In terms of prognosis, overexpression of lnc-
TSPAN12 in HCC patients was significantly associated with 
poorer OS and recurrence-free survival (RFS). Receiver oper-
ating characteristic curve analysis showed that lnc-TSPAN12 
expression was highly distinguishable between HCC with MVI 
and adjacent nontumor liver tissues, suggesting that lnc-
TSPAN12 could be a promising diagnostic biomarker in HCC 
with MVI. Moreover, lnc-TSPAN12 knockdown significantly 
suppressed migration and invasion of HCC cell lines (Huh7) in 
vitro, highlighting the ability of lnc-TSPAN12 to enhance inva-
siveness of HCC cells. Future studies should further elucidate 
the regulatory mechanisms of lnc-TSPAN12 in HCC with MVI. 
In conclusion, lnc-TSPAN12 plays an oncogenic role and may 
represent an important biomarker in HCC with MVI.9

LncRNA associated with MVI in HCC (LncRNA MVIH)
LncRNA MVIH is a long noncoding RNA that is highly ex-
pressed in HCC cells. It is generated from introns of the ri-
bosomal protein S24 (RPS24) gene located on chromosome 
10q22.3.52 Yuan et al.53 found that the expression of lncRNA 
MVIH was significantly upregulated in HCC cells compared to 
adjacent nontumor tissues. Pathologically, lncRNA MVIH lev-
el was positively correlated with advanced TNM stages and 
MVI (p=0.016). In terms of prognosis, patients with overex-
pressed lncRNA MVIH had poorer RFS and OS. In vitro and 
in vivo studies have shown that overexpression of lncRNA 
MVIH led to increased proliferation, invasion, and metastasis 
of HCC cells. The same group also found that tumor cells se-
crete the enzyme PGK1. PGK1 inhibits angiogenesis which is 
crucial for tumor growth and metastasis. Surprisingly, lncR-
NA MVIH modifies the PGK1 level by suppressing its secre-
tion, hence allowing angiogenesis to be activated. Indeed, 
immunohistochemistry analysis has shown that lncRNA MVIH 
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expression was positively correlated with microvessel density 
in HCC cells. This again supports the role of lncRNA MVIH in 
HCC with MVI. Shi et al.14 found that lncRNA MVIH promoted 
the growth of HCC and inhibited the apoptosis of HCC by 
inhibiting the expression of miR-199a. Other studies have 
shown that ARID1A gene acts as a tumor suppressor and 
prevents cancer development by inhibiting lncRNA MVIH. Al-
though the other downstream targets of ARID1A remain un-

clear, lncRNA MVIH is nevertheless a potential interventional 
target in HCC with ARID1A mutation.15 In conclusion, lncRNA 
MVIH plays an oncogenic role by enhancing angiogenesis and 
may represent an important biomarker in HCC with MVI.

MicroRNAs (miRNAs) related to MVI
MiR-188-5p: miRNAs are a small noncoding RNA. Owing to 
high stability and detectability in serum, miRNAs, as nonin-

Fig. 1.  Effect of biomarkers associated with MVI of HCC and their mechanisms. Aberrantly expressed biomarkers in HCC with MVI can be involved in the 
process of cell proliferation and apoptosis, invasion and metastasis, angiogenesis, EMT, immune escape. BOP1, block of proliferation 1; EMT, epithelial-mesenchymal 
transition; FN1, fibronectin 1; FGF5, fibroblast growth factor 5; HCC, hepatocellular carcinoma; LncRNA MVIH, lncRNA associated with microvascular invasion; MAGL, 
monoacylglycerol lipase; MTDH, metadherin; MVI, microvascular invasion; PD-L1, programmed cell death-ligand 1; PIVKA-II, prothrombin induced by vitamin K ab-
sence II; STIP1, stress-induced phosphoprotein 1; STMN1, stathmin 1; USP7, ubiquitin-specific protease 7.
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vasive markers, have played an excellent diagnostic efficacy 
in the field of cancer.54 miR-188-5p contains 21 nucleotides. 
Xu et al.16 first found that the expression of miR-188-5p 
was significantly upregulated in UV-irradiated mouse skin in 
2012. Fang et al.17 found that the expression of miR-188-
5p in HCC cells was significantly lower than that of adjacent 
nontumor tissues. In >5 cm HCC, <5 cm HCC, nodular HCC, 
and venous tumor thrombus tissue, the expression of miR-
188-5p decreased progressively, suggesting that it might be 
involved in the metastasis of HCC. Pathologically, miR-188-
5p level was negatively correlated with nodular numbers and 
MVI (p=0.004), suggesting that miR-188-5p may be a tumor 
suppressor in HCC progression. In terms of prognosis, HCC 
patients with downregulated miR-188-5p had poorer OS and 
DFS. In vitro studies suggested that the downregulation of 
miR-188-5p led to faster HCC cell proliferation and increased 
colony numbers. In terms of regulatory mechanisms, it was 
found that miR-188-5p bound to a sequence within the 3′-
UTR of fibroblast growth factor 5 (FGF5) mRNA directly and 
inhibited HCC cell proliferation and metastasis via FGF5-H-
Ras-p-ERK signaling. Ma et al.18 found that lncRNA PAPAS 
was upregulated in HCC and it promotes cell proliferation 
by suppressing miR-188-5p. On the other hand, Cheng et 
al.55 found that lncRNA CASC11 was overexpressed in HCC 
and promoted cell proliferation by inhibiting miR-188-5p. In 
conclusion, miR-188-5p has an important tumor suppressive 
role and may be an important biomarker in HCC with MVI. 
Future studies should further elucidate the role of miR-188-
5p in preventing MVI development.

MiR-125b: MiR-125b is a small noncoding multifunctional 
RNA molecule located on chromosome 11q23-24. It plays a 
key role in many cellular processes, such as regulating cell 
proliferation, differentiation, and apoptosis.56 Accumulating 
evidence indicates that miR-125b is abnormally expressed 
in a variety of tumors, and it is downregulated in HCC and 
plays a tumor suppressor role.57 Liu et al.58 analyzed miR-
125b in the serum of 108 patients with HCC before surgery. 
The results showed that a level of miR-125b in the serum 
was significantly correlated with MVI. In terms of prognosis, 
previous studies have found that the expression of miR-125b 
in serum is significantly correlated with the RFS of patients.59 
The molecular mechanisms of miR-125b promoting HCC are 
as follows. Fan et al.19 found that miR-125b inhibited the oc-
currence, development, and metastasis of HCC by negatively 
regulating suppressor of variegation 3-9 homolog 1 (SU-
V39H1). Alpini et al.20 found that epigenetic silencing of miR-
125b can promote the degradation of extracellular matrix 
by upregulating the expression of matrix metalloproteinase 
(MMP)-2 and -9, thereby increasing the invasiveness of HCC. 
Zhou et al.21 found that miR-125b inhibited the EMT process 
of HCC by targeting small mothers against decapentaplegic 
(SMAD) 2 and 4, thereby inhibiting the development of HCC. 
Song et al.22 found that miR-125b induced HCC cell senes-
cence and apoptosis by inhibiting SIRT6. In addition, some 
studies suggest that ganoderma lucidum polysaccharides in-
hibits the function and accumulation of Tregs by promoting 
the expression of miR-125b, and ultimately inhibit the de-
velopment of HCC.23 In summary, miR-125b has a negative 
role in the development of HCC with MVI and may become a 
prognostic biomarker and a clinical therapeutic target in the 
future.

Proteins that are related to MVI
Stress-induced phosphoprotein 1 (STIP1): Stress-in-
duced phosphoprotein 1 (STIP1) functions as a co-chaperone 
of heat shock proteins (HSP) 70 and 90.60 Apart from its role 
in assisting with protein folding, STIP1 is also involved in 

various biological processes such as gene transcription, sig-
nal transduction, and cell division. Other studies also showed 
that STIP1 can be secreted by HCC cells and act as a cytokine 
to promote HCC progression.61,62 Recent studies have shown 
that STIP1 expression was significantly elevated in HCC cells 
compared with adjacent nontumor tissues. Pathologically, 
STIP1 level was positively correlated with tumor size, tu-
mor capsule, and MVI (p<0.001).10,24 In terms of prognosis, 
overexpression of STIP1 was associated with poorer OS and 
shorter time to recurrence (TTR). The molecular mechanisms 
by which STIP1 promotes HCC progression are: (1) promot-
ing metastasis by activating Snail transcription, followed by 
EMT in an HSP-dependent manner;25 (2) promoting metas-
tasis via the PI3K/AKT signaling pathway, which upregulates 
HCC proliferation and inhibits HCC apoptosis;26 (3) enhanc-
ing the interaction between axin and DVL2, thereby activat-
ing β-catenin/TCF signaling, which is crucial for HCC growth, 
proliferation, and metastasis.24 In conclusion, STIP1 secreted 
by HCC cells has an oncogenic role and may be a biomarker 
of HCC with MVI. Future studies should further elucidate the 
involvement of STIP1 in MVI development.

Programmed cell death-ligand 1 (PD-L1): PD-L1 is a 
member of the B7 gene family. It is a ligand for programmed 
death receptor-1 (PD-1) and is expressed on the surface 
of cancer cells, dendritic cells (DCs), monocytes, and mac-
rophages. Studies have shown that binding of PD-1 to PD-L1 
activates downstream signaling pathway and inhibits T cell 
activation.63–65 In HCC cells, the expression rate of PD-L1 is 
between 23.9% and 81.1%.66 Pathologically, PD-L1 level was 
positively associated with the number of nodules, AFP levels, 
CK19 levels, macrovascular infiltration and MVI (p<0.001). 
Less significant correlation was also found between PD-L1 
expression on HCC cells and PD-1 expression on lympho-
cytes. In terms of prognosis, overexpression of PD-L1 on HCC 
cell surface was significantly associated with poorer OS and 
DFS.11,67 The molecular mechanisms through which PD-L1 
promotes HCC progression are: (1) PD-L1 binding activates 
PD-1 and transmits inhibitory signals that attenuate TCR and 
CD28 activity, which results in inhibition of T-cell activation 
and proliferation, and eventually leads to cancer immune 
escape.27 (2) Macrophages have an essential role in the tu-
mor immune microenvironment. It was found that interleukin 
(IL)4 induced macrophage activation that in turn upregulated 
tumor cell PD-L1 expression, thereby promoting T cell apo-
ptosis.28 (3) Cancer cells hijack inflammatory mechanisms 
and induce immune cells to secrete interferon-gamma, which 
then acts on hepatic nonparenchyma cells and induces them 
to express PD-L1 on their surface.29,30 In conclusion, PD-L1 is 
a protumorigenic factor and may be an important biomarker 
in HCC with MVI. Future studies should further explore the 
involvement of PD-L1 in MVI development.

Ubiquitin-specific protease 7 (USP7): The ubiquitin-
proteasome pathway has a major role in protein degrada-
tion to ensure cell homeostasis. Correspondingly, Ubiqui-
tin-specific protease 7 (USP7) belongs to members of the 
deubiquitinating enzymes families and is involved in disas-
sembling ubiquitin conjugates. In other words, it rescues 
protein substrates from degradation.68 USP7 is composed of 
1,102 amino acids and has a molecular weight of 135 kDa. 
It is located on chromosome 16p13.3 with a length of 4,013 
bp.69 Studies have shown that USP7 mRNA and protein levels 
were significantly increased in HCC cells compared to adja-
cent nontumor tissues. Pathologically, USP7 expression was 
positively correlated with the number of tumor cells, tumor 
size, AFP level, and MVI (p=0.021). In terms of prognosis, 
overexpression of USP7 was significantly associated with 
poorer OS and DFS. In vitro studies also showed that down-
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regulation of USP7 reduced proliferation of MHCC97-H cell 
lines and upregulation increased proliferation of Huh7 and 
Hep3B cell lines, suggesting that USP7 promoted HCC pro-
gression.31 Wang et al.70 performed wound healing assay and 
cell invasion assay to show that overexpression of USP7 can 
enhance invasion of HCC cells, while USP7-knockdown can 
suppress HCC invasion. In terms of molecular mechanisms, 
USP7 stabilizes TRIP12 by deubiquitination of the protein. 
USP7-TRIP12 complex in turn inactivates tumor suppressor 
gene p14(ARF) and subsequently promotes cell proliferation 
and invasion.31 In conclusion, USP7 plays an oncogenic role 
and may represent an important biomarker in HCC with MVI.

Fibronectin 1 (FN1): FN1 is a 272kDa extracellular ma-
trix glycoprotein that has an important role in cell adhesion 
and migration. It is involved in biological processes such 
as embryogenesis, host defense and cancer progression.71 
Studies have shown that around 72% of HCC patients had 
increased expression of FN1. Compared with adjacent non-
tumor tissues, expression of FN1 was significantly increased 
in HCC cells. It is important to notice that overexpression of 
FN1 was also found in tumor cell emboli within microvessels. 
Pathologically, FN1 level was positively correlated with ad-
vanced TNM stages and MVI (p=0.001). In terms of progno-
sis, studies have shown that increased FN1 mRNA was associ-
ated with poorer RFS. Additionally, in vitro studies, basement 
membrane invasion test, and wound healing test showed that 
downregulating FN1 expression can significantly reduce the 
ability of cell invasion and migration, indicating that FN1 can 
promote HCC invasion and migration. In terms of molecular 
mechanisms, it was found that MYC oncogene has consist-
ently been the upstream regulator of mRNA and proteins in-
volved in MVI. Noticeably, FN1 contains multiple binding sites 
for MYC and was upregulated to promote cancer cell migra-
tion and invasion. Hence, FN1 may be a predictive biomarker 
of MVI in HCC.32,33 In conclusion, MYC oncogene is a potential 
interventional target of HCC with MVI, and FN1 overexpres-
sion is a promising predictor of those invasive tumors.

Block of proliferation 1 (BOP1): BOP1 has a molecular 
mass of 83 kDa and belongs to the WD40 protein family. 
BOP1 is involved in rRNA processing and ribosome assem-
bly.72 Its gene sequence is highly conserved and is located 
on chromosome 8q24.73 At present, studies have shown 
that BOP1 plays an important role in the progression of vari-
ous cancers including gastric cancer, breast cancer, prostate 
cancer, and HCC. In HCC, BOP1 expression was significantly 
upregulated in HCC cells compared to adjacent nontumor 
tissues.34,74–76 Pathologically, BOP1 level was positively cor-
related with advanced TNM stages and MVI (p=0.0059). In 
terms of prognosis, overexpression of BOP1 was strongly as-
sociated with poorer OS and DFS. In vitro studies have found 
that downregulation of BOP1 in various HCC cell lines (HKCI-
9 and Hep3B) led to profound inhibition on cell invasion. On 
the other hand, overexpression of BOP1 in normal liver cell 
line (L0-2) significantly enhanced cell invasion and migra-
tion. In terms of molecular mechanisms, BOP1 was proposed 
to be an upstream inducer of EMT, which mediates cancer 
progression including metastasis, invasion, and intravasa-
tion. BOP1-knockout led to upregulation of epithelial mark-
ers and downregulation of mesenchymal markers; the oppo-
site is true when BOP-1 was overexpressed, suggesting that 
BOP1 enhances cell invasiveness through inducing EMT and 
promoting actin cytoskeleton remodeling that subsequently 
allows cells to acquire mobility.34 In conclusion, BOP1 has an 
oncogenic role and may represent an important biomarker in 
HCC with MVI.

Monoacylglycerol lipase (MAGL): MAGL catalyzes the 
conversion of monoacylglycerol to free fatty acids and glycer-

ol. Apart from its role in mediating pain and nociperception, 
MAGL is also involved in tumor progression.77,78 Previous 
studies have shown that MAGL expression was increased in 
various cancers including lung cancer, cervical cancer, colo-
rectal cancer, and liver cancer.79–82 It was found that both 
mRNA and protein expression of MAGL were significantly 
higher in HCC cells compared with adjacent nontumor tis-
sue. Pathologically, MAGL level was positively correlated with 
tumor sizes, advanced TNM stages and MVI (p=0.026). In 
terms of prognosis, overexpression of MAGL was associated 
with poorer OS and shorter TTR. In vivo studies have found 
that in HCC cell lines (HepG2) in which MAGL expression was 
upregulated, there were marked increase in cell migration 
and invasion. In terms of molecular mechanisms, MAGL was 
found to enhance the invasiveness of HCC cells by inducing 
EMT. This was supported by the findings of decreased epi-
thelial markers and increased mesenchymal markers in HCC 
cell lines with higher MAGL levels. Additionally, it was found 
that MAGL induced EMT by upregulating the transcription 
factor Snail, which is dependent on the activation of nuclear 
factor kappa B (NF-κB) signaling. Snail in turn reduced the 
expression of the epithelial marker E-cadherin and mediated 
subsequent EMT processes.35 In conclusion, MAGL has an 
oncogenic role and may be an important biomarker of HCC 
with MVI.

Metadherin (MTDH): MTDH is a single-channel trans-
membrane protein with its gene located on chromosome 
8q22.83 MTDH was first discovered in fetal astrocytes of HIV-
1 infected patients in 2002. Later studies showed that MTDH 
was abnormally expressed in various cancers, including es-
ophageal, breast, gastric, liver cancer, osteosarcoma, and 
others.84–89 In HCC cells, MTDH expression was significantly 
higher than that in adjacent nontumor tissues. Pathologically, 
MTDH level was positively correlated with pathologic satel-
lites, advanced TNM stages and MVI (p<0.001). In terms of 
prognosis, MTDH expression was strongly associated with 
poorer OS and shorter TTR. In vitro mobility assays showed 
that downregulation of MTDH expression in HCC cell lines 
greatly reduced cell motility. In vivo studies showed that over-
expression of MTDH was associated with greater metastatic 
potential of HCC cells. Although the molecular mechanisms 
of MTDH regulation are still unclear, it has been reported 
that MTDH expression level was correlated with EMT mark-
ers. Specifically, upregulation of MTDH was associated with 
decreased E-cadherin and β-catenin, which are components 
of adherent junctions that mediate cell-cell adhesion. Over-
expression of MTDH was also associated with increased Snail 
expression.36 Another study found that MTDH can promote 
the proliferation, invasion, and migration of HCC by activating 
PI3K/AKT signaling pathway.37 The findings support upregu-
lation of MTDH leading to increased cell mobility and invasive-
ness of HCC cells. In conclusion, MTDH has an oncogenic role 
and may be an important biomarker in HCC with MVI.

Stathmin 1 (STMN1): STMN1 has a molecular mass of 
18 kDa and regulates microtubule dynamics by sequestering 
α/β-tubulin heterodimers and promoting microtubule desta-
bilization.STMN1 is upregulated in many cancers such as 
HCC, lung cancer, breast cancer, and gastric cancer.38,90,91 In 
HCC, the expression of STMN1 was significantly upregulated 
in HCC cells compared to adjacent nontumor tissues. Patho-
logically, STMN1 level was positively correlated with portal 
vein tumor thrombus (PVTT) and MVI (p<0.001). In terms 
of prognosis, STMN1 expression was strongly associated 
with poorer OS and DFS. In vitro studies have found that 
after STMN1 knockdown, Snail2 and ZEB1 were significantly 
downregulated in Huh7 and MHCC97H cells. In vivo studies 
showed that lung metastasis by HCC cells the transplanted 
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with STMN1 interfered cells was inhibited in terms of both 
tumor size and number. In terms of molecular mechanisms, 
STMN1 promoted EMT of HCC cells by regulating the dynamic 
balance of microtubules through the signaling by the STMN1-
microtubule-EMTaxis.38 Chen et al.92 found that E2F1 was 
significantly correlated with STMN1 protein expression in 
HCC cells and in in vitro transactivation assays, suggesting 
that the STMN1 gene was transactivated by E2F1 protein. 
Zhang et al.93 found that STMN1 affected intricate crosstalk 
between HCC and hepatic stellate cells (HSC) by triggering 
the hepatocyte growth factor (HGF)/MET signaling pathway. 
In conclusion, STMN1 has an oncogenic role and may be an 
important biomarker of HCC with MVI.

Prothrombin induced by vitamin K absence II (PIV-
KA-II): PIVKA-II, also known as des-γ-carboxy prothrom-
bin, was first found to be significantly increased in the serum 
of HCC patients in 1984.94 Until now, elevated PIVKA-II lev-
els have been rarely found in tumors other than HCC. The 
liver normally produces prothrombin in response to vitamin 
K, but PIVKA-II is produced in patients with vitamin K de-
ficiency or HCC. That may be one a reason why it is highly 
expressed in HCC patients. Studies have shown that the se-
rum PIVKA-II level in HCC patients was significantly higher 
than that in healthy people. Pathologically, serum PIVKA-II 
level was positively correlated with tumor sizes, differentia-
tion and MVI (p<0.001). Interestingly, high PIVKA-II tissue 
expression was significantly associated with the presence of 
MVI (p=0.001).95 In terms of prognosis, overexpression of 
PIVKA-II was associated with poorer OS and DFS.96 Although 
the molecular mechanisms of PIVKA-II in HCC remain un-
clear, studies have demonstrated that the expression level 
of PIVKA-II is strongly correlated with EMT-related proteins 
such as MMP-9, Snail, vimentin, and E-cadherin. Therefore, 
PIVKA-II may promote HCC invasion and metastasis by pro-
moting EMT.39 In conclusion, PIVKA-II plays an oncogenic 
role and may represent an important biomarker in HCC with 
MVI. Future studies should further explore the involvement 
of PIVKA-II in MVI development.

Discoidin domain receptor 1 (DDR1): DDR1 has a mo-
lecular weight of 101 kDa and is located on 6p21.33. DDR1 
is a member of the tyrosine kinase receptor family, and col-
lagen is its specific ligand. DDR1 can interact with extracel-
lular matrix (ECM) by binding to collagen.97 Existing studies 
have shown that DDR1 expression is increased in a variety 
of fibrotic diseases, including cirrhosis, idiopathic pulmonary 
fibrosis, skin hypertrophic scars, and renal fibrosis.98 Recent 
studies have found that DDR1 is associated with the develop-
ment of many tumors, such as thyroid cancer, breast cancer, 
colorectal cancer, and others.99–101 Xu et al.102 found that the 
content of DDR1 in serum of HCC patients was significantly 
higher than that in chronic hepatitis patients and healthy 
people. Further studies showed that the level of DDR1 in tu-
mors was higher than that in adjacent nontumor tissue, and 
had a strong correlation with the level of DDR1 in serum. In 
addition, overexpression of DDR1 in tumor tissues and serum 
are independent risk factors for MVI, and they are also sig-
nificantly associated with the prognosis of HCC patients. In 
terms of mechanisms, the team found that DDR1 is closely 
related to EMT-related markers, so DDR1 may promote HCC 
development by inducing EMT. Pan et al.40 found that DDR1 
stabilized SLC1A5 in a lysosomal-dependent manner to af-
fect the mTORC1 signaling pathway, thereby controlling the 
proliferation of HCC cells. Another study found that DDR 1 
promoted the migration and invasion of HCC cells through 
the DDR1/PSD4/ARF6 signaling axis.41 In summary, DDR1 is 
likely to become a clinical therapeutic target and biomarker 
for predicting MVI in the future.

Vascular endothelial growth factor A (VEGF-A): 
VEGF-A has a molecular weight of 43 kDa and its gene is 
located at 6p21.1. VEGF-A is an important angiogenic fac-
tor secreted by tumor cells and stromal infiltrating cells. 
It might be involved in the regulation of angiogenesis and 
metastasis of many solid tumors.103,104 Recent studies have 
shown that serum VEGF-A concentrations ≥138.30 pg/ml is 
an independent risk factor for MVI.105 In terms of progno-
sis, studies have shown that high levels of VEGF-A in serum 
were strongly associated with worse OS.106 Current research 
describes mechanism of VEGF-A promoting HCC. Shen et 
al.42 found that hepatocyte-derived VEGF-A promoted the 
development of nonalcoholic fatty liver disease-related HCC 
by activating human HSCs. Vizio et al.43 found that throm-
bopoietin (THPO) and VEGF-A formed an interdependent au-
tocrine system, and synergistically promoted the occurrence 
and development of HCC. In addition, it has been found that 
VEGF-A secreted by HCC cells promoted the formation of tu-
bular structures of vascular endothelial cells, cell migration, 
and invasion by promoting the phosphorylation of VEGFR2.44 
In summary, VEGF-A has an important role in the occurrence 
of HCC with MVI and is expected to become a prognostic 
marker and therapeutic target in the future.

S100P: The gene of S100P is located at 4p16.1, and its 
protein molecular weight is 104 kDa. S100P is a member of the 
S100 calcium-binding protein family, which was first identified 
in human placenta.107 As a signal molecule, S100P protein 
both extracellular and intracellular roles. In the extracellular 
space, S100P interacts with receptor for advanced glycation 
end products to activate signal transduction pathways.108 In 
cells, S100P interacts with cytoskeletal multidomain proteins 
through a Ca2+-dependent mechanism.109 More evidence 
shows that the expression of S100P is associated with tumors 
including HCC, pancreatic cancer, gallbladder cancer, etc.110 
Qi et al.45 found that compared with healthy people, the se-
rum S100P level of HCC patients was significantly increased, 
and the S100P mRNA level in HCC was significantly higher 
than that in adjacent nontumor tissues. In clinical features, 
high serum S100P level was significantly associated with the 
occurrence of PVTT and MVI. In addition, survival analysis 
showed that high S100P level in tumors was associated with 
poor prognosis. In vitro studies have shown that S100P could 
enhance the migration and invasion of HCC cells. In addition, 
in the study of molecular mechanism, the team found that 
S100P mediated HCC cell adhesion byCD44-dependent signal 
transduction and promote the formation of PVTT/MVI. Kim et 
al.46 found that S100P promoted mitosis of HCC cells by up-
regulating the expression of cyclin D1 and CDK2, thereby pro-
moting the growth of HCC. In summary, serum S100P level 
can predict the occurrence of MVI, and S100P may become a 
new clinical therapeutic target in the future.

Potential serum biomarkers in HCC with MVI
Biomarkers indicators in blood, body fluids, and tissues that 
can be used to evaluate normal physiological processes, 
pathogenic processes, reactions to drugs, etc. HCC is char-
acterized by a high postoperative recurrence rate. Compared 
with patients without MVI, HCC patients with MVI have a 
higher recurrence rate. However, a tough problem is that it 
is almost impossible to obtain a diagnosis of MVI before sur-
gery. Therefore, if preoperative serum markers can be used 
to predict MVI in advance, and then a wider margin or ana-
tomical hepatectomy is planned before surgery, the progno-
sis of HCC patients with MVI will be effectively improved.111 
At present, there is no serum marker for predicting MVI in 
clinical practice, so this paper summarizes the serum mark-
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ers significantly associated with MVI.
This review summarizes a total of 18 MVI-related markers, 

of which seven (circAKT3, microRNA-125b, STIP1, PIVKA-II, 
DDR1, VEGF-A, S100P) were found to be significantly ab-
normal in the serum of HCC patients. In the serum of HCC 
patients with MVI, the expression of microRNA-125b was sig-
nificantly down-regulated, while the expression of circAKT3, 
STIP1, PIVKA-II, DDR1, VEGF-A, and S100P was signifi-
cantly up-regulated. Among the serum markers mentioned 
in this paper, VEGF-A had the best predictive effect on MVI 
(AUC: 0.900; sensitivity: 0.805; specificity: 0.843; 95 % 
CI: (0.865–0.935), which may be related to its function of 
promoting angiogenesis. Although the prediction efficiency 
of other markers is relatively poor, the above markers can 
be combined to establish a prediction model in the future 
to improve the diagnostic ability of MVI. In addition, the ex-
pression of STIP1, PIVKA-II and DDR1 in serum and tumor 
tissues were significantly increased, and they were all related 
to EMT process. This shows that they have better character-
istics and important value, and are potential biomarkers for 
predicting MVI. In the future, the above seven serum mark-
ers may become therapeutic targets for MVI and make out-
standing contributions to the prediction of MVI.

Potential therapeutic values of biomarkers in HCC 
with MVI
With the in-depth study of HCC combined with MVI, the 
potential clinical application value of MVI-related biomark-
ers has been gradually explored. As discussed earlier in this 
article, 18 biomarkers have been reported to be dysregu-
lated in HCC with MVI, and the amount is still increasing. The 
prognosis of HCC patients with MVI is poor, and the efficacy 
of postoperative drugs in HCC patients is not satisfactory. 
Therefore, the treatment of HCC is still a huge challenge. 
Both PD-L1 and VEGF-A mentioned in this review are related 
to MVI, and drugs developed based on these two substanc-
es (atezolizumab and bevacizumab) represent mature im-
munotherapy and targeted therapy, respectively. Moreover, 
the NCCN guidelines proposes that the combination of at-
ezolizumab and bevacizumab can be used as the preferred 
treatment for advanced HCC.112 However, there is no team 
to study the therapeutic effect of atezolizumab and bevaci-
zumab on HCC patients with MVI. In addition, this paper also 
mentioned some biomarkers that have not been applied to 
clinical treatment but may be used as therapeutic targets in 
the future. Shi et al.14 found that inhibiting the expression 
of lncRNA MVIH can promote the apoptosis of HCC cells and 
inhibit tumor growth. Fan et al.19 found that miR-125b in-
hibited the metastasis of HCC by inhibiting the expression of 
suppressor of variegation 3-9 homolog 1 (SUV39H1). Kim et 
al.46 have shown that inhibition of S100P can down-regulate 
the expression of cyclin D1 and CDK2 in HCC, thereby in-
hibiting the growth of HCC. Zhang et al.41 found that inhi-
bition of DDR1 in HCC significantly reduced the migration 
and invasion of HCC cells. Fang et al.37 found that zingerone 
inactivated the PI3K/AKT signaling pathway by inhibiting the 
expression of MTDH, thereby inhibiting the proliferation, in-
vasion, and migration of HCC cells. The abnormal expres-
sion of the above markers in HCC patients was significantly 
related to the malignant biological behavior of HCC. These 
findings might provide a new therapy for HCC patients.

Potential mechanisms in HCC with MVI
Currently, there is a large body of literature suggesting that 
EMT plays a pivotal role in promoting HCC progression by 

increasing cancer cell invasion and metastatic potential.113 
EMT is a transient and reversible process whereby epithelial 
cells change in plasticity and switch back to mesenchymal 
phenotype. This process is particularly crucial during the 
early stages of cancer metastasis when cells lose tight cell-
cell contacts because of downregulation of E-cadherin and 
β-catenin, which are key components of adherent junctions 
in the cell membrane. As a result, cells are detached from 
the basement membrane and acquire increased motility to 
disseminate into distant tissues.114 EMT can be divided into 
three types: type 1, which occurs during embryonic develop-
ment; type 2, which occurs during wound healing and fibro-
sis; and type 3, which occurs mainly in the early stages of tu-
mor development as cancer cells acquire the ability to break 
through basement membrane, intravasate and extravasate, 
gradually shifting the progression of malignancy toward me-
tastasis.115 EMT can be reversed by mesenchymal-epithelial 
transition (MET), which allows the recovery of epithelial phe-
notype.116,117

In contrast to tumor cells that undergo EMT, passive shed-
ding after a blood vessel is compromised also allows epi-
thelial tumor cells to be released into circulation, but these 
circulating tumor cells (CTCs) can retain their original phe-
notype. In addition, epithelial CTC levels are significantly 
correlated with tumor sizes and BCLC stage, but not with 
recurrence rate and metastasis.118 Epithelial tumor cells that 
undergo EMT are detached from the extracellular matrix with 
the help of proteolytic enzymes. This allows tumor cells to 
invade beyond the basement membrane and intravasate 
into the circulation. Once in circulation, CTCs must overcome 
hemodynamic stresses and escape immune control and 
anoikis, an apoptotic mechanism that removes misplaced or 
detached cells. CTCs eventually extravasate and cause sec-
ondary or metastatic cancer. To date, a large body of litera-
ture have suggested that the presence of mesenchymal CTCs 
was associated with advanced TNM stages and MVI, as well 
as poorer prognosis and increased HCC recurrence rate.119 
Moreover, it has been suggested that the hybrid epithelial/
mesenchymal phenotypes are more adaptable to stressful 
environment for proceeding metastasis, and has increased 
stem-cell-like properties to enhance metastatic potential of 
cancer cells.120,121 The findings support that EMT enhanced 
the invasiveness of CTCs, and had a pivotal role in promoting 
HCC metastasis and the development of MVI.

Wan et al.122 found that the expression of several EMT-re-
lated biomarkers including ZEB, Snail, Slug, and Twist1 was 
associated with poor prognostic factors, such as vascular in-
vasion, intrahepatic metastasis, and poor OS in liver cancer. 
In this review, we have identified cancer biomarkers includ-
ingSTIP1, BOP1, MAGL, MTDH, STMN1, PIVKA-II, miR-125b 
and DDR1 that are strongly correlated with EMT markers 
such as E-cadherin and β-catenin (Fig. 2).STIP1-HSP90 pro-
tein complex upregulatedSnail1 and mediated heat-induced 
EMT in HCC cells.25 BOP1 deficiency caused an increase in 
E-cadherin expression and a reorganization of cytoplasmic 
keratin 18, while BOP1 overexpression significantly increased 
vimentin and fibronectin expression accompanied by an in-
crease in the invasive phenotype of tumor cells, indicating 
that the increase of BOP1 induced EMT.34 The upregulation of 
MAGL enhances the activity of Snail and downregulates the 
expression of E-cadherin by activating NF-κB signaling, which 
then triggers the EMT process.35 After inhibiting the expres-
sion of MTDH, HCC cells showed down-regulated N-cadherin 
and Snail and up-regulated E-cadherin.36 After STMN1 was 
silenced, the expression of acetylated α-tubulin and E-cad-
herin increased, while the expression of pY397-FAK and in-
tracellular N-cadherin decreased, indicating that STMN1 may 
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promote EMT by regulating microtubule stability.38 PIVKA-II 
was significantly correlated with high levels of MMP-9, Snail, 
and vimentin, and low levels of E-cadherin, suggesting that 
PIVKA-II promoted HCC invasion and metastasis by promot-
ing EMT.39 By targeting SMAD2, and SMAD4, miR-125b up-
regulated the expression of E-cadherin and decreased the 
expression of N-cadherin and nuclear β-catenin, thereby 
weakening EMT-related characteristics.21 Overexpression of 
DDR1 increase expression of vimentin and N-cadherin, but 
reduced expression of E-cadherin, indicating that DDR1 acti-
vated the EMT pathway.102 Whether the biomarkers directly 
promoted HCC metastasis by upregulating EMT remain to be 
elucidated in future studies. Nevertheless, the eight biomark-
ers are potential targets in the underlying mechanisms of 
MVI and should be further explored.

With regard to other biomarkers discussed previously 
here, the following regulatory mechanisms may contribute 
to the development of MVI. ciRS-7 promoted proliferation 
and invasion of HCC cells by sponging the tumor suppressor 
miR-7 to upregulate target genes including PIK3CD, CCNE1, 
and p70S6K. circAKT3 promotes the proliferation and inva-
sion of HCC cells by downregulating the tumor suppressor 
miR-335; lncRNA MVIH inhibits PGK1 secretion to activate 
angiogenesis and promote HCC metastasis. miR-188-5p in-
hibits proliferation and invasion of HCC cells by targeting the 
FGF5-H-Ras-p-ERK signaling pathway. PD-L1 expression on 
cancer cells surface promotes HCC progression by inhibiting 
T cell activation and allowing immune escape. USP7-TRIP12 
complex inactivates the tumor suppressor p14(ARF) to pro-
mote proliferation and invasion of HCC cells. MYC oncogene 
upregulates the transcription of FN1 to promote migration 
and invasion of HCC cells. TSC2, which was not mentioned 
previously, is correlated with MVI and inhibits proliferation 
and invasion of HCC cells by targeting the PI3K/AKT/mTOR 
signaling pathway.123,124

Biomarkers associated with MVI grade
Studies have shown that the prognosis of HCC patients is 
negatively correlated with the grade of MVI (M0, M1, M2). 
Therefore, exploring biomarkers significantly related to MVI 
grade has a strong guiding significance for future clinical 
work and scientific research.125 Existing studies have shown 
that VEGF-A and STMN1 are markers associated with MVI 
grade. Wang et al.105 found that the average serum VEGF-A 
concentrations in the M2 group, M1 group, and M0 group 
were 258.33 pg/ml, 167.60 pg/ml and 86.52 pg/ml, respec-
tively (p<0.05). Cai et al.38 found that the content of STMN1 
in HCC tissues increased with the increase of MVI grade (M0, 
M1, M2), and the results had statistical significance. No simi-
lar results were obtained for other markers mentioned in this 
paper, indicating that VEGF-A, and STMN1 may have more 
special significance for the prediction of MVI. In the future, 
we should carry out more studies to find more biomarkers 
related to MVI grade.

Conclusions and future perspectives
To sum up, MVI is an important prognostic factor related to 
survival of patients with HCC after surgery. Further under-
standing of the molecular mechanisms of MVI not only help 
to uncover the multistep process of HCC development, but 
also provide valuable insights into clinical applications such 
as early diagnosis, prognosis prediction, and treatment se-
lections. Currently, the molecular mechanisms of the devel-
opment of MVI are unclear. Previous reviews have not includ-
ed the above-mentioned biomarkers and their relationship 

with MVI. Nevertheless, our review suggests that several 
biomarkers have important clinical application value in the 
early diagnosis of HCC patients with MVI, and also points 
to possible underlying mechanisms involved in MVI. More 
important, among the several markers associated with MVI 
described in this review, seven were abnormally expressed 
in serum, and eight markers simultaneously pointed out the 
possible molecular mechanism of MVI in EMT-related path-
ways. That means we could conduct additional research on 
those markers to reveal the molecular mechanisms of MVI in 
combination with the various signaling pathways discussed in 
this review. In addition, we can also attempt to combine the 
markers to construct a new model to predict the presence of 
MVI in advance, which is extremely important for periopera-
tive preparation. Future studies should adopt multicenter and 
evaluation of large samples to further study the biological 
functions and molecular mechanisms of the potential bio-
markers involved in MVI.
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