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Abstract

Gallbladder carcinoma (GBC) is a malignant tumor of the bil-
iary system that is aggressive, difficult to detect early, and 
has a low surgical resection rate and poor prognosis. Ap-
propriate in vitro growth models are expected to focus on 
the study of the biological behavior and assess treatment 
effects. Nonetheless, cancer initiation, progression, and in-
vasion include spatiotemporal changes and changes in the 
cell microenvironment intracellular communication, and in-
tracellular molecules, making the development of in vitro 
growth models very challenging. Recent advances in bioma-
terial methods and tissue engineering, particularly advances 
in bioprinting procedures, have paved the way for advances 
in the creative phase of in vitro cancer research. To date, an 
increasing number of cultured models of gallbladder disease 
have emerged, such as two-dimensional (2D) GBC growth 
cell cultures, three-dimensional (3D) GBC growth cell cul-
tures, xenograft models, and 3D bioprinting methods. These 
models can serve as stronger platforms, focusing on tumor 
growth initiation, the association with the microenvironment, 
angiogenesis, motility, aggression, and infiltration. Bioprint-
ed growth models can also be used for high-throughput drug 
screening and validation, as well as translational opportuni-
ties for individual cancer therapy. This study focused on the 
exploration, progress, and significance of the development 

of GBC cultural models. We present our views on the short-
comings of existing models, investigate new innovations, 
and plan future improvements and application possibilities 
for cancer models.
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Introduction
Gallbladder carcinoma (GBC) is one of the most life-threat-
ening diseases worldwide. Its morbidity and mortality are 
increasing, with 70–80% of patients diagnosed at an ad-
vanced stage.1 Surgery remains the only possible treatment 
for GBC.1 However, because of the atypical clinical symp-
toms of GBC, lymphatic metastasis, and distant metastasis 
are prone to occur, so only 10% of patients are in a state 
suitable for surgical resection at the time of diagnosis.2 For 
patients with advanced GBC, three classes of chemotherapy 
drugs are available, gemcitabine, fluoropyrimidines, and plat-
inum-based compounds. Monotherapy has limited efficacy.3 
A combination of gemcitabine and cisplatin (CDDP) improves 
survival in such patients.4 Radiation therapy has limited ef-
ficacy in patients with advanced disease. Targeted therapy 
against the epidermal growth factor receptor (EGFR) inhibits 
proliferation in vitro and may provide an effective therapeutic 
modality in the future.5 However, comprehensive treatment 
is still ineffective and the prognosis is very poor. The 5-year 
survival rate is only 5–15%.6 Strengthening basic research in 
the occurrence and progression of GBC is the key to improve 
the prognosis of patients.

GBC appears to result from a combination of genetic sus-
ceptibility and environmental factors.7 A hypothetical on-
cogenic process is gallstone-induced inflammation → p53 
mutation (↓) → K-ras mutation (↑).8 Several diseases and 
chronic inflammation are considered risk factors for GBC, 
including cholelithiasis, porcelain gallbladder, gallbladder 
polyps, chronic salmonella infection, and congenital bile 
duct cysts.9 The mechanism of cancer occurrence and de-
velopment has not been fully elucidated, which seriously 
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affects the prognosis and treatment of the disease. Little is 
known about the biological characteristics of GBC, mainly 
because a complete in vitro culture system is lacking. In 
vitro tumor cell culture is one of the basic conditions for 
tumor research and is central to many fields such as tumor 
occurrence, development, invasion, metastasis mechanism, 
early diagnosis, and treatment evaluation.

Traditional tumor models are mainly used in in vitro 2D 
and biological models, while emerging ones include three-
dimensional (3D) spheroids and organoid models. Exist-
ing 2D models have discovered and identified tumor inva-
sive growth, including genetic and epigenetic modifications. 
Nonetheless, 2D models cannot recapitulate key elements of 
the in vivo microenvironment. Animal models including xen-
ografts, chemical induction, and genetic manipulation have 
often been used in preclinical exploration and in the study 
of individualized treatment of cancer.10 3D cancer spheroids 
are growth groups formed in vitro from 3D cell cultures. 
These clusters reflect the morphological structure of human 
tumors, and are useful for precise examination of drug ef-
ficacy.11 A tumor organoid model is a new method of tumor 
research emerging in recent years.12 Organoids are derived 
from stem cells and can recapitulate certain aspects of organ 
structure and function, including differentiation into multiple 
cell types.13

A “perfect” in vitro tumor model should (1) mirror the 
three-layer developmental environment of growing cells in 
vivo, (2) mimic the cooperation between cancer and stro-
mal cells, (3) replicate the relevant pathological features of 

patients, and (4) have an adaptable and time-saving devel-
opment cycle.14 It is feasible to tune various parts of the 
cancer microenvironment and subsequently control cellu-
lar capabilities. Given the difficulties, new developments in 
state-of-the-art 3D bioprinting innovations have been sig-
nificantly adopted and used in cancer fields by developing 
dynamic biomolecular/cytokine perspective models, invasive 
proliferation, and cell-cell communication models.15,16 The 
main purpose of this review is to describe the application and 
progress of GBC culture models, and to provide ideas for the 
basic and clinical translational research of GBC (Fig. 1) .

2D gallbladder cancer cell culture
More than a dozen GBC cell lines are currently available, in-
cluding G-415, GB-d1, GBK-1, and KMG-A (as shown in Table 
1).17-38 The first established GBC cell line, G415, expresses 
epithelial cadherin (E-cad) and forms cystic or spherical 3D 
structures. And a plasmid containing murine E-cad cDNA 
was transduced into G415 cells to stop E-cad expression.39 
The E-cad-transduced cell line had a typical epithelial shape 
and forms multicellular cyst-like structures. Shimura et al.17 
found that removal of fibroblasts from GB-d1 cell cultures 
resulted in a decrease of tumor cell invasiveness and that 
the hepatocyte growth factor (HGF) secreted by fibroblasts 
could induce the invasive growth of GB-d1. GBC-SD, the 
first domestic GBC cell line is mainly composed of polygo-
nal, spindle, and square cells.18 SGC-996 is another domestic 
GBC cell line. It has a typical epithelial cell morphology, and 

Fig. 1.  Timeline of the development of different models of gallbladder cancer cell culture. The number of gallbladder cancer culture models is increasing, and 
now includes two-dimensional gallbladder cancer cell culture, three-dimensional gallbladder cancer cell culture, xenograft models, and three-dimensional bioprinting 
technology. GBC, gallbladder carcinoma; 2D, two-dimensional; 3D, three-dimensional.
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neither the morphology nor the chromosome number change 
significantly in long-term culture. Liu et al.20 successfully es-
tablished a new cell line, TJ-GBC2, which has a characteristic 
epithelial tumor morphology and phenotypes consistent with 
primary GBCs, such as polygonal and irregular cell shapes, 
CA19-9 and AFP levels were elevated, and E-cadherin was 
expressed. The cell line is also more invasive and the highest 
migratory ability compared with other GBC cell lines. Zhou 
et al.21 established a novel ZJU-0430 cell line from a prima-
ry GBC. It had various cell morphologies and characteristic 
epithelial morphologies, with a population doubling time of 
19.81 h. ZJU-0430 cells have greater migration, invasive-
ness, and proliferative ability than GBC-SD cells in vitro. In 
addition to the primary GBC cell line, Wang et al.22 estab-
lished the EH-GB2 cell line from primary culture of a liver me-
tastases from a 65 year-old patient cell line. It has a doubling 
time of approximately 48 h in cell culture and elevated ex-
pression of vimentin, Snail, Twist, matrix metalloproteinase 
1 (MMP-1), and MMP-2 mRNAs, which are characteristic of 
epithelial-mesenchymal transition. Another metastatic gall-
bladder disease cell line, EH-GB1, reported by Li et al.23 was 
passaged over 20 generations, had an aggressive epithelial 
morphology and a stable developmental pattern for 24 h. 

EH-GB1 cells grew in mice after subcutaneous inoculation 
and were positive for the cancer marker CA19-9. The cell line 
consistently expressed green fluorescent protein (GFP) and 
Red 2. In terms of pathological types of GBC, Shinichi et al.24 
established a human GBC cell line TYGBK-1 from papillary 
tubular adenocarcinoma patients. It had p53 missense muta-
tions, produced CA19-9, and was sensitive to gemcitabine.

In vitro drug screening in 2D culture has the advantages 
of high-throughput and convenient screening, and is widely 
used in preclinical trials of drugs. An in vitro culture model 
of GBC cell lines has been successfully used in the study of 
the mechanism of genetic and molecular changes of GBC and 
drug sensitivity experiments, especially the abnormality of 
GBC suppressor genes, proto-oncogenes, and DNA repair 
genes, microsatellite instability, and epigenetic changes. Qin 
et al.40 used v-src- or cH-ras-transfected HAG-1 human GBC 
cell lines to find that activated Ras and Src induced resist-
ance to gefitinib by activating one or both of the Akt and 
Ark signaling pathways. It has also been reported that KRAS, 
CDKN2A/B and other gene mutations exist in GBC, and are 
closely related to the invasiveness and metastasis.6,41 How-
ever, studies have shown that epigenetic changes and tu-
mor suppressor gene methylation in GBC are abnormally 

Table 1.  Reports of human gallbladder cancer cell lines

Author Cell line Report 
year Characteristic Doubling 

time (h)

Koyama25 G-415 1980 Differentiated gallbladder cancer cell line –

Morgan26 COLO 346 1981 polygonal cells 36

Knuth27 Mz-ChA-1.2 1985 Secretes C3C4C5; express AFP or ferritin 72

Egami28 r51 GBK-1 1986 polygonal cells; express CSF 43 43

Maruiwa29 KMG-A 1987 Expresses AFP –

Homma30 NOZ 1988 Polymorphism; expresses CEA or ferritin; K-RAS mutation 48

Johzaki31 FU-GBC-1 1989 Expresses CEA, CA199, EMA 120

Tsubono32 GBC-GN 1992 Well-differentiated adenocarcinoma; cisplatin-sensitive 7

Nakano33 HAG-1 1994 Moderately differentiated adenocarcinoma of the gallbladder; no 
mutation or amplification of H-, K-, or N-ras genes detected

26

Shimura17 GB-d1,2 1995 Secretes IL-31 –

Nishida34 FU-GBC-2 1997 Signet ring cell; express CEA, CA199, EMA 43

Yamada35 OCUG-1 1997 Poorly differentiated adenocarcinoma; secreting TA-4 47.1

Park36 KMCH-1 1999 secrete IL-6 39

Liu18 GBC-SD 2000 Polymorphism, rapid proliferation, congenital drug resistance 21.4

Ebinuma37 PTHrP-GBK 2002 Expresses PTHrP 48 48

Yang19 SGC-996 2003 Typical epithelial cell morphology 46

Ghosh38 TGBC 2004 Expresses CEA, CA19-9, MUC-1, and c-erbB2 30–96

Li23 EH-GB1 2010 Gallbladder carcinoma liver metastases cell line, typical 
features of malignant epithelial cells, the tumorigenic rate of 
mice is 100%, and CA19-9 has strong positive expression

24

Wang22 EH-GB2 2011 Gallbladder carcinoma liver metastases cell line, EMT, highly 
expressed Vimentin, Snail, Twist, MMP-1, and MMP-2 mRNA

48

Shinichi24 TYGBK-1 2012 p53 missense mutation, showing sensitivity to gemcitabine 48

Liu20 TJ-GBC2 2017 Abnormal chromosome structure and number, hypertetraploidy; 
coexistence of polygonal, fusiform, and irregularly shaped cells

-

Zhou21 ZJU-0430 2019 Variety of cell morphologies and characteristic epithelial morphologies 19.81

AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CSF, colony-stimulating factor; EMA, epithelial membrane antigen; EMT, epithelial-mesenchymal transition; 
MMP, matrix metalloproteinase.
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increased and closely related to patient survival.42 Gao et 
al.43 examined the high expression of NSUN2 in GBC tissues 
and GBC-SD cell lines and found that NOP2/SunRNA meth-
yltransferase 2 promoted GBC progression through the in-
teraction partner RPL6. Additionally, the role of noncoding 
RNAs in the occurrence and development of GBC has recently 
received attention. In the NOZ and SGC-996 cell lines, miR-
122 inhibited the proliferation of GBC by interfering with the 
expression of PKM2, MALAT1 promoted the proliferation and 
metastasis of GBC by activating the ERK/MAPK pathway.44 
The GBC cell line has a high xenograft tumor formation rate, 
which is also an important criterion in the identification of cell 
lines. Tsubono et al.32 used the well-differentiated cell line 
GBC-GN to establish a nude mouse tumor-bearing model to 
test the antitumor anticancer effects drugs such as CDDP and 
5-fluorouracil (5-FU), alone or in combination. Only CDDP 
was effective in GBC-GN model, and CDDP+5-FU had an in-
hibitory effect on both malignant tumors.

However, in no case can 2D models retain the key qualities 
of the in vivo microenvironment. Some studies have sug-
gested cancer cells derived from patients under 2D condi-
tions experience a reduction or complete loss of certain re-
ceptors and marker molecules.45 Comparison of 2D and 3D 
models shows huge differences in phenotype, gene and pro-
tein expression, and drug sensitivity.46 These elements make 
2D an unacceptable technique for accurate drug screening. 
Due to factors such as genetic drift, loss of heterogeneity, 
and cell line contamination, the experimental outcomes of 
cell lines are not very robust in the final animal experiments. 
That may be because the cell culture process in a 2D envi-
ronment in vitro cannot truly reflect the interactions of the 
tumor microenvironment surrounding the tumor cells in vivo. 
Primary tumor cells can better retain the characteristics of 
host cells, but the current in vitro culture of primary tumor 
cells is limited due to difficulties in cell culture technology and 
cycle. Compared with the widespread application of GBC cell 
lines, the culture of primary GBC cells has also been further 
developed and applied. Bo et al.47 collected resected lesions 
from patients with gallbladder adenoma and GBC, and suc-
cessfully cultured primary gallbladder tumor cells in vitro. 
To improve the efficiency of primary cell culture, Noggin, 
epidermal growth factor (EGF), fibroblast growth factor 10 
(FGF10), and insulin-like growth factor (IGF) were added to 
the cell culture medium, and Wnt3a, Rspo1, and prostaglan-
din E2 were added to the gallbladder adenoma medium at 
the same time. The researchers then successfully established 
organoids from primary GBC cells, which were expanded for 
at least 10 passages and stably cultured for more than 3 
months. Feng et al.48 successfully constructed 38 patient-
derived primary cancer cell lines with multiregional sampling 
of tissue samples from seven patients with GBC surgery, and 
studied the heterogeneity of GBC. In addition to the culture 
of primary GBC cells, Chen et al.49 cultured primary GBC-re-
lated fibroblasts, using enzymatic digestion and tissue blocks 
for the primary culture of human GBC-related fibroblasts and 
purification by differential adherence.

Recent progress of the in vitro culture of primary tumor 
cells is reflected by the improvement of cell culture media, 
cell-separation methods, and conditional reprogramming of 
cultured cells.50–53 In terms of the tumor cell culture model, 
a 3D culture model is gradually replacing 2D culture model.

3D gallbladder cancer cell culture
In recent decades, various methods for culturing 3D sphe-
roids have been developed. 3D culture methods can be di-
vided into scaffold-containing and scaffold-free cell culture 

methods. Scaffolding materials can be divided into natural 
scaffolds using matrigel, collagen, gelatin, laminin, chitosan, 
hyaluronic acid, and synthetic scaffold materials by polyester 
degradable polymer.54–57 Scaffold-free culture models mainly 
refer to the application of various physical methods to pre-
vent tumor cells from adhering to the wall, to suspend tumor 
cells in the medium, and to promote cell aggregation and 
growth to form tumor cell spheres. It includes ultra-low ad-
hesion culture plates, dynamic rotation culture, hanging drop 
methods, and microfluidic chips and acoustic manipulation, 
which have appeared in recent years.58–62

The 3D cell simulates the in vivo microenvironment of tu-
mor cell growth. Under 3D culture conditions, almost 100% 
of the surface area of the cells is in contact with other cells or 
substrates, and the cultured cells have characteristic biologi-
cal signal transduction.63,64 In the 3D culture environment, 
cells have a scattered distribution in clusters, forming homo-
geneous scattered microcell spheres. In the microspheres, 
there may be cell junctions and paracrine communication 
that cannot be realized in 2D culture, and act to maintain the 
tumor characteristics.46

Currently, 3D culture of GBC uses 3D gels. Wan et al.39 
systematically compared the cell phenotype, morphogenesis, 
and ultrastructure of G-415 GBC cells containing an expres-
sion plasmid of mouse E-cad cDNA in 2D and 3D gel culture 
conditions. In 3D gels, the GBC cells formed round multicel-
lular cyst-like structures that secreted mucous material from 
the apical surface into the cyst cavity and had the potential 
for hyperproliferation, which was in contrast to 2D culture.

The main applications of 3D culture model are in drug 
sensitivity studies and the mechanism of the GBC microen-
vironment. Jiang et al.65 established a 3D cell culture model 
of GBC using preparations of cell-containing 3D collagen to 
study the killing effectiveness and mechanism of a novel na-
nodrug delivery system in GBC cells. Experiments found that 
the interaction between cells in 3D culture was significantly 
enhanced, and the biological characteristics of multicellular 
spheres were mainly characterized by cell cycle arrest and 
early apoptosis reduction, which may have been related to 
multicellular drug resistance. In terms of the occurrence 
mechanism of GBC, cancer-associated fibroblasts (CAFs) and 
vasculogenic mimicry (VM) have important roles in the ma-
lignant growth of GBC. Pan et al.66 used a 3D collagen gel co-
culture of human GBC cells and fibroblasts or HUVECs, which 
showed that CAFs upregulated NOX4 expression to promote 
VM formation and cancer development, possibly by paracrine 
secretion of IL6 to complete the IL-6-JAK-STAT3 signaling 
pathway. NOX4 is a critical gene for VM development in GBC. 
It is aberrantly expressed in the cancer cells and stroma and 
is associated with poor prognosis in GBC patients.

New 3D culture methods incorporating acoustic manipu-
lation and microfluidics that avoid limitations of the use of 
other 3D culture methods for GBC, have been used in studies 
of bladder cancer, breast cancer, and other malignant tumors 
(Fig. 2). Gong et al.61 printed tumor organoids with acous-
tic droplets that mimicked the immune microenvironment of 
bladder tumors. Their platform facilitated rapid formation of 
tumor organoids that preserved the original tumor immune 
microenvironment and the establishment of a personalized 
bladder cancer immunotherapy model. Using a droplet mi-
crofluidic platform, Chen et al.67 prepared delicate structures 
with fibroblasts in the outer layer and hepatoma cells in the 
inner layer and achieved homogenization to generate hetero-
geneous pseudospheres that were used to study interactions 
between tumors and stromal cells.

However, 3D culture methods have downsides. Scaffold-
based 3D cell culture involves conventional or mixed poly-
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mers as the extracellular matrix (ECM), thereby supporting 
cell development. Commonly used techniques include matrix 
coverage/embedding culture and microcarriers. Robust cell-
ECM interactions can understood by the appearance of ECM 
material. Nonetheless, the outer materials are toxic and an-
tigenic, separating the spheres from the platform material is 
difficult, and the platform materials may affect drug diffusion 
and responses, which results in low reproducibility of drug 
testing results.68 Frameless 3D cell culture does not require 
suspended external materials or power. Rotating and spin-
ner flasks, hanging drops, ultra-low attachment plates, and 
microporous plates are devices that are routinely used in 3D 
culture. Rotating and spinner flasks can create stress that is 
strong enough to damage cells during culture, which makes 
it challenging to control the consistency of spheroids. Hang-
ing drop assays require intensive work and long-term culture. 
They are unstable, due to the evaporation of media from the 
droplets. Ultra-low linker plates have low efficacy, and there 
is only one spheroid in a culture well, making it difficult to 
control spheroid uniformity. Microporous plates use specially 
created microwells through micropatterning. To keep up with 
suspending cells, the well surface should be covered to reduce 
attachment, which may hinder the effects of drug molecules.69

Gallbladder cancer organoids
Organoids are a novel 3D cell culture technology that can 
grow primary tissue plants or single cells into self-organizing 
tissues. Organoids can retain histological features, expres-
sion profiles, unique markers, and many other features of 
the original tissue.70 The extraordinary strength of this model 

is that organoids can be cultured over a long period of time 
(especially for patient-specific tumor cells) and passaged in 
3D over a long time. Additionally, organoids can preserve 
the histological, immunohistochemical, and genetic hetero-
geneity of the original tumor, making them suitable for high-
throughput drug screening.

Lugli et al.71 isolated gallbladders from 2 month-old mice, 
collected them and incubated them with PBS/EDTA for 2 
h. Small clusters of cells were isolated and implanted into 
matrigel. The cells were incubated in a medium containing 
nicotinamide and various growth factors including EGF, fibro-
blast growth factor 10, and noggin. The gallbladder organoids 
that developed reproduced stably for more than a year and 
expressed the stem cell marker Prom1 and the transcription 
factor Sox17.

GBC organoids have been successfully used to explore 
the mechanism of occurrence and development of GBC and 
drug sensitivity (Fig. 3). One study obtained GBC organoids 
from mice in which the TP53 gene was inactivated and cul-
tured them after infection with salmonella.72 Organoids with 
a history of infection lost cohesion and polarity, had enlarged 
nuclei, irregular and prominent nucleoli, and exhibited neo-
plastic transformation. Organoids without infection had nor-
mal epithelial tissue. Therefore, salmonella has a susceptible 
genetic background and can promote cellular tumorigen-
esis. The current first-line chemotherapy regimen for GBC, 
gemcitabine combined with CDDP, has a median survival of 
less than 1 year.73 García et al.74 found that Yes-associated 
protein 1(YAP1) was highly expressed in 60% of patients 
with chronic cholecystitis and advanced GBC. High nuclear 
expression of YAP1 was associated with poor overall surviv-

Fig. 2.  Different types of Three-dimensional culture models include scaffold-containing and scaffold-free cell methods. (A) Three-dimensional gel cell 
culture model; (B) Low-adhesion cell culture; (C) Dynamic spin cell culture; (D) Acoustic control of cell culture; (E) Suspension cell culture; (F) microfluidic cell culture; 
(G) 3D bioprinting cell culture.
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al in patients with subserous GBC. They also demonstrated 
that inhibition of YAP1 by verteporfin (VP) reduced migration 
and invasion of GBC cell lines. To overcome the lack of an 
intact immune system, Shingo et al.75 recently established 
a new model using lentiviral Cre transduction and CRISPR/
Cas9 gene editing to generate mutant Kras and Trp53-loss 
gallbladder organoids in vitro. Sections of organoid-defined 
subcutaneous tissue that were sutured to the outer surface of 
the gallbladder in syngeneic mice produced carcinomas in situ 
that resembled human GBCs histology and gene transcrip-
tion. The model revealed the penetration of similar immune 
cell subsets in subcutaneous and orthotopic tumors, confirm-
ing a suitable immune environment during carcinogenesis, 
demonstrated the in vivo efficacy of gemcitabine.

There are many limitations of the use of GBC organoid 
technology. First, many complex and expensive cytokines 
need to be added to maintain the tumor microenvironment 
of the organoid. Second, the success rate of in vitro tumor 
organoid construction depends on the tumor’s own prolifera-
tive capacity. GBC and other low-proliferation tumors, have 
a low success rate in constructing organoids in vitro, which 

makes the use of tumor organoid technology less extensive 
than that of patient-derived xenograft (PDX) models.76 Third, 
its deficiency in interstitial cell components and the absence 
of cell-to-cell interactions make it impossible to reconstruct 
the tumor microenvironment.

Gallbladder cancer xenograft models
Human tumor xenograft models involve transplantation of 
human primary tumor tissue into immunodeficient animals. 
At present, there are two types of xenograft models of GBC, 
subcutaneous and orthotopic (Fig. 4).77 Subcutaneous tu-
mor models can be prepared by the cell suspension injection 
or tissue block methods. A cell suspension can be injected 
subcutaneously or injected intraperitoneally into the lateral 
femoral side of nude mice. Subcutaneous tumors that have 
grown into blocks with a diameter of 1.0 cm can be removed 
and cut into pieces of about 1 mm in size and reinoculated. 
Subcutaneous tumors prepared by the cell suspension meth-
od can be inoculated under the serosa of the gallbladder by 
surgery.

Fig. 4.  Classification and steps of preparing gallbladder cancer cell xenograft models. Xenograft models of gallbladder cancer include subcutaneous and 
orthotopic tumor models. Subcutaneous tumor models can be constructed from injection of cell suspensions or tissue blocks. The injection is either subcutaneous or 
intraperitoneal into the lateral femoral side of nude mice.

Fig. 3.  Applications and steps of three-dimensional gallbladder cancer cell organoids. Gallbladder cancer organoids can be constructed by three-dimensional 
culture of tumor cells isolated from patients or mice and have been successfully used to explore the mechanism of occurrence and development of gallbladder cancer 
and studies of drug sensitivity. 3D, three-dimensional.



Journal of Clinical and Translational Hepatology 2023 vol. 11(3)  |  695–704 701

Xing J. et al: Culture models of gallbladder carcinoma

Patient-derived xenografts propagated in immune-com-
promised mice at ectopic or orthotopic sites replicate the 
pathological features of patients to a certain extent. Com-
pared with the cell transplantation model (i.e. cell-derived 
xenograft, CDX) that directly transplants the cell line into 
nude mice because the PDX model comes directly from the 
patient, it will not lose heterogeneity and undergo genetic 
drift like the cell line, so it can better maintain the origi-
nal tumor morphology, metastasis characteristics, mutation 
spectrum, and drug response.69

Xenograft models are widely used in drug screening and 
individualized treatment of various tumors, such as mela-
noma,78 non-small cell lung cancer,79 breast cancer,80 ovar-
ian cancer,81 and hepatocellular carcinoma.82 Many studies 
using subcutaneous transplantation models have been car-
ried out by researchers after the successful cultivation of cell 
lines, and have mainly focused on anticancer drugs and early 
diagnosis of tumors. Pan et al.83 used the NOZ cell line to 
establish a nude mouse subcutaneous tumor and GBC or-
thotopic models in nude mice, in which they analyzed and 
compared the mechanisms of GBC metastasis. The nude 
mice in the orthotopic tumor transplant group showed signs 
of spontaneous metastasis. The tumors showed strong inva-
siveness, but there was no obvious spontaneous metastasis 
occurred in the subcutaneous tumor group. The results re-
flect the relationship of the invasiveness of tumor cells to 
the surrounding environment of the organ. In a study of the 
antitumor effectiveness of gemcitabine, Mita et al.84 also in-
oculated NOZ cells into the gallbladder, founding that lymph 
nodes, liver, and lung metastasis occurred in nude mice. To 
determine whether the trauma caused by the puncture of 
the abdominal wall could promote the implantation of tumors 
at the puncture site, some researchers injected the GBC cell 
line GB-d1,2 cells into the abdominal cavity of nude mice 
undergoing different surgical operations. They found that 
most of the patients with peritoneal injury, laparoscopic op-
eration, peritoneal burns, or liver-surface burns experienced 
tumor implantation and metastasis at the operation site, and 
that implantation was greatly reduced by repairing the peri-
toneum.85 Animal-induced models of GBC were reported as 
early as 1974.86 Some people believe that azotoluidine ni-
trosamines, artificial cholesterol stones, and other materials 
implanted in the gallbladder, can lead to the occurrence of 
GBC, but successful cases have been very rare. Talima et 
al.87 successfully established a GBC model in female Syrian 
mice. First, distal common bile duct ligation and cholecys-
toduodenal anastomosis were performed, and nitrosamine 
feeding was administered 4 weeks after the operation. The 
GBC showed papillary growth, and a morphology similar to 
that of human GBC. Bromodeoxyuridine and anti-bromode-
oxyuridine monoclonal antibody immunohistochemical stain-
ing confirmed that gallbladder duodenal anastomosis signifi-
cantly accelerated the activity of gallbladder epithelial cells, 
which may play a major role in the carcinogenesis of gall-
bladder epithelial cells. Reflux and stasis of pancreatic juice 
can lead to chronic inflammation of the gallbladder, intestinal 
metaplasia, and finally to the occurrence of differentiated 
GBC. A study by Ikemaltsu et al.88 confirmed the above per-
spective, and found that nitrosamines induced GBC in mice, 
and oral administration of cholestyramine inhibited carcino-
genesis. It was inferred that bile acid is involved in gallblad-
der carcinogenesis.

A major limitation of xenograft models is the loss of hu-
man tumor stroma, which is completely replaced by murine 
stroma in the second generation.89 To overcome it, co-im-
plantation of human stromal cells with primary tumor tissue 
optimizes traditional xenograft models. In addition, the long 

cycle of xenograft model establishment limits its application 
in guiding the treatment of the original patient. The time gap 
was bridged by the rapid in vivo drug sensitivity assay of mi-
ni-xenograft model, which can test the response to antitumor 
drugs within 7 days.90 To establish a mini-xenograft model, 
cancer cell suspensions were transferred to a modified micro-
capsule and hollow-fiber culture system. The capsules were 
subcutaneously transplanted into immunodeficient mice, and 
the mice were subsequently treated with antitumor drugs. 
Treatment response was assessed by cell proliferation. How-
ever, xenograft models established in immunocompromised 
mice are ineffective in studying the tumor microenviron-
ment, including the infiltration of immune cells and crosstalk 
between the tumor and the immune system. To overcome 
those challenges, several humanized mice have recently 
been developed, including genetically engineered humanized 
mice and immune humanized mice.91

Emergence of 3D bioprinting technology
3D bioprinting is essentially the same as organoids. and it 
is also an in vitro 3D culture technology based on matrigel, 
but with the help of precision engineering instruments, pre-
cise models can be constructed with millimeter-level errors. 
3D printing is an innovative process using rapid prototyping 
materials, layer-by-layer superposition, and point-by-point 
printing to produce 3D graphics. This rapid and lowest-cost 
innovation has some control over the development of mul-
ticellular, multimaterial, and multibiomolecular structures 
in a multilevel space. It can also reproduce the growth mi-
croenvironment and mimic the complex organic structure of 
cancer tissue.92 Additionally, different cell components can 
be added. The multichannel printing has the advantages of 
controlling the 3D position of each cell component, restoring 
the different distribution characteristics of different cells in 
the tissue and achieving the purpose of accurately simulating 
the in vivo microenvironment. That is sufficient to overcome 
the randomness of organoid technology and the defects of 
homogenization of cell distribution.93

The use of 3D bioprinting has been explored in personal-
ized treatment schemes and construction of a model tu-
mor microenvironment consistent with the in vivo parental 
tumor tissue with respect to gene sequences, gene ex-
pression levels. We have used 3D bioprinting technology 
to successfully construct human normal liver tissue,94 liver 
cancer tissue,95 and intrahepatic cholangiocarcinoma tis-
sue,96 confirming that 3D printing has the advantages of a 
high success rate and stability for study of drugs and tumor 
pathogenesis (Fig. 2G). Recently, our experimental team 
used 3D bioprinting to construct an in vitro multicellular 
GBC model that accurately simulated the tumor microenvi-
ronment of GBC and can be used to explore the mechanism 
of occurrence and development of GBC and to conduct drug 
sensitivity experiments.

3D biological printing has disadvantages compared with 
3D culture. Whether it is an ordinary mechanical extrusion 
printer or a newer type such as light curing printer, building 
a specific model of cells requires more preliminary work, 
such as the preparation of bigels, and takes a long time for 
completion. Long-term exposure of cells to biological ink 
leaving the culture medium also affects their function.14 
Additionally, the mechanical compression of the extrusion 
printer can also cause cell damage that can result in the 
death of some fragile primary cells soon after printing, 
making it impossible to successfully build a model. Further 
development of biomaterials and mechanical engineering 
technology is needed.14
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Outlook
Although GBC still faces many problems such as a high degree 
of malignancy, a single treatment option, and a low 5-year 
survival rate, they will gradually be solved with the in-depth 
understanding of the pathogenesis, clinical diagnosis, and 
treatment. By comparing the advantages and shortcoming of 
above models, it contributes to provide the future directions 
(as shown in Table 2). With the continuous updating of pri-
mary tumor cell culture technology, long-term in vitro culture 
of primary GBC cells obtained from patients will facilitate the 
realization of individualized and precise treatment. In view 
of the increasingly important role of 3D tumor cell culture, 
additional models will be used to explore the mechanism of 
GBC occurrence and development in the future. 3D bioprint-
ing techniques have become the focus of current research 
because they can model cell-to-cell interactions. More im-
portantly, 3D bioprinting technology can print multiple cells 
to simulate the tumor microenvironment and better recapitu-
late the complexity of tumors, which is of great significance 
for clinical diagnosis and personalized medicine of tumors. 
Currently, research on 3D bioprint culture models of GBC are 
in their infancy. The construction success rate, application, 
and prospects need more research. However, that does not 
affect the research value and bright prospects of 3D bioprint-
ing technology for GBC.

In addition to GBC and malignant tumors, current research 
in the causes, occurrence, development, and treatment of be-
nign diseases of the gallbladder, such as gallbladder stones, 
adenomyosis of the gallbladder, and others are mainly car-
ried out in animal models and mathematical exercises.97,98 
The main experimental animal models of gallstones are im-
planting human gallstones into animal gallbladders and ob-
serving the changes and the influence of Chinese and West-

ern medicines, the other models are induced by food.98 The 
former is suitable for the experimental study of promoting 
gallstones and expelling stones but not for research on the 
cause of gallstones and stone prevention. The latter can be 
used to study stone prevention, but has a long observation 
time of at least 2 months. The use of in vitro culture models 
for the study of benign gallbladder disease is currently very 
limited. More models of gallbladder disease are expected to 
appear in the future.
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