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Abstract

Background and Aims: Emerging evidence suggests that 
RNA-binding motif (RBM) proteins are involved in hepato-
carcinogenesis and act either as oncogenes or tumor sup-
pressors. The objective of this study was to investigate 
the role of RBM34, an RBM protein, in hepatocellular car-
cinoma (HCC). Methods: We first examined the expres-
sion of RBM34 across cancers. The correlation of RBM34 
with clinicopathological features and the prognostic value 
of RBM34 for HCC was then investigated. Functional en-
richment analysis of RBM34-related differentially expressed 
genes (DEGs) was performed to explore its biological func-
tion. RNA sequencing (RNA-seq) was applied to identify 
downstream genes and pathways affected upon RBM34 
knockout. The correlation of RBM34 with immune character-
istics was also analyzed. The oncogenic function of RBM34 
was examined in in vitro and in vivo experiments. Results: 
RBM34 was highly expressed in hepatocellular carcinoma 
and correlated with poor clinicopathological features and 
prognosis. RBM34 was positively associated with tumor im-
mune cell infiltration, biomarkers of immune cells, and im-
mune checkpoint expression. A positive correlation was also 
observed between RBM34, T cell exhaustion, and regula-
tory T cell marker genes. Knockout of RBM34 significantly 
inhibited cell proliferation, migration, and xenograft tumor 
growth, and sensitized HCC cells to sorafenib treatment. 
RBM34 inhibition reduced FGFR2 expression and affected 
PI3K-AKT pathway activation in HCC cells. Conclusions: 
Our study suggests that RBM34 may serve as a new prog-
nostic marker and therapeutic target of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the major type of liver 
cancer and the second most common cause of cancer-re-
lated deaths worldwide.1,2 Some therapies, such as surgi-
cal resection and liver transplant, are effective for treating 
HCC,3 but the prognosis is poor because of the high recur-
rence rate and delayed diagnosis.4 Therefore, there is an 
urgent need to identify novel therapeutic vulnerabilities.

RNA-binding proteins (RBPs) include many subfamily 
proteins, such as RNA recognition motif (RRM), RNA-binding 
motif, and ribonucleoprotein (RNP) motif protein.5,6 RBPs 
may contribute to cancer progression because of their ability 
to regulate RNA transcription, splicing, localization, stability, 
and translation.7 It has been reported that dysregulation 
of RBPs was involved in several human cancers, including 
HCC.8–10 For example, RBM43 is down-regulated in HCC and 
correlates with poor prognosis in patients. RBM43 is a tumor 
suppressor through the regulation of cyclin B1 mRNA sta-
bility in HCC.11 The long noncoding RNA HOTAIR promotes 
HCC migration and invasion through the downregulation of 
RBM38.12 Another study has demonstrated that RBMY con-
tributes to the male predominance of HCC by regulating 
androgen receptor activity13 and enhances HCC stemness 
by activating the β-catenin signaling pathway.14 Immuno-
therapy has proven to be a promising strategy for treating 
human HCC.15,16 However, biomarker-based patient classi-
fication for an optimum therapeutic response is an unmet 
need.17 Recent studies have reported that RBPs are involved 
in anti-PD1 immunotherapy for HCC treatment.18,19 How-
ever, the link between RBM family members and antitumor 
immunity in HCC has not been not fully studied.

A-binding motif protein (RBM34) is a member of the RBM 
protein family. Similar to other RBM proteins, RBM34 contains 
two RNA-binding domains, RNA-binding motif 1 (RNP1) and 
RNA-binding motif 2 (RNP2). However, whether its role in liver 
cancer progression or tumor suppression is similar to other 
RBM proteins remains unclear. In this study, we performed a 
comprehensive expression and survival analysis of RBM34 in 
multiple types of human cancer. Functional enrichment analy-
sis was performed to explore the biological function of RBM34 
in HCC. RNA-seq was performed to identify RBM34-regulated 
genes and pathways in HCC. Correlations between RBM34 ex-
pression and immune cell infiltration, immune cell biomarkers, 
or immune checkpoints in HCC were identified by bioinformat-
ics analysis. The oncogenic function of RBM34 was validated 
by in vitro and in vivo experiments. The results suggest that 
RBM34 may be a novel therapeutic target for HCC treatment.
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Methods

Cell culture and reagents

Human liver cancer cell lines Huh7 and SK-hep1 were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma, 
St. Louis, MO, USA) supplemented with 10% fetal bovine se-
rum (Clark, USA) and 1% streptomycin/penicillin (Beyotime, 
China) as previously described.20 To knockout RBM34 ex-
pression, two guide RNAs (5′-CGCGGCGAACACCATTCCAGA 
GG-3′; 5′-GTCGCCAGTAGCTTATTTCGCGG-3′) were cloned 
into a lentiCRISPRv2 vector. CRISPR constructs were tran-
siently transfected into Huh7 or Sk-hep1 cells for 24 h. 
The cells were then puromycin-selected for another 72 h. 
RBM34 mutant cells were pooled to prevent selection ef-
fects of a single clone. The primary antibody against β-actin 
(#AA33122) was obtained from Bioworld (Nanjing, China). 
Antibodies against RBM34 (#A10139), FGFR2 (#A19051), 
phospho-AKT1-S473 (#AP0140), AKT (#A18120) phospho-
ERK1/2 (#AP0472), ERK1/ERK2 (#A11116), HRP goat anti-
mouse IgG (H+L) (#AS003), and HRP goat anti- rabbit IgG 
(#AS029) were purchased from Abclonal.

Cell proliferation and colony formation assays

Proliferation was assayed by counting the number of cells. 
Briefly, identical numbers of cells were inoculated on day 0 
and then counted with a hemocytometer at various times. 
Cells were grown for 14 days in the culture medium, the 
colonies were fixed in a 4% paraformaldehyde solution, 
stained with 0.5% crystal violet, and the colonies were 
counted using ImageJ software.

Cell migration and invasion assays

For wound healing assays, HCC cells were inoculated in 6-well 
plates (5×105 cells/well) and incubated at 37°C for 24 h. A 
sterile 10 µL pipette tip was used to make the wound after 
the cells were completely confluent. The scratched area was 
measured using ImageJ software after five random fields were 
captured at 0 and 48 h. For the invasiveness and immigration 
assays, cells were resuspended in 200 µL serum-free me-
dium and placed in the upper compartment of the Transwell 
chamber with or without Matrigel. Crystal violet was used to 
stain migrating or invading cells. The numbers of cells in five 
randomly selected areas were counted by light microscopy.

Xenograft tumor growth assay

The Animal Care Committee at Xuzhou Medical University 
approved the animal procedures. Four-week-old specific-
pathogen free BALB/c nude mice were procured from Beijing 
Vital River Laboratory Animal Technology. The mice were 
subcutaneously injected in each flank, with Huh7 (1×107) 
or SK-hep1 (5×106) cells in 100 µL serum-free DMEM with 
0.5 v/v Matrigel (BD, San Jose, USA). Tumor size was deter-
mined as previously described.21

RNA extraction and quantitative reverse transcrip-
tion-polymerase chain reaction (qPCR)

qPCR was performed as previously described.21 In brief, the 
total RNA from control or RBM34 knockout Huh7 cells was 
extracted by with TRZIOL (Invitrogen, USA) following the 

manufacturer’s instructions and 2 µg RNA was used to syn-
thesize cDNA by using PrimeScript RT Master Mix kit (Takara, 
Shiga, Japan). An Applied Biosystems 7500 Fast Real-Time 
PCR machine was used to perform the qPCR assays with SYBR 
Green probes (Takara). PrimerBank provided the primers 
used in the gene expression assays.22 The following prim-
ers were used: SOAT2: 5′-ATGGAAACACTGAGACGCACA-3′ 
(forward), 5′-GGTAGGATTGTATAGCCTCCCG-3′ (reverse); 
DLK1: 5′-GCACTGTGGGTATCGTCTTCC-3′ (forward), 5′-CT 
CCCCGCTGTTGTACTGAA-3′ (reverse); PCSK9: 5′-CCTGGA 
GCGGATTACCCCT-3′(forward), 5′-CTGTATGCTGGTGTCTAGG 
AGA-3′(reverse); FGFR2: 5′-GGTGGCTGAAAAACGGGAAG-3′  
(forward), 5′-AGATGGGACCACACTTTCCATA-3′ (reverse); LC 
N2: 5′-GACAACCAATTCCAGGGGAAG-3′ (forward), 5′-GCAT-
ACATCTTTTGCGGGTCT-3′ (reverse).

Expression and survival analysis

The RNA sequencing data of 33 types of cancer containing 
clinical information were downloaded from The Cancer Ge-
nome Atlas (TCGA) database. We used the Wilcoxon rank-
sum test to analyze the RBM34 mRNA expression in normal 
and liver cancer tissues. Immunohistochemical (IHC) stain-
ing data from the Human Protein Atlas (HPA) (https://www.
proteinatlas.org/) were obtained to examine the protein 
level of RBM34 in liver tissues.

To evaluate the prognostic value of the RBM34 gene in 
HCC patient prognosis, Kaplan-Meier curves were construct-
ed to show the association of RBM34 with overall survival 
(OS), progression-free interval (PFI), and disease-specific 
survival (DSS) of HCC patients from TCGA. For the Kaplan-
Meier curves, p-values and hazard ratios (HRs) with 95% 
confidence intervals (CIs) were generated by log-rank tests 
and univariate Cox proportional hazards regression.

Functional enrichment analysis

The Limma Package (version 3.40.2) of R software was used 
to investigate the differential expression of mRNAs. Ad-
justed p-values were analyzed to correct for false-positive 
results. An adjusted p<0.05 and log fold-change > 1 were 
defined as the thresholds for the screening of differentially 
expression genes (DEGs). To further understand the onco-
genic function of RBM34, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were performed using the ClusterProfiler package.

Correlations of RBM34 expression with immune 
characteristics in HCC

The Tumor Immune Estimation Resource (TIMER, https://
cistrome.shinyapps.io/timer/) was used to investigate the 
association of RBM34 expression with the extent of immune 
cell infiltration, macrophage cell marker genes, and regula-
tory T cell (Treg) marker genes in HCC.23 Additionally, the 
ESTIMATE algorithm was applied to analyze the immune 
and stromal scores in HCC according to corresponding tran-
scriptional data, and the correlations of the scores with 
RBM34 expression were calculated.

Statistical analysis

The Kruskal-Wallis test was used to compare the difference 
in the expression of RBM34. Correlation analysis of RBM34 
with various immune-associated genes was performed by 
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Spearman’s test. Survival analysis was estimated by the 
Kaplan-Meier method to evaluate the predictive perfor-
mance of RBM34 in HCC. Log-rank tests were used to adjust 
the significance of the difference between different groups. 
p-values <0.05 and log-rank p<0.05 were considered sta-
tistically significant.

Results

RBM34 is overexpressed in HCC

Cancer genomics analysis of the TCGA HCC dataset found 
that gene amplification was frequent in RBM genes, espe-
cially in the RBM34 gene (Supplementary Fig. 1). We per-
formed a pancancer analysis of RBM34 gene alteration. 
The analysis showed that the RBM34 gene was amplified in 
many human cancers, specifically in 10.2% of breast, 7% 
of liver cancer, and 5.6% of cholangiocarcinomas (Fig. 1A). 
The copy number of RBM34 was correlated with its mRNA 
expression (R=0.66, p=3e−44; Fig. 1B). We next exam-
ined the expression of RBM34 in 33 types of human can-
cer tissues and adjacent normal tissues. As shown in Fig. 
1C, RBM34 was significantly upregulated in multiple cancer 
types, including HCC. We also analyzed its expression in the 
integrated TCGA and Genotype Tissue Expression (GTEx) 
database because of the limited adjacent normal tissues 
in the TCGA database. The analysis confirmed that RBM34 
was overexpressed in liver cancer tissues compared with 
noncancerous tissue (Fig. 1D). In addition, the differential 
expression of RBM34 in the HCC samples compared with 
matched and unmatched adjacent normal tissues was also 

investigated. The analysis confirmed the upregulation of 
RBM34 in HCC (Fig. 1E, F). Moreover, the protein level of 
RBM34 was compared between HCC and normal tissues by 
IHC staining and the HPA, database. We observed that the 
expression RBM34 protein was higher in HCC than in normal 
liver tissue (Fig. 1G). The results indicate that RBM34 was 
elevated in HCC and may have an important role in liver 
cancer progression.

RBM34 is a marker of an unfavorable HCC prognosis

We next explored the clinical significance of RBM34 expres-
sion in HCC. The correlation between RBM34 and clinico-
pathological characteristics of HCC is shown in Table 1. A re-
ceiver operating characteristic curve (ROC) was constructed 
to estimate the efficacy of RBM34 to distinguish HCC and 
normal liver tissue. The area under the curve of RBM34 was 
0.912 (95% CI: 0.871–0.952), suggesting that RBM34 was 
a useful HCC marker (Fig. 2A). We also examined RBM34 
expression in patients with HCC of different stages, includ-
ing T1 and T2 vs. T3 and T4), N0 vs. N1 and N2, and M0 
vs. M1. RBM34 was not differently expressed in patients 
with different T and N staging (Fig. 2B, C). However, RBM34 
expression was in M1 stage patients than M0 stage patients 
(Fig. 2D). The correlation between RBM34 expression and 
clinicopathologic characteristics was explored by logistic 
regression. RBM34 expression was significantly associated 
with histologic grade (G1 and G2 vs. G3 and G4). No signifi-
cant associations between RBM34 and T stage (T1 and T2 
vs. T3 and T4), N stage (N0 vs. N1 and N2), M stage (M0 vs. 
M1), and pathologic stage (stage I and stage II vs. stage III 
and stage IV) were observed (Fig. 2E).

Fig. 1.  RBM34 is overexpressed in HCC. (A) cBioPortal examination of TCGA datasets revealed RBM34 genomic changes across human malignancies. (B) RBM34 
mRNA expression are positively correlated with its gene copy numbers. (C) The expression of RBM34 in normal and cancer tissues across different cancers. (D) RBM34 
expression in normal and cancer tissues from the TCGA and GTEx databases. (E, F) RBM34 expression in HCC with nonmatched and matched normal tissues. (G) 
RBM34 protein expression in normal and tumor liver tissues determined by immunohistochemistry staining data from the Human Protein Atlas. *p<0.05; **p<0.01; 
***p<0.001. HCC, hepatocellular carcinoma; RBM, RNA-binding motif.
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To investigate the prognostic prediction value of RBM34 in 
HCC patients, we assessed the relationship between RBM34 
expression and patient OS, DSS, and PFI using the TCGA 
database. Kaplan-Meier survival analysis indicated that high 
RBM34 expression was significantly linked with poor OS 
(HR=1.97, 95% CI: 1.30–2.97, p=0.001), DSS (HR=2.00, 
95% CI: 1.19–3.35, p= 0.009), and PFI (HR = 1.62, 95% 
CI: 1.19–2.21, p=0.002; Fig. 3A–C).

We next constructed a nomogram to predict the OS of 
HCC patients on the basis of multivariate Cox analysis of 
RBM34 expression and independent clinical risk factors, in-
cluding T, N, M, pathological stage, sex and histologic grade. 
As shown in Figure 3D, each predictive factor was assigned 
a score based on the actual condition. The total score pre-
dicted 1-, 3-, and 5-year survival of HCC patients. A calibra-

tion curve was constructed to validate the prediction accu-
racy of the nomogram, and it showed a good fit between the 
prediction and observation (Fig. 3E–G).

Functional inference of RBM34 in HCC

To explore the potential biological function of the RBM34 
gene in HCC, we performed functional enrichment analysis 
based on transcriptome data from TCGA. The HCC samples 
from TCGA were divided into two groups, RBM34-high and 
RBM34-low groups by the median value of RBM34 mRNA 
expression. We analyzed the DEGs in the two groups with 
the criteria set |log 2FC| >1 and adjusted p<0.05, which 

Table 1.  The associations between RBM34 expression and clinicopathological parameters of HCC patients from TCGA

Characteristic Low expression of RBM34 High expression of RBM34 p-value

n 187 187

T stage, n (%) 0.018

    T1 105 (28.3) 78 (21)

    T2 37 (10) 58 (15.6)

    T3 36 (9.7) 44 (11.9)

    T4 8 (2.2) 5 (1.3)

N stage, n (%) 1.000

    N0 121 (46.9) 133 (51.6)

    N1 2 (0.8) 2 (0.8)

M stage, n (%) 0.629

    M0 122 (44.9) 146 (53.7)

    M1 1 (0.4) 3 (1.1)

Sex, n (%) 0.507

    Female 57 (15.2) 64 (17.1)

    Male 130 (34.8) 123 (32.9)

Age, n (%) 0.502

    ≤60 85 (22.8) 92 (24.7)

    >60 102 (27.3) 94 (25.2)

Pathologic stage, n (%) 0.094

    Stage I 97 (27.7) 76 (21.7)

    Stage II 35 (10) 52 (14.9)

    Stage III 41 (11.7) 44 (12.6)

    Stage IV 2 (0.6) 3 (0.9)

Histologic grade, n (%) 0.006

    G1 32 (8.7) 23 (6.2)

    G2 101 (27.4) 77 (20.9)

    G3 48 (13) 76 (20.6)

    G4 4 (1.1) 8 (2.2)

AFP (ng/mL), n (%) 0.005

    ≤400 118 (42.1) 97 (34.6)

    >400 22 (7.9) 43 (15.4)

Age, median (IQR) 63 (53, 69) 61 (51, 68) 0.249

AFP, alpha fetoprotein; HCC, hepatocellular carcinoma; RBM, RNA-binding motif.
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identified 385 DEGS, including 179 upregulated genes and 
206 down-regulated genes (Fig. 4A). The results of a hier-
archical clustering analysis of the DEGs in the high and low 
RBM34 expression groups are shown in a heatmap (Fig. 4B). 
KEGG and GO enrichment analysis was used to determine 
the potential functions of RBM34. KEGG pathway analysis 
showed that the upregulated DEGs were mainly involved in 
oocyte meiosis and the cell cycle (Fig. 4C). GO enrichment 
analysis indicated that upregulated DEGs were involved in 
organelle fission, nuclear division, and mitotic nuclear divi-
sion (Fig. 4D). To further determine the biological functions 
of RBM34, we performed RNA sequencing in RBM34 knock-
out Huh7 cells. We identified 2,149 in the control cells and 
the RBM34 knockout cells (p<0.05, |log2 FC |>1), consist-
ing of 902 down-regulated and 1,247 upregulated genes 
(Fig. 4E). KEGG pathway enrichment analysis revealed that 
depletion of RBM34 most prominently affected pathways in 
cancer, including PI3K-AKT and MAPK signaling (Fig. 4F). 
The findings strongly suggest that RBM34 may be a novel 
oncogene and involved in the cancer pathways in HCC.

RBM34 correlates with immune cell infiltration in 
HCC

Tumor-infiltrating immune cells are often highly relevant for 
HCC prognosis.24 To explore whether RBM34 has a role in 
the regulation of immune cell infiltration in HCC, we as-
sessed the correlation between the genetic alteration status 
of RBM34 and the extent of immune cell infiltration level with 
the TIMER database. As shown in Figure 5A, RBM34 copy 
number alteration with arm-level gain resulted in decreases 
of CD8+ T cell and neutrophil cell infiltration in HCC. We also 

evaluated the correlation between RBM34 expression level 
and immune cell infiltration. RBM34 expression was signifi-
cantly positively correlated with infiltration of B cells, CD8+ 
T cells, CD4+ T cells, macrophages, neutrophils, and den-
dritic cells in HCC (Fig. 5B). The correlation between RBM34 
and immune cell biomarkers in HCC was also determined to 
further investigate the role of RBM34 in the tumor immune 
microenvironment. As shown in Table 2, there was a posi-
tive correlation between RBM34 and the B cell marker CD19 
(R=0.16, p<0.05), M1 macrophage marker IRF5 (R=0.33, 
p<0.001), neutrophil marker ITGAM (R=0.1, p<0.05), and 
the dendritic cell markers CD1C (R=0.11, p<0.05) NRP1 
(R=0.23, p<0.001) and ITGAX (R=0.14, p<0.001) were 
found. These results are consistent with an association of 
RBM34 with immune cell infiltration in HCC. Next, we ana-
lyzed the immune, stromal, and ESTIMATE scores to explore 
the roles of RBM34 in the tumor immune microenvironment 
during tumor development. RBM34 was negatively corre-
lated with the ESTIMATE score (R=−0.139, p<0.001) and 
stromal score (R=−0.181, p<0.001; Fig. 5C). There was no 
significant correlation between RBM34 and immune score 
(Fig. 5D).

RBM34 is involved in immune escape in HCC

Inhibitory immune checkpoints, such as PD1/PD-L1 and 
CTLA4 have key roles in suppressing the antitumor immune 
response in solid tumors.25 Considering the potential onco-
genic function of RBM34 in HCC, we analyzed the correla-
tion between RBM34 and more than 40 common immune-
related genes in HCC using TCGA data. As shown in Figure 
6A, B, RBM34 expression was associated with 20 immune 

Fig. 2.  Correlation between RBM34 expression and clinicopathological features. (A) ROC curve constructed to estimate the efficacy of RBM34 expression to 
distinguish HCC and normal liver tissue. (B–D) Association of RBM34 expression with T, N and M stage in HCC. (E) Correlation between RBM34 and clinicopathologic 
characteristics determined by logistic regression. HCC, hepatocellular carcinoma; RBM, RNA-binding motif; ROC, Receiver operating characteristic.



Journal of Clinical and Translational Hepatology 2023 vol. 11(2)  |  369–381374

Wang W. et al: RBM34 is a novel oncogene in HCC

Fig. 3.  Prognostic value of RBM34 for HCC patients. (A–C) Kaplan-Meier survival curves of OS, DSS, PFI between HCC patients with high and low RBM34 expres-
sion. (D) Nomogram integrating clinical characteristics and RBM34 for predicting the overall survival of HCC patients at 1, 3, and 5 years. (E–G) Nomogram calibration 
curves of 1-, 3-, and 5-year survival probabilities. HCC, hepatocellular carcinoma; RBM, RNA-binding motif; OS, overall survival; DSS, disease-specific survival; PFI, 
progress free interval.
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Fig. 4.  Enrichment analysis of RBM34 expression-correlated DEGs in HCC. (A) Volcano plot of DEGs in high- and low-RBM34 groups. (B) The heatmap shows 
the top 50 up- or down-regulated DEGs between high- and low-RBM34 groups. (C, D) KEGG and GO enrichment analysis of RBM34-associated upregulated DEGs. (E) 
The most substantially differentially expressed genes by genome-wide transcriptome analysis between Ctr and rbm34 knockout Huh7 cells (n=3) are shown in a volcano 
plot of statistical significance (p<0.05) against fold-change (ratio of Knockout/Control group). (F) KEGG pathway enrichment analysis of differently expressed genes 
(n=3). HCC, hepatocellular carcinoma; RBM, RNA-binding motif; DEGs, differentially expressed genes.
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checkpoint markers. T cell exhaustion marker genes such 
as CTLA4 and PDCD1 were positively correlated with RBM34 
expression, suggesting that RBM34 may be involved in T 
cell function in HCC.

Tregs facilitate tumor development by upregulating 
checkpoint inhibitors and contributing to systemic immune 
dysfunction and antitumoral activity in HCC.26,27 We there-
fore examined the associations between RBM34 and Tregs 
marker genes based on TIMER2.0. there was a positive cor-
relation between RBM34 and the Tregs markers interleukin 
(IL)2RA and CD25 (R=0.102, p=0.0497; Fig. 6C). RBM34 
was positively correlated with checkpoint molecule mark-
ers of Tregs, such as PDCD1 (PD-1, R=0.184, p=0.0354), 
CTLA-4 (R=0.202, p<0.001), TNFRSF18 (GITR, R=0.225, 
p<0.001) and HAVCR2 (TIM3, R=0.109, p=0.0358), sug-
gesting that RBM34 suppressed the T cell effector function. 
In addition, the Treg secreted T cell suppressive cytokine 
TGFβ1 was positively correlated with RBM34 (R=0.188, 
p<0.001), which further highlights the potential immune 
cell inhibitory effects of RBM34. The results further suggest 
that RBM34 plays an essential role in immune escape in the 
tumor microenvironment of HCC.

Depletion of RBM34 suppresses HCC cell prolifera-
tion and migration

To determine the functional role of RBM34 in HCC, we 
knocked out RBM34 expression in Huh7 and SK-hep1 cells 

with the CRISPR/cas9 gene-editing tool. To avoid selection 
effects, polyclonal cells were used. Down-regulated RBM34 
expression was validated in western blots (Fig. 7A). The 
results clearly showed that knockout of RBM34 significantly 
inhibited the proliferation of both Huh7 and SK-hep1 cells 
(Fig. 7B). Colony formation of Huh7 and SK-hep1 was also 
decreased in RBM34 knockout compared with control cells 
(Fig. 7C). We next assessed its role in regulating HCC cell 
migration. Wound healing assays showed that knockout of 
RBM34 significantly inhibited cell migration (Fig. 7D). Tran-
swell assays also showed significant suppression of cell in-
vasion in cells with depletion of RBM34 (Fig. 7E).

RBM34 knockout sensitizes HCC cells to sorafenib

To determine the downstream targets of RBM34, we ana-
lyzed RNA-seq data, and selected several top upregulated 
and down-regulated genes for validation by qPCR. SOAT2, 
DLK1, PCSK9, and FGFR2 expression was significantly de-
creased, and LCN2 was upregulated in RBM34 knockout 
cells (Fig. 8A). In addition, we observed a positive cor-
relation between FGFR2 expression and RBM34 expres-
sion in HCC by analyzing the TCGA database (R=0.192, 
p<0.001; Fig. 8B). We next examined FGFR2 protein ex-
pression in HCC cells without RBM34. FGFR2 was decreased 
in RBM34-knockout Huh7 cells compared with the control 
cells (Fig. 8C). It has been reported that FGFR2 was in-
volved in HCC progression and sorafenib resistance.28,29 To 

Fig. 5.  Correlation between RBM34 and immune cell infiltration in HCC. (A) Immune cell infiltration with different copy numbers of RBM34 in HCC by the TIMER. 
(B) Correlation of RBM34 expression with various immune cell infiltration levels was investigated by TIMER. (C) The ESTIMATE algorithm showed a positive correlation 
of RBM34 expression with the stromal and ESTIMATE scores. (D) Correlation of RBM34 with the immune score. HCC, hepatocellular carcinoma; RBM, RNA-binding motif.
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investigate whether RBM34 expression was also associated 
with sorafenib resistance in HCC, we first analyzed the cor-
relation between RBM34 expression and survival of HCC 
patients with sorafenib treatment. High RBM34 expression 
was correlated with worse survival in HCC patients with 
sorafenib treatment, suggesting that RBM34 may confer 
sorafenib resistance in HCC (Fig. 8D). To confirm that, we 
compared sorafenib-induced apoptosis in RBM34 knockout 
and control cells. Knockout of RBM34 enhanced sorafenib-
induced apoptosis (Fig. 8E). FGFR2 has been shown to be 
involved in AKT and ERK signaling pathways.30 We exam-
ined whether knockout of RBM34 affect those two pathways 
in HCC cells treated with sorafenib. Sorafenib had a strong 
inhibitory effect on AKT activation in RBM34 knockout cells. 
However, only marginal inhibition of ERK activation was ob-
served in the sorafenib-treated RBM34 knockout cells (Fig. 
8E). The results suggest that depletion of RBM34 enhanced 
sorafenib anticancer effectiveness in HCC cells by inhibiting 
AKT activity.

Suppression of RBM34 inhibits xenograft HCC tumor 
growth

To investigate whether RBM34 regulates HCC tumor growth 
in vivo, RBM34 knockout and control HCC cells were sub-
cutaneously implanted into nude mice. Depletion of RBM34 
significantly decreased tumor growth (Supplementary Fig. 
2A). Tumor size and tumor weight were suppressed when 
RBM34 was knocked out (Supplementary Fig. 2B, C), indi-
cating that RBM34 had an essential role in promoting HCC 
progression.

Discussion

Previous studies have demonstrated that RBPs are glob-
ally dysregulated in HCC.7 Emerging studies have reported 
that several RBM proteins are involved in HCC progression 
or suppression. However, RBM34 is still a poorly character-
ized RNA-binding motif protein, and its role in HCC is un-
known. RBM34 has been previously identified as a putative 
upstream gene correlating with CDKN3 in HCC.31 In another 
study, RBM34 was found to be a candidate gene to govern 
CHK1 splicing.32 During the transformation of cirrhosis to 
HCC, RBM34 may be activated by the oncogene CDH13.33 
Those studies suggest that RBM34 may have an important 
role in hepatocarcinogenesis. Our bioinformatics analysis of 
RBM34 expression using the TCGA database showed that 
RBM34 was highly expressed in multiple cancer types, in-
cluding HCC. Furthermore, we found that the high expres-
sion of RBM34 was negatively correlated with OSS, PFS, and 
DFI. The high expression of RBM34 was also associated with 
worse clinicopathological features in HCC. The findings sup-
port the hypothesis that RBM34 may be a novel oncogene 
and a prognostic marker of HCC. The oncogenic function of 
RBM34 was further confirmed by in vitro cell proliferation 
and migration assays. Knockout of RBM34 significantly im-
paired cell growth and migration. Depletion of RBM34 also 
inhibited xenograft tumor growth in vivo, further highlight-
ing its role in promoting HCC progression.

Functional enrichment analysis of RBM34-associated 
genes indicated that upregulated DEGs were mainly in-
volved in the cell cycle process, suggesting that RBM34 
might promote HCC progression by regulating the cell cy-

Table 2.  Correlation between RBM34 and immune cell biomarkers in HCC by the TIMER database

Immune cell Biomarker R-value p-value

B cell CD19 0.162947845 0.001637862

CD79A 0.049380089 0.34287658

CD8+ T cell CD8A 0.037986123 0.465721115

CD8B 0.026794975 0.606931508

CD4+ T cell CD4 −0.064619062 0.214329153

M1 Macrophage NOS2 −0.063819327 0.22006721

IRF5 0.3308735 6.29E−11

PTGS2 0.052770144 0.310725319

M2 Macrophage CD163 −0.056188426 0.28037987

VSIG4 −0.013171946 0.800372984

MS4A4A −0.008733436 0.866855955

Neutrophil CEACAM8 0.004106146 0.937173086

ITGAM 0.105643346 0.041985682

CCR7 0.014597322 0.779300726

Dendritic cell HLA-DPB1 0.054553426 0.294634945

HLA-DQB1 0.062025515 0.23333493

HLA-DRA 0.062567066 0.229271221

HLA-DPA1 0.042422753 0.415227225

CD1C 0.112104278 0.03086541

NRP1 0.229628812 7.90E−06

ITGAX 0.135262982 0.009092517

Italic values indicate statistical significance. HCC, hepatocellular carcinoma; RBM, RNA-binding motif.
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cle. We performed RNA-seq to identify downstream path-
ways regulated by RBM34. Notably, we found that knock-
out of RBM34 mainly affected cancer-associated pathways, 
including the PI3K-AKT, and MAPK signaling pathways. In 
addition, Wnt and TGF-beta signaling pathways, which have 
important roles in HCC,34–36 was also affected by RBM34 
knockout.

Sorafenib is a multikinase inhibitor that promotes apop-
tosis, inhibits angiogenesis, and inhibits tumor cell growth. 
It is currently an effective first-line treatment for late-stage 
HCC. Unfortunately, the emergence of sorafenib drug re-
sistance is increasingly widespread.37 Analysis of the TCGA 
database found that RBM34 overexpression was correlat-

ed with poor prognosis in sorafenib-treated HCC patients. 
We further confirmed this finding by performing functional 
experiments in vitro. Knockout of RBM34 significantly in-
creased sorafenib-induced apoptosis. The results suggest 
that RBM34 was involved in sorafenib resistance and may 
be a therapeutic target in HCC patients.

Our RNA-seq analysis identified FGFR2 as a putative tar-
get gene of RBM34, which was further verified by qPCR and 
western blotting. Activated FGFRs activates downstream 
signaling, such as the PI3K-AKTM, MAPK, and STAT path-
ways, which are the main oncogenic pathways that partici-
pate in HCC initiation and progression.38,39 Indeed, func-
tional enrichment analysis found that the PI3K-AKT and 

Fig. 6.  Correlation between RBM34 and immune checkpoints gene in HCC. (A) Heatmap showing the correlation between RBM34 and over 40 immune check-
point genes in HCC. (B) Radar chart of the correlations between RBM34 expression with over 40 common immune checkpoint genes in HCC. (C) Correlations of RBM34 
expression and immune marker genes of Tregs in HCC based on the TIMER database. HCC, hepatocellular carcinoma; RBM, RNA-binding motif.
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MAPK pathways were affected in RBM34 knockout HCC 
cells. Depletion of RBM34 enhanced the inhibitory effects 
of sorafenib in the PI3K-AKT pathway. The findings suggest 
that knockout of RBM34 sensitized HCC cells to sorafenib 
treatment by downregulation of FGFR2-mediated PI3K-AKT 
pathway activity.

There is accumulating evidence for immune cell infiltra-
tion as predictive of prognosis and therapeutic efficacy in 
cancer patients.40 Our results show that the amplified gene 
copy number of RBM34 resulted in decreased CD8+ T cell 
and neutrophil cell infiltration. In addition, we found that 
RBM34 was significantly positively correlated with B cell, 
CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and den-
dritic cell infiltration in HCC. Moreover, RBM34 was also pos-
itively correlated with B cell and macrophage biomarkers. 
The results suggest that the oncogenic function of RBM34 in 
HCC may be partially mediated by immune cell infiltration.

Blockade of the immune checkpoints PD1, PD-L1, or 
CTLA4 has recently emerged as a promising immunother-
apy strategy for HCC treatment.41–43 We thus assessed the 
correlation of RBM34 with immune checkpoints. Elevated 
RBM34 was positively associated with PD1 and CTLA4 in 

HCC, suggesting that targeting RBM34 may have a syner-
gistic effect with immunotherapy for the treatment of HCC. 
In addition, our study also revealed that RBM34 promoted 
T cell exhaustion and Tregs activation in HCC. The findings 
suggest that elevated RBM34 contributed to an immuno-
suppressive microenvironment in HCC.

In summary, we found that RBM34 upregulated HCC. 
Highly expressed RBM34 predicted poor prognosis in HCC 
patients. The oncogenic activity of RBM34 was mediated by 
regulating cell proliferation, migration, and invasion. In ad-
dition, depletion of RBM34 sensitized HCC cells to sorafenib 
treatment. Therefore, RBM34 may serve as a novel prog-
nostic biomarker and offers a new insight into the explora-
tion of new immunotherapeutic strategies.
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