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Abstract

Iron homeostasis is a complex process in which iron uptake 
and use are tightly balanced. Primary Type 1 or HFE hemo-
chromatosis results from homozygous mutations in the gene 
that encodes human homeostatic iron regulator (known as 
human factors engineering, HFE) protein, a regulator of hep-
cidin, and makes up approximately 90% of all hemochro-
matosis cases. However, four types of hemochromatosis do 
not involve the HFE gene. They are non-HFE hemochromato-
sis type 2A (HFE2, encoding HJV), type 2B (HAMP, encoding 
hepcidin), type 3 (TFR2, encoding transferring receptor-2), 
and types 4A and B (SLC40A1, encoding ferroportin. Non-
HFE hemochromatosis is extremely rare. Pathogenic allele 
frequencies have been estimated to be 74/100,000 for type 
2A, 20/100,000 for type 2B, 30/100,000 for type 3, and 
90/100,000 for type 4 hemochromatosis. Current guidelines 
recommend that the diagnosis be made by ruling out HFE 
mutations, history, physical examination, laboratory values 
(ferritin and transferrin saturation), magnetic resonance or 
other imaging, and liver biopsy if needed. While less com-
mon, non-HFE hemochromatosis can cause iron overload as 
severe as the HFE type. In most cases, treatment involves 
phlebotomy and is successful if started before irreversible 
damage occurs. Early diagnosis and treatment are impor-
tant because it prevents chronic liver disease. This review 
updates the mutations and their pathogenetic consequences, 
the clinical picture, diagnostic guidelines, and treatment of 
hemochromatosis.
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Introduction
A major pathway in iron homeostasis is the absorption of 
dietary iron, which begins with gastric acidification of ferric 
reductase on the apical membrane of enterocytes, and con-
version of iron from oxidized Fe3+ to reduced Fe2+ in duode-
nal and proximal jejunal enterocytes. Divalent metal cation 
transporter 1 (DMT1) internalizes Fe2+, which is temporarily 
sequestered in the cytoplasm as ferritin or transported by 
ferroportin (FPN) through the basolateral membrane. Hep-
cidin controls the FPN membrane concentration, which trig-
gers internalization and degradation of the transporter. Fe2+ 
is then oxidized to Fe3+ by ceruloplasmin and Hephaestion 
and binds to transferrin for transport throughout the body in 
the circulation.

Upon reaching the liver, the transferrin-ferric iron com-
plex binds to the transferrin receptor 1, and enters the cell 
by receptor-mediated endocytosis (Fig. 1). Binding of the 
transferrin-Fe3+ complex to transferrin receptor 1 (TFR1) has 
two effects. Fe3+ acidification leads to release and transport 
into the cytoplasm by DMT1 and zinc transporter (ZIP14). 
Fe3+ is then used by the cell, and dissociation of the human 
factors engineering (HFE) protein from TFR1-HFE complex. 
HFE protein, encoded by the HFE gene on chromosome 6p, 
is a major histocompatibility complex (MHC) class I protein 
that is an upstream regulator of hepcidin.1 Dissociated HFE 
interacts with transferrin receptor 2 (TFR2), leading to in-
creased stabilization and activation of bone morphogenic 
protein 6 (BMP6). BMP6 phosphorylates SMAD 1/5/8 and re-
cruits SMAD 1/5/8 and SMAD 4 to HAMP proximal promoter, 
leading to increased transcription and synthesis of hepci-
din. Hemojuvelin protein (HJV), a glycophosphatidylinositol 
(GPI)-linked membrane protein, is a coreceptor in the BMP6 
signaling pathway, and is required for the upregulation of 
hepcidin gene expression.2 Additionally, the extracellular sig-
nal-regulated kinase and mitogen-activated protein kinase 
(ERK-MAPK) pathway transduces extracellular signals intra-
cellularly, including stimulation of the HAMP promoter, which 
leads to increased synthesis of hepcidin.3 Figure 1 shows the 
pathways involved in non-HFE hemochromatosis.

Mutations in genes that control the absorption of iron re-
sult in primary hemochromatosis. A homozygous mutation 
at a single locus in the HAMP gene that leads to downregu-
lation of hepcidin synthesis causes 80–90% of all hemo-
chromatosis cases.4 The remaining cases originate from 
mutations of other than the HFE gene, and fall under the 
broad umbrella of non-HFE hemochromatosis.5 The under-
standing of mutations underlying non-HFE hemochromato-
sis has significantly expanded with the wider availability and 
use of gene sequencing. In 2008, Brissot et al. reviewed 
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hemochromatosis and its diagnosis and treatment.6 Our 
focus in this review is on non-HFE hemochromatosis, the 
mutations involved in pathogenesis, and recent guidelines 
on diagnosis and management.

Epidemiology
The regulation of iron homeostasis is a complicated pro-
cess. Mutations of the HOE gene cause type 1 hemochro-
matosis. Mutations of several non-HFE genes result in four 
types of non-HFE hemochromatosis, namely HFE2 encod-
ing HJV (type 2A), HAMP encoding hepcidin (type 2B), TFR2 
encoding transferrin receptor-2 (type 3), and solute carrier 
family 40 member 1 (SLC40A1) encoding FPN 1 6. The al-
lele frequencies of HJV (HFE2), TFR2, and HAMP mutations, 
range from 0.00007 to 0.0004.6 The SLC40A1 variant has 
been associated with persons of African descent and has a 
reported allele frequency of around 0.0004.7 Pathogenic al-
lele frequencies have been estimated to be 74/100,000 for 
type 2A, 20/100,000 for type 2B, 30/100,000 for type 3, and 
90/100,000 for type 4 hemochromatosis.8

Type 2A hemochromatosis
This type of non-HFE hemochromatosis, known as juvenile 
hemochromatosis (JH), results from either a homozygous 
or compound heterozygous mutation in the gene encoding 
HJV. The gene and mutation responsible for this presen-
tation are located on chromosome 1q21.9 The inheritance 
pattern for this type of hemochromatosis is autosomal re-
cessive. In type 2A hemochromatosis, HJV mutation results 
in decreased BMPR-HJV-SMADn activity, which decreases 
transcription of HAMP downstream (Fig. 1). The consequent 
decrease in circulating hepcidin levels is severe, and ac-

counts for presentation at an early age and the severity of 
disease.

Type 2B hemochromatosis
This type of hemochromatosis is also referred to as a JH 
and results from a homozygous or heterozygous mutation 
in the HAMP gene, which is located on chromosome 19q13. 
It is inherited in an autosomal recessive manner and is 
extremely rare. HAMP mutation leads to one of the more 
severe forms of hemochromatosis because of complete or 
nearly complete absence of hepcidin10 and the consequent 
unrestrained FPN activity and iron transport (Figs. 1 and 2A) 
that accounts for the early age at onset, and the severity of 
presentation.

Type 3 hemochromatosis
This type of hemochromatosis results from a homozygous 
or compound heterozygous mutation in the gene encoding 
transferrin receptor 2 (TFR2), which is located on chromo-
some 7q22. It is inherited in an autosomal recessive man-
ner.11 Mutation in the TFR2 gene leads to dysregulation in the 
interaction of the iron-transferrin complex with its receptor, 
and subsequent interruption in ERK-MAPK cascade, which 
decreased HAMP transcription and leads to low hepcidin level 
(Figs. 1 and 2A).

Type 4 hemochromatosis
Hemochromatosis type 4 differs from the other types of non-
HFE hemochromatosis in that it results from a heterozygous 
mutation in the SLC40A1 gene, which encodes FPN. It is in-
herited in an autosomal dominant manner. In type 4A, muta-

Fig. 1.  Complex pathways of iron transport regulation in hepatocytes. Hepatocytes not only import and export iron, but also produce hepcidin, the master 
regulator of iron import through its action on FPN. FPN, ferroportin.
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tions in SLC40A1 result in decreased sensitivity of FPN to hep-
cidin or complete loss of FPN activity12 resulting in two major 
presentations. One involves early elevation in ferritin and 
low or normal transferrin saturation with iron predominantly 
stored in macrophages (Fig. 2B). The other a more classic 
presentation, Type 4B presents with parenchymal storage of 
iron and elevated transferrin levels (Fig. 2B, C).13 Importer/
exporter cells such as enterocytes, and exporter cells such as 
macrophages, have considerable FPN activity, which allows 
for iron to be exported out of the cell. Most other cells in the 
body are primarily importer cells and have low levels of FPN 
activity. If large amounts of iron are delivered to those cells, 
resulting in high intracellular iron, they are unable to export 
the excess, leading to iron overload (Fig. 2A, C).

Presentation and symptoms
Phenotypic manifestations of a particular mutation respon-
sible for non-HFE hemochromatosis vary in the age of onset 

and severity of disease because each mutation affects dif-
ferent paths of the HAMP promoter-to-hepcidin expression 
biochemical signaling cascade. Life expectancy in this patient 
population varies and depends on the timing of diagnosis 
and treatment. If a diagnosis is made and treatment initi-
ated before the development of cirrhosis, life expectancy is 
normal.14

JH

Type 2A
As discussed previously, type 2A hemochromatosis leads to 
severe iron overload and organ failure, usually before 30 
years of age.5 Symptoms, such as liver cirrhosis, cardiac in-
volvement, diabetes, and dermatological changes, may be 
similar to adult-onset hemochromatosis, type 2A hemochro-
matosis frequently presents with hypogonadotropic hypog-
onadism. In some reports, abdominal pain was the earliest 

Fig. 2.  Regulation of iron transport by cell type. (A) Regulation of iron transport in importer/exporter cells (e.g., enterocytes). (B) Regulation of iron transport in 
primarily exporter cells (e.g., macrophages). (C) Regulation of iron transport in primarily importer cells (e.g., erythroblasts and most other cells).
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manifestation, appearing in the first decade of life, followed 
by hypogonadotropic hypogonadism in the second decade, 
and by cardiomyopathy in the third decade.15 The disease 
is not gender specific, with both males and females affected 
similarly. Overall, JH is associated with an early and severe 
iron overload state, and a more aggressive disease course 
compared with HFE hemochromatosis.16 Patients with JH fre-
quently have cardiac complications and often die of cardio-
vascular disease before 40 years of age.5 For that reason, 
early detection is important, as timely phlebotomy can pre-
vent significant organ damage.

Type 2B
Like type 2A, type 2B is considered a juvenile form of hemo-
chromatosis. It is associated with severe iron overload and 
organ failure before 30 years of age.17 Symptomatically, 
types 2A and 2B have very similar presentations.

Adult non-HFE hemochromatosis

Type 3
Type 3 hemochromatosis and HFE hemochromatosis have 
similar presentations,5 with a variety of symptoms, such 
as abnormal liver function, skin changes, diabetes mellitus, 
hypogonadotropic hypogonadism, cardiac disease, and joint 
damage.18 Like HFE hemochromatosis, the disease onset 
tends to occur later in adulthood, but if TFR2 and HFE muta-
tions coexist in the same patient, disease onset may occur 
much earlier.19

Type 4
Type 4 hemochromatosis is a FPN disease, and unlike other 
types of non-HFE hemochromatosis, usually presents with 
low to normal transferrin saturation. The other hemochroma-
tosis types tend to have elevated transferrin saturation. Type 
4 hemochromatosis patients may have poor tolerance for 
therapeutic phlebotomy because impaired iron release from 
macrophages leads to intracellular iron overload, and mild 
iron deficiency anemia.20 It is important to note, however, 
that there have been case reports of type 4 hemochromatosis 
that presented with high transferrin saturation.21 The age of 
onset of type 4 hemochromatosis tends to be in late adult-
hood. In men, the majority of cases appear before 60 years of 
age. Women were noted to have a later onset of presentation.

Some studies have attempted to further characterize 
phenotypic presentation of non-HFE hemochromatosis mu-
tations. Wu et al.22 conducted a retrospective analysis of 
the correlation between genotype and phenotype of non-
HFE hemochromatosis in 31 Chinese patients with non-HFE 
hemochromatosis. Type 2A hemochromatosis was frequently 
diagnosed at an earlier age, and the iron index was higher 
hemochromatosis type 2A and type 4 compared with other 
types. They also found that cirrhosis and diabetes were more 
prevalent in patients with type 4 hemochromatosis. They 
also reported that none of the hemochromatosis type 2A 
cases developed cirrhosis, and that arthropathy was rare in 
all types of hemochromatosis. Their study provides helpful 
insights into the phenotypic presentation of various non-HFE 
hemochromatosis genotypes. Its limitations included low 
statistical power because of the inclusion of only 31 patients, 
and the retrospective analysis could have introduced con-
founding variables.

Kumar et al.22 conducted a retrospective study of the de-
velopment of movement disorders with data obtained from 
hemochromatosis patients between 1988 and 2015. Only 
three of the 616 patients included in the study developed a 

movement disorder. One developed Parkinsonism, one devel-
oped choreiform movements, and one developed tremor. All 
patients had iron deposition in the brain, including the basal 
ganglia, dentate nucleus, red nucleus, and substantia nigra. 
Importantly, two of the three had non-HFE gene mutations. 
The study by Kumar et al.22 highlighted movement disorders 
that is a symptom rarely described in non-HFE hemochroma-
tosis. This study included data over a long period and was 
well powered, with 616 patients included, but was limited by 
retrospective design.

Diagnostic evaluation
The finding of an abnormal biochemical profile usually 
prompts a diagnostic workup of hemochromatosis. Elevated 
ferritin (>200 μg/L in women and >300 μg/L in men) is usu-
ally one of the first laboratory abnormalities that triggers di-
agnostic investigation.23 However, ferritin is an acute-phase 
reactant and may be elevated for many other reasons includ-
ing infection and inflammation, which should be ruled out. 
Another useful biochemical marker is transferrin saturation. 
As with primary hemochromatosis, a transferrin saturation 
of >45% suggests hemochromatosis. An exception is hemo-
chromatosis type 4, in which transferrin saturation often 
does not exceed that threshold (Fig. 3).24

The 2019 guidelines of the American College of Gastroen-
terology (ACG) hemochromatosis recommend magnetic res-
onance imaging (MRI) in evaluating liver iron concentrations 
in this patient population, followed by liver biopsy if neces-
sary.25 Knowledge of the severity of iron deposition within 
the liver can guide therapy. With regard to establishing the 
type of hemochromatosis, the 2010 European Association for 
the Study of the Liver (EASL) guidelines recommend test-
ing patients with high clinical suspicion of hemochromatosis 
(biochemical evidence or family history) for HFE mutations 
(C282Y) before considering screening for non-HFE muta-
tions.26 The ACG 2019 guidelines, on the other hand, recom-
mend against further genetic screening in patients who test 
negative for type 1 hemochromatosis.25 The same guidelines 
note a moderate quality of evidence for genetic counseling 
and screening for first-degree relatives of patients diagnosed 
with hemochromatosis.

Hepcidin levels are also helpful in the diagnosis of non-
HFE hemochromatosis. Hemochromatosis types 2A and 2B, 
and type 327 have markedly suppressed hepcidin levels that 
are sometimes undetectable.28 That differs from type 4B 
hemochromatosis, in which there is a lack of sensitivity of 
FPN to hepcidin, and levels of the latter are markedly in-
creased.29 Some reports suggest that the use of hepcidin 
levels in patients suspected of having hemochromatosis may 
guide genetic testing, especially for rare non-HFE types of 
hemochromatosis.30 The hepcidin diagnostic kits that are 
commercially available are used primarily for the diagnosis of 
iron deficiency and have not been evaluated in hemochroma-
tosis patients.31 Commercial genetic tests for various types 
of hemochromatosis are available from Fulgent (Temple City, 
CA), Blueprint Genetics (Seattle, WA), Prevention Genetics 
(Marshfield, WI), Valencian Institute of Microbiology (Valen-
cia, Spain), and Invitae (San Francisco, CA). However, most 
direct-to-consumer genetic testing kits do not yet offer test-
ing for non-HFE hemochromatosis.

Many studies have investigated the role of genetic se-
quencing in the diagnosis of non-HFE hemochromatosis. A 
retrospective study of 36 patients by Ravasi et al.32 investi-
gated the value of next generation sequencing (NGS) for the 
diagnosis of non-HFE hemochromatosis. NGS identified six 
novel mutations in SLC40A1, three novel and one known mu-
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tation in TFR2, one known mutation and a de-novo deletion 
in HJV, and a novel mutation in HAMP in 10 patients. They 
did not find genetic markers in 26 of the 36 patients. Genetic 
markers were not identified in most patients with non-HFE 
hemochromatosis. Wider use of NGS may identify more non-
HFE mutations. The limitations of the study the small patient 
sample and its retrospective design. A retrospective study 
by Sun et al.33 investigated the genetics underlying hemo-
chromatosis in Tibetan patients. They included hospitalized 
patients, of whom only 73 had non-HFE hemochromatosis. 
They isolated non-HFE mutants, including five HJV muta-
tions of G320V, p.Q312X, p.D249H, p.I281T, p.C321X, two 
TFR2 mutations: (Y250X, I238M), and two SLC40A1 muta-
tions (V162del, N144H). The study provides an insight into 
specific mutations in non-HFE hemochromatosis. A study by 
Lv et al.34 characterized mutations in hemochromatosis, in-
cluding non-HFE types in 22 Chinese patients. Twenty-one 
of the twenty-two patients had one non-HFE mutation, and 
the study concluded that compound or combined heterozy-
gous mutations of HJV or BMP/SMAD pathway genes may 
be a novel pattern of hemochromatosis pathogenesis. The 
study identified new mutations of non-HFE variants, but it 
was underpowered, with only 22 patients. It was also lim-
ited by being a retrospective study, which may have intro-
duced confounding variables. Lanktree et al.35 conducted a 
retrospective investigation of the diagnostic value of NGS in 
rare hemochromatosis cases. It reviewed only six patients, 
all of whom carried HFE2 mutations that were detected by 
NGS, which reaffirmed its value for advancing our under-
standing of non-HFE hemochromatosis. However, given the 
small number of patients, all of whom carried the same type 
of mutation, the study conclusions may not apply to muta-
tions of other types. Badar et al.36 conducted a retrospective 
study to assess the ability of NGS to detect five mutations 
associated with hemochromatosis. Their results were simi-

lar to those of McDonald et al.37 that included 106 Italian 
patients with biochemical signs of iron overload. They found 
five mutations associated with hemochromatosis, which sup-
ports wider of NGS for prompt and accurate diagnosis, espe-
cially if registries with descriptions of the phenotypes of each 
mutation are developed. The study highlights the role of NGS 
in expanding our knowledge of mutations involved in hemo-
chromatosis. Lastly, a retrospective study by Radio et al.38 
investigated the role of TFR2 mutations in non-HFE hemo-
chromatosis pathogenesis in 45 Italian patients TFR2 biallelic 
mutations were found in seven of the 45 patients (15.6%).

The 2011 American Association for the Study of Liver Dis-
ease (AASLD) guidelines describe the evolution of the use 
of liver biopsy in the diagnosis of hemochromatosis over the 
years.39 Liver biopsy is recommended to determine the pres-
ence of liver cirrhosis or fibrosis if the results of noninvasive 
tests are inconclusive. The guidelines state that the need for 
liver biopsy is usually guided by serum ferritin levels. Pa-
tients with serum ferritin levels of >1,000 μg/L or elevated 
aminotransferases are at an increased risk of developing liver 
cirrhosis and may benefit from a liver biopsy. Liver biopsies 
are recommended in patients with non-HFE hemochromato-
sis and elevated ferritin, aminotransferases, or other clini-
cal indicators of liver disease. More recent guidelines pub-
lished by the EASL in 2022 agree with that position. The 
AASLD guidelines recommend liver biopsy if serum ferritin 
is >1,000 μg/L or aminotransferases are elevated the EASL 
guidelines do not recommend liver biopsy for the diagno-
sis of iron overload or in patients with cirrhosis.40 The EASL 
guidelines recommend that patients with hemochromatosis 
should be assessed for liver fibrosis with noninvasive tools 
such as transient elastography, serum FIB-4 level, or aspar-
tate aminotransferase-to-platelet ratio index (APRI).41 Liver 
biopsy is reserved for cases where the diagnosis of cirrhosis 
cannot be established noninvasively.41

Fig. 3.  Algorithm for the evaluation of hemochromatosis with a focus on non-HFE hemochromatosis. MRI, magnetic resonance imaging; TS, transferrin 
saturation; JH, juvenile hemochromatosis, HH, hereditary hemochromatosis; TFR, transferrin receptor; HAMP, hepcidin antimicrobial peptide; HJV, hemojuvelin protein; 
SLC40A1, solute carrier family 40 member 1.
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Therapy
Therapeutic management of non-HFE hemochromatosis 
is similar to that of HFE hemochromatosis. The May 2022 
guidelines of the Bioiron Society8 are consistent with previ-
ous EASL recommendations. Phlebotomy remains the cor-
nerstone of therapy, with a goal to reduce ferritin to 50–100 
μg/L.42 Because some types of non-HFE hemochromatosis 
may have an earlier onset and a more severe disease course, 
chelation therapies may be considered in addition to phle-
botomy to improve iron elimination.43 Overall, the goal for 
therapy in both HFE and non-HFE hemochromatosis is to de-
crease the iron overload burden, and phlebotomy remains 
the therapy of choice. The exception to that rule are non-HFE 
hemochromatosis types, e.g., 4A, that present with chronic 
anemia that precludes phlebotomy. In such cases, chelation 
agents are recommended.8

Successful lowering of ferritin levels improves survival and 
liver and skin manifestations, but it usually does not have a 
significant therapeutic effect on extrahepatic manifestations 
such as hypogonadism, joint symptoms, and diabetes mel-
litus.42,44 Long-term survival similar to healthy controls has 
been reported in patients with hemochromatosis who undergo 
phlebotomy therapy before developing cirrhosis or diabetes.45 
According to the 2011 AASLD guidelines, any value of serum 
ferritin above the normal range is an indication for phlebot-
omy.39 The 2019 ACG guidelines recommend phlebotomy as 
the first-line therapy, with chelation reserved for cases that 
are intolerant or refractory to phlebotomy.25 Patients are ad-
vised to avoid supplemental iron and alcohol use, but current-
ly there are no proven effective dietary restrictions.46 Three 
chelating agents are FDA-approved for use in hemochroma-
tosis patients, deferoxamine, deferiprone, and deferasirox. It 
is important to note, however, that the 2019 ACG guidelines 
recommend against the use of chelation as first-line therapy 
primarily because of treatment-associated hepatic and renal 
toxicity and a lack of large studies to support their effective-
ness and safety. Liver transplantation is required in cases of 
hepatocellular carcinoma or decompensated cirrhosis.47 Last-
ly, hepcidin analogs have been proposed as a therapy.48 While 
there are some promising reports of their use as a mainte-
nance therapy, data on the control of adequate iron storage 
disease in the liver is lacking.49,50

Conclusions
Advances in understanding of iron homeostasis and the cel-
lular signaling pathway involved in hepcidin expression allow 
for a better understanding of the mutations involved in some 
of the rare types of hemochromatosis. Nonetheless, new phe-
notypic presentation and mutations responsible for non-HFE 
hemochromatosis are still being discovered. As NGS becomes 
more widely available, it may become a more economically 
viable diagnostic tool, facilitating an earlier diagnosis and pro-
viding better understanding of mutation types and incidence in 
the general population. Institution of therapy early in the dis-
ease process prevents progression and chronic liver disease. 
As we learn more about mutation types, there is an opportu-
nity for the development of more effective targeted therapies.
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