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Abstract

Liver transplantation (LT) is the final treatment option for 
patients with end-stage liver disease. The increasing donor 
shortage results in the wide usage of grafts from extended 
criteria donors across the world. Using such grafts is associ-
ated with the elevated incidences of post-transplant com-
plications including initial nonfunction and ischemic biliary 
tract diseases, which significantly reduce recipient survival. 
Although several clinical factors have been demonstrated 
to impact donor liver quality, accurate, comprehensive, and 
effective assessment systems to guide decision-making for 
organ usage, restoration or discard are lacking. In addition, 
the development of biochemical technologies and bioinfor-
matic analysis in recent years helps us better understand 
graft injury during the perioperative period and find poten-
tial ways to restore graft function. Moreover, such advances 
reveal the molecular profiles of grafts or perfusate that are 
susceptible to poor graft function and provide insight into 
finding novel biomarkers for graft quality assessment. Fo-
cusing on donors and grafts, we updated potential biomark-
ers in donor blood, liver tissue, or perfusates that predict 
graft quality following LT, and summarized strategies for re-
storing graft function in the era of extended criteria donors. 
In this review, we also discuss the advantages and draw-

backs of these potential biomarkers and offer suggestions 
for future research.
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Introduction

Liver transplantation (LT) is a life-saving treatment option 
for patients with end-stage liver disease. In recent decades, 
good short- and long-term outcomes after LT have been 
achieved because of improvements in surgical technologies 
and organ preservation.1 Graft quality is believed to play 
a dominant role in early graft function and thereby dra-
matically influences graft survival and mortality after LT.2–4 
Over the last decade, the disparity between the need for 
LT and the organ shortage is widening, which leads to the 
expanded usage of grafts from the extended criteria do-
nors (ECDs).1 Traditionally, ECDs are donors with underly-
ing medical diseases such as diabetes, or hypertension, ad-
vanced age, high-degree liver steatosis, prolonged ischemia 
time, pathogenic infection, prolonged intensive care unit 
stay, hypernatremia, and donation after circulatory death 
(DCD).5–7 ECD graft quality is routinely considered inferior 
because of their increased rate of post-transplant complica-
tions, such as primary graft nonfunction (PNF),2 early allo-
graft dysfunction (EAD),4 and ischemic-type biliary lesions 
(ITBLs)8,9

PNF is early graft loss after LT and requires emergen-
cy regrafting, which occurs following 2–10% of LTs.10–12 
ECDs include DCD donors13 and those with severe steato-
sis,14 prolonged ischemia time,15–17 and high donor biliru-
bin level18 sharply increase the risk of PNF, thereby reduc-
ing patient and graft survival. Unlike PNF, EAD represents 
marginal, usually reversible, graft function during the first 
postoperative week, and results in a higher morbidity and 
mortality.4 Compared with 1–10% seen in donation after 
brain death (DBD) LT, the incidence of biliary complications 
after DCD LT is approximately 10–30%,19–22 in which the 
time from asystole to cross-clamp is considered as a ma-

Keywords: Liver transplantation; Extended criteria donors; Graft quality; As-
sessment; Biomarkers; Restoration.
Abbreviations: ACR, acute cellular rejection; ALT, alanine transferase; AST, as-
partate transferase; circRNAs, circular RNAs; DBD, donation after brain death; 
DCD, donation after circulatory death; DCs, dendritic cells; EAD, early allograft 
dysfunction; ECD, extended criteria donor; EV, extracellular vesicle; FMN, flavin 
mononucleotide; GcfDNA, graft-derived cell-free DNA; HbA1c, hemoglobin A1c; 
HCV, hepatitis C virus; HMP, hypothermic machine perfusion; HO-1, Heme oxy-
genase-1; HOPE, hypothermic oxygenated perfusion; IRI, ischemia-reperfusion 
injury; ITBL, ischemic-type biliary lesion; KC, Kupffer cell; lncRNA, long noncod-
ing RNA; LSEC, liver sinusoidal endothelial cell; LT, liver transplantation; MICA, 
major histocompatibility complex class 1 related chain A; miRNA, microRNA; 
MP, machine perfusion; mRNA, messenger RNA; MSC, mesenchymal stem cell; 
mtDAMP, mitochondria-derived damage-associated molecular pattern; NF-κB, 
nuclear factor-kappa B; NK, natural killer; NMP, normothermic machine perfu-
sion; NODM, new-onset diabetes mellitus; PGE1, Prostaglandin E1; PNF, prima-
ry graft nonfunction; scRNA-Seq, single cell RNA sequencing; SCS, static cold 
storage; siRNA, small interfering RNA; Treg, regulatory T lymphocyte.
*Correspondence to: Qi Ling, Department of Hepatobiliary and Pancreatic 
Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine; 
Key Laboratory of Combined Multiorgan Transplantation, Ministry of Public 
Health, Hangzhou, Zhejiang 310003, China. ORCID: https://orcid.org/0000-
0002-7377-2381. Tel/Fax: +86-571-87236629, E-mail: lingqi@zju.edu.cn

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.14218/JCTH.2022.00194&domain=pdf&date_stamp=2022-08-07
https://doi.org/10.14218/JCTH.2022.00194
https://orcid.org/0000-0002-7377-2381
https://orcid.org/0000-0002-7377-2381
https://orcid.org/0000-0002-7377-2381
mailto:lingqi@zju.edu.cn


Journal of Clinical and Translational Hepatology 2023 vol. 11(1)  |  219–230220

Lin Y. et al: Assessing and restoring graft quality in LT

jor risk factor.23 Moreover, advanced donor age, prolonged 
ischemia time, microvascular thrombosis, bile salt toxicity 
and immune injury may be the underlying mechanisms of 
the development of biliary complications.24,25

Therefore, ECDs should be well defined and precisely al-
located to appropriate recipients. More importantly, in the 
era of ECD, effective systems need to be established to as-
sess donor liver quality and guide the decision for organ 
usage or discard. Based on clinical risk parameters (Fig. 
1), models like donor risk index,2 Eurotransplant donor risk 
index,26 and discard risk index18 were constructed to evalu-
ate the risk of graft failure or discard, serving as useful 
tools to make decisions for organ allocation.2,26 However, 
those scoring models mainly focus on donor characteristics 
and cannot assess the degree of liver injury.27 Furthermore, 
combining clinical parameters with advanced molecular pro-
files, imaging, or histopathology may contribute to the de-
velopment of better systems. In recent years, with the rap-
id development of multi-omics, single cell technology, and 
bioinformatic analysis, significant achievements have been 
made in revealing the molecular profiles that are closely 
related to poor graft outcomes, and which can provide novel 
biomarkers for evaluation of graft viability.

Herein, we provide a review of potentially useful bio-
markers in donor blood, liver tissue, and graft perfusate, 
which have been associated with impaired graft quality or 
predictive for the occurrence of EAD, PNF, and biliary com-
plications after LT. In this review, we mainly focus on stud-

ies using human liver grafts. Given that the available bio-
markers were insufficient in the field of LT, we also include 
experimental studies that have been performed in animal 
models. Furthermore, we summarize potential therapies for 
graft repairment during LT. Finally, we describe the pros and 
cons of the potential biomarkers, accompanied with sugges-
tions for future graft assessment and restoration.

Potential biomarkers in donor blood

Donor serum alanine transferase (ALT), aspartate trans-
ferase (AST), total bilirubin, gamma glutamyl transpepti-
dase, and sodium concentration may reveal the underlying 
liver dysfunction and ischemic injury prior to graft procure-
ment. Over the past decades, numerous studies have dem-
onstrated that such laboratory disorders in donor blood are 
independent risk factors for early graft dysfunction follow-
ing LT.18,26,28 In recent years, novel biomarkers in donor 
blood have been found to useful for predicting graft out-
comes. By analyzing data from over 10,000 nondiabetic 
donors, Ezekian et al.29 showed that elevated donor serum 
hemoglobin A1c (HbA1c) >6.5% was associated with in-
creased rate of PNF and decreased graft and patient sur-
vival. HbA1c is known to be a useful biomarker represent-
ing the average plasma glucose concentration within the 
last 3 months, serving as an early warning of diabetes. The 

Fig. 1.  Clinical factors that influence graft quality during the entire process of liver transplantation. 
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liver undergoes glycogen deposition and hepatic steatosis 
resulting from diabetes.30,31 Therefore, it is worth noting 
that HbA1c may be a valuable marker for further stratifying 
marginal graft quality. In a large prospective study of 815 
participants, Piemonti et al.32 identified increased serum 
donor interleukin 6 (IL6) and C-X-C motif chemokine ligand 
10 (CXCL10) concentration as predictors of poor early graft 
function, graft failure and inferior graft survival after DBD 
LT. IL6 is responsible for transforming naïve B cells into ma-
ture plasma cells, as well as activating the production of 
IL17 to inhibit regulatory T lymphocyte (Treg) function.32 
Alternatively, CXCL10 is a useful chemoattractant for mac-
rophages, natural killer (NK) cells and dendritic cells (DCs), 
thereby shaping initial immunity.32 More interestingly, Pol-
lara et al.33 found that elevated circulating mitochondria-
derived damage-associated molecular patterns (mtDAMPs) 
in donor plasma were associated with severe inflammation 
response and the development of EAD following DBD LT in a 
group of 55 recipients. The major source of mtDAMPs may 
be the mitochondria released from graft tissue or cell death 
during organ procurement, suggesting that mtDAMPs might 
quantitatively assess graft injury.

Potential biomarkers in donor grafts

The liver, a multifunctional organ in the body, is mainly en-
gaged in metabolism, synthesis, storage, detoxification, and 
complex immune activities. After implantation, the donor 
graft becomes the new center of the recipient to perform 
those functions.34 Therefore, the graft features could sig-
nificantly regulate hepatic homeostasis and influence out-
comes after LT (Table 1).35–55 Donor grafts could be gained 
for histological assessment and quantification of liver injury 
during LT. Histopathology is the gold standard for the diag-
nosis of steatosis, fibrosis, necrosis, inflammation, and cel-
lular infiltration in liver grafts. In our center, pretransplant, 
and post-reperfusion liver biopsies are routinely performed, 
offering valuable clues for graft quality assessment (Sup-
plementary Table 1).56 In addition, bile duct biopsies could 
provide valuable information to evaluate bile duct injury and 
predict graft outcomes. Dries et al.57 proposed a scoring 
system (Supplementary Table 2), including biliary epithe-
lium, mural stroma, peribiliary vascular plexus, thrombosis, 
intramural bleeding, peribiliary gland, and inflammation, to 
quantify bile duct injury.

Genetic variants

With the advent of genome-wide association studies and 
pretransplant genetic analysis, a series of genes and vari-
ants have been found to be susceptible to graft injury.58 
Heme oxygenase-1 (HO-1), a regulator of immune re-
sponse, is considered to be cytoprotective gene of ischemia-
reperfusion injury (IRI) during LT and is modulated by a 
single-nucleotide polymorphism A (-413) T.35 Buis et al.35 
reported that, compared with recipients of a liver with an 
A-allele genotype (n=245), recipients of livers with an HO-1 
TT-genotype (n=61) had dramatically elevated serum he-
patic transaminases after LT and a higher incidence of PNF. 
HLA-C, which is the major inhibitory ligand for immunoglob-
ulin-like receptors, inhibit the cytotoxic activity of NK cells, 
and therefore reduced liver inflammatory damage.59 In a 
large LT cohort of 459 patients, Hanvesakul et al.36 found 
that donor grafts with at least one HLA-C2 allele were asso-
ciated with less incidence of graft dysfunction and rejection.

After LT, graft-derived cell-free DNA (GcfDNA), which is 
continuously released into recipient circulation because of 
cellular turnover, is a promising noninvasive biomarker to 

assess graft quality. Previous studies have showed that the 
elevated GcfDNA was a signal of early graft injury after LT, 
particularly acute cellular rejection.37,60,61,38 For example, 
a prospective study conducted by Schutz et al.38 demon-
strated that GcfDNA increased by more than 50% 1 day 
following LT, probably because of the IRI. However, GcfDNA 
rapidly decreased to a median of <10% within 7–10 days 
without the recipient experiencing early graft injury over a 1 
year observation period.38 This suggested that GcfDNA may 
be a precise and superior biomarker to predict early graft 
dysfunction compared with conventional liver function tests.

RNAs

Protein-coding associated RNAs, for example messenger 
RNA (mRNA) and noncoding RNAs including microRNAs 
(miRNAs), circular RNAs (circRNAs) and long noncod-
ing RNAs (lncRNAs) are believed to be reliable markers to 
evaluate graft injury because of their organ specificity. Nrf2 
transcription factor, which is activated by reactive oxygen 
species, is known to protector against liver IRI via activat-
ing phase II antioxidants.62 Zaman et al.39 demonstrated 
that grafts (n=6) with increased Nrf2 mRNA expression 
before IRI were associated with lower liver injury. Inter-
estingly, donors with low Nrf2 mRNA levels (n=8) were 
significantly older than those with high levels, suggesting 
that older grafts experienced severe IRI39 and inferior graft 
quality. Additionally, Resch et al.40 reported that high gene 
expression of the major histocompatibility complex class 1 
related chain A (MICA) mRNA in zero hour biopsies (n=88) 
was associated with mild graft injury and prolonged graft 
survival. During LT, MICA had an important role in linking 
the innate and adaptive immune responses via interacting 
with NK cells, mucosal-associated invariant T, CD8+T cells, 
et al.40 miR-22, a regulator of a series of pathways such 
as cell cycle, metabolism and kinase signaling, is relevant 
to cell survival, glucose metabolism, and protein transla-
tion.41 Khorsandi et al.41 rereported that low expression of 
graft miR-22 was associated with the incidence of PNF after 
DCD LT (n=21). Another study of 42 human LTs showed 
that high expression of donor graft miR-146b-5p was as-
sociated with the development of EAD.42 Downregulation of 
miR-146b increased the production of tumor necrosis factor 
receptor-associated factor 6, which activated the nuclear 
factor-kappa B (NF-κB) pathway, and in turn enhanced Treg 
function.42,63 In our previous study, we found that elevated 
donor graft miR-103 and miR-181 were significantly associ-
ated with the development of new-onset diabetes mellitus 
(NODM) in recipients following LT (n=30).43 NODM not only 
increased the risk of biliary stricture and cholangitis but 
also resulted in poor graft survival, serving as an indicator 
of poor graft quality as well.64 The two miRNAs targeted 
several genes related to glucose homeostasis and insulin 
signal transduction, which may have been the underlying 
mechanism.43

In a cohort of 115 human LTs, Wang et al.44 reported 
that low levels of donor graft circFOXN2 and circNEXTIN3 
that regulated miR-135b-5p and miR-149-5p and had roles 
in hepatic IRI were associated with the incidence of EAD. 
In a mice model of IRI (Qu et al.65 identified 13 differen-
tially expressed circRNAs (e.g., Chr3:83031528|83031748, 
Chr10:89473752|89483524) in postperfusion livers that 
were involved in more severe IRI in steatotic livers. In a 
rat LT model, Chen et al.45 demonstrated that lncRNA 
LOC103692832 in rat grafts was related to early graft injury 
following LT that was mediated by the expression of apo-
ptosis-related genes like HMOX1 and ATF3. Nevertheless, 
the mechanisms of these potentially involved circRNAs and 
lncRNAs are still unclear, and further prospective or multi-
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Table 1.  Biomarkers from donor livers potentially useful for the prediction of graft outcomes following transplantation

Biomarker Study Sample Model(s) Group Key point
Genetic 
variant

Heme 
oxygenase-1 A/T-
allele genotype

Buis et al. 
(2008)35

Pretransplant 
biopsies

Human LT A-allele genotype 
(n=245) vs. TT-
genotype (n=61)

Graft with TT-
genotype had elevated 
serum transaminases 
after LT and a higher 
incidence of PNF

HLA-C2 allele Hanvesakul 
et al. 
(2008)36

Pretransplant 
biopsies

Human LT 459 livers 
biopsies

Donor grafts with 
HLA-C2 allele were 
associated with 
less incidence of 
graft dysfunction

GcfDNA Levitsky et 
al. (2021)37

Recipient blood Human LT Normal function 
(n=94) vs. Acute 
dysfunction 
(n=68)

Elevated GcfDNA 
represented early 
graft injury after LT

GcfDNA Schutz et 
al. (2017)38

Recipient blood Human LT / Elevated GcfDNA 
could predict early 
graft injury

RNA Nrf2 mRNA Zaman et 
al. (2007)39

Pretransplant 
biopsies

Human LT 14 donor liver 
biopsies

Higher Nrf2 mRNA 
expression before IRI 
were associated with 
lower liver injury

MICA mRNA Resch et al. 
(2021)40

Pretransplant 
biopsies

Human LT 88 liver biopsies High expression of 
MICA mRNA could 
reduce graft injury

MiR-22 Khorsandi et 
al. (2015)41

Post-reperfusion 
biopsies

Human 
DCD LT

PNF (n=7) vs. 
non-PNF (n=7)

Graft miR-22 was 
associated with PNF

MiR-146b-5p Li et al. 
(2017)42

1.5 hours 
after LT

Human LT EAD (n=22) vs. 
non-EAD (n=20)

Graft miR-146b-
5p was associated 
with EAD

MiR-103 and 
miR-181

Ling et al. 
(2017)43

Pretransplant 
biopsies

Human LT NODM (n=15) 
vs. non-NODM 
(n=15)

Graft miR-103 
and miR-181 
were significantly 
associated with the 
development of NODM

CircFOXN2 and 
circNEXTIN3

Wang et al. 
(2021)44

Pretransplant 
biopsies

Human LT EAD (n=29) vs. 
non-EAD (n=86)

Two circRNAs were 
associated with EAD

LncRNA 
LOC103692832

Chen et al. 
(2019)45

12 hours after LT Rat DBD 
LT model

/ Graft lncRNA 
LOC103692832 
was related to 
early graft injury

Protein Sirtuin 1 Nakamura et 
al. (2017)46

2 hours after LT Human LT 51 liver biopsies High graft Sirtuin 1 
was associated with 
superior liver function

Heme 
oxygenase-1

Nakamura et 
al. (2018)47

2 hours after LT Human LT 51 liver biopsies Enhanced Sirtuin 
1 expression and 
protected against IRI

YAP Liu et al. 
(2019)48

3 hours after LT Human LT 60 liver biopsies Improved early 
liver function

FGF15 Gulfo et al. 
(2020)49

Post-reperfusion 
biopsies

Rat DBD 
LT model

/ Low graft FGF15 
was associated with 
more severe hepatic 
damage and inhibited 
regeneration

CEACAM1 Nakamura et 
al. (2020)50

Pretransplant 
biopsies

Human LT 60 liver biopsies Hepatic CEACAM1 
could prevent early 
graft injury

Hepatic occult 
collagen deposition

Hirao et al. 
(2021)51

Pretransplant 
biopsies

Human LT Low level 
(n=140) vs. High 
level (n=54)

Increased risks of 
severe IRI and EAD

(continued)
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center studies with larger samples are needed to verify the 
results.

Proteins

Sirtuin1, a histone/protein deacetylase that regulates in-
flammatory responses, cellular aging, and stress resistance, 
has an important role in autophagy induction involved in 
liver IRI.66 A previous study showed that high Sirtuin1 ex-
pression in grafts post-reperfusion sharply inhibited proin-
flammatory cytokine levels accompanied by superior liver 
function and improved patient survival.46 HO-1 is a rate-
limiting enzyme that converts heme to biliverdin, free iron, 
carbon monoxide, and has anti-inflammatory and anti-oxi-
dative activitiy.47 In addition, Nakamura et al.47 showed that 
high HO-1 levels in post-reperfusion liver biopsies (n=51) 
were associated with good liver function, dramatically en-
hanced Sirtuin1/LC3B expression, and protected against 
hepatic IRI by inducing autophagy. Notch1, a highly con-
served transmembrane receptor, has been shown to reduce 
cellular apoptosis or necrosis and inflammatory response.55 
Kageyama et al.44 demonstrated high Notch1 expression in 
grafts was correlated with low serum ALT levels, consistent 
with alleviated liver damage. In addition, Liu et al.48 found 
that high graft YAP expression after LT was linked with well-
preserved histopathology and improved liver function at 
1–7 days following LT. YAP is an effector of Hippo pathway 
and regulates cell proliferation and apoptosis and maintains 
hepatic homeostasis. FGF15, which is secreted from the 
ileum following inflammatory stimulation, binds to Fgfr4/
Klb, which is followed by downregulation of CYP7A1 expres-
sion and inhibition of bile acid synthesis and activation of 
the Hippo pathway to upregulate YAP levels.49 In a rat DBD 
LT model, Gulfo et al.49 reported ed that low FGF15 levels 

in grafts was associated with more severe hepatic damage 
and inhibited regeneration that was mediated by increased 
CYP7A1 and decreased YAP levels.

The use of ECD grafts has raised the incidence of graft 
dysfunction, which ranges from reversible dysfunction, 
known as EAD, to irreversible dysfunction or PNF. Therefore, 
biomarkers to predict EAD and PNF are necessary in the 
era of ECD. CEACAM1 is a glycoprotein involved in hepato-
cyte differentiation and regeneration and regulation of in-
sulin clearance, serving as a bridge between hepatic injury 
and metabolic homeostasis.50 Low CEACAM1 expression 
in human donor liver biopsies (n=60) was recognized as 
an independent predictor of EAD.50 In a large study cohort 
(n=194), Hirao et al.51 found that liver grafts with high oc-
cult collagen deposition were of increased risk of severe IRI 
and EAD, highlighting the effect of occult fibrosis on post-
transplant outcome. In addition, Kurian et al.68 investigated 
several upregulated signaling pathways including NF-κB and 
targets such as CXCL1, IL1, TRAF6, TIPARP, TNFRSF1B, as 
predictors of EAD. Kornasiewicz et al.69 used graft proteom-
ics to identify 21 significantly differentially expressed pro-
teins in patients with (n=3) and without PNF (n=6). The 
proteins were mainly associated with mitochondrial oxida-
tive phosphorylation or vital for the adenosine triphosphate-
dependent turnover of proteins.

Metabolites

Cortes et al.52 used metabolomic profiling of 124 graft bi-
opsies to identify significantly increased lysophospholipids, 
bile acids, phospholipids, sphingomyelins, and histidine me-
tabolism products that were predictors for EAD. Based on 
the metabolic features, an EAD predictive model was estab-
lished and further determined in a validation set (n=24) to 

Biomarker Study Sample Model(s) Group Key point
Metabolite Lysophospholipids, 

bile acids, 
phospholipids, 
sphingomyelins, 
and histidine 
metabolism 
products

Cortes et al. 
(2014)52

Pretransplant 
biopsies

Human LT EAD (n=48) vs. 
non-EAD (n=48)

Predictors for EAD

Lactate and 
phosphocholine

Faitot et al. 
(2018)53

Pretransplant 
biopsies

Human LT EAD (n=7) vs. 
non-EAD (n=35)

Predictors for EAD

single 
cell RNA 
sequencing

A pro-
inflammatory 
phenotype 
of KCs and a 
subset of DCs

Yang et al. 
(2021)54

24 hours after LT Rat 
steatotic 
LT model

Fatty graft (n=3) 
vs. Control 
graft (n=3)

A pro-inflammatory 
phenotype of KCs 
that highly expressed 
colony-stimulating 
factor 3 and a subset 
of DCs with high 
expression of XCR1 
were enriched in the 
steatotic grafts

A dynamic 
transcription 
profile

Wang et al. 
(2021)55

Grafts 
gained from 
preprocurement, 
at the end 
of organ 
preservation 
and 2 h after 
reperfusion

Human 
DBD LT

n=1 Showed a dynamic 
transcription profile 
of intrahepatic 
cells during LT

DBD, donation after brain death; DCD, donation after circulatory death; DCs, dendritic cells; EAD, early allograft dysfunction; GcfDNA, graft-derived cell-free DNA; IRI, 
ischemia-reperfusion injury; KCs, Kupffer cells; LT, liver transplantation; MICA, major histocompatibility complex class 1 related chain A; NODM, new-onset diabetes 
mellitus; PNF, primary nonfunction.

Table 1.  (continued)
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have 91% sensitivity and 82% specificity. Likewise, Faitot 
et al.53 reported that lactate concentrations >8.3 mmol/g 
and phosphocholine concentrations >0.646 mmol/g were 
significantly associated with EAD. In our previous study, we 
identified metabolic profiles containing 57 dramatically dif-
ferentially expressed metabolic features that were enriched 
in 24 common pathways including fatty acid, alanine, aspar-
tate, thiamine, and riboflavin metabolism, the urea cycle, 
and ammonia recycling in PNF grafts.28 Graft metabolites 
and clinical characteristics were combined to develop a PNF 
predictive model derived from eight selected metabolic vari-
ations including achillicin, 3-hydroxypropanal, 3-oxodode-
canoic acid glycerides, and dopexamine in combination with 
clinical parameters including donor total bilirubin >2 ng/mL, 
graft weight >1.5 kg, cold ischemia time >10 h, graft warm 
ischemia time >60 m. The model had an area under curve 
of 0.930 for predicting PNF.28

Single cell technology

Recent advances in single cell RNA sequencing (scRNA-Seq) 
allow investigation of the transcriptomic landscape of sin-
gle cells in organisms and have increased our understand-
ing of the heterogeneity and relevance between cells. In 
a rat LT model, Yang et al.54 identified 11 kinds of cells in 
grafts and drew a single cell map of IRI after steatotic LT by 
scRNA-Seq. More importantly, they found a pro-inflamma-
tory phenotype of Kupffer cells (KCs) that highly expressed 
colony-stimulating factor 3 and a subset of DCs with high 
expression of XCR1 that were enriched in steatotic grafts, 
suggesting their participation in fatty graft IRI.54 In addi-
tion, Wang et al.55 described a dynamic transcription profile 
of intrahepatic cells during LT by performing scRNA-Seq of 
grafts at preprocurement, at the end of organ preservation, 
and 2 h after reperfusion. They also found that a cluster 
of KCs that highly expressed TNFAIP3 interacting protein 
3 after reperfusion, protected grafts against liver IRI.55 We 

believe that as research on scRNA-Seq deepens, it may pro-
vide a deeper understanding of mechanisms related to liver 
IRI during LT, identify grafts at increased risk of IRI and de-
velop strategies to protect organ against liver damage. In a 
study published on BioRxiv, we established a graft-tolerant 
mouse LT model and identified two stages of graft recovery, 
which included an acute and stable phases.70 We also found 
that the interaction between CD206+MerTK+ macrophages 
and CD49a+CD49b− NK cells regulated metabolic and im-
mune remodeling of the graft.70

Potential biomarkers in perfusate

The donor graft and perfusate keep interplaying during pres-
ervation. Molecules including nucleic acids, proteins, and me-
tabolites in perfusate may be associated with graft outcomes. 
In a review by Verhoeven et al.71 in 2014, ALT, AST, lactate 
dehydrogenase, lactate, adenine nucleotide level, hyaluronic 
acid, thrombomodulin and inflammatory markers (e.g., hy-
poxia-inducible factor-1α, and tumor necrosis factor-α) in 
perfusate and perfusate pH were useful biomarkers to assess 
graft quality. Machine perfusion (MP) such as hypothermic 
machine perfusion (HMP), hypothermic oxygenated perfu-
sion (HOPE), and normothermic machine perfusion (NMP) 
continuously inject the perfusion fluid into the graft blood 
vessels to form a circuit, mitigating IRI and maintaining cel-
lular metabolism in graft.72 So far, a series of current and 
ongoing clinical trials have shown that they were superior in 
reducing ischemic complications compared with static cold 
storage (SCS).73–76 In addition, the development of detection 
technology and MP have facilitated the discovery of a series 
of novel perfusate biomarkers for graft viability evaluation 
and are summarized as below and in Table 2.5,77–83

Bile production and bile composition (e.g., bile glucose 
and Na+) during NMP are useful biomarkers for graft syn-
thesis function. Pavel et al.77 restored five discarded DCD 
livers with NMP for 12 h and found that earlier production 

Table 2.  Potential biomarkers of graft function that are found in graft perfusates

Biomarker Study Model Group Key point

Bile production Pavel et al. 
(2019)77

NMP 5 discarded human 
DCD livers

Earlier production of bile and higher 
bile flows during NMP were linked 
to better bile duct histology

Biliary bicarbonate, 
pH, and glucose

Matton et 
al. (2019)78

NMP 23 human donor livers High biliary bicarbonate and pH 
and low glucose were associated 
with bile duct injury

Bile/perfusate glucose 
ratio and bile/ 
perfusate Na+ ratio

Linares-
Cervantes et 
al. (2019)5

A porcine 
DCD LT 
model; NMP

/ Bile/perfusate glucose ratio≤0.7 
and bile/ perfusate Na+ ratio ≥1.1 
were correlated with successful LT

CDmiRs Verhoeven et 
al. (2013)79

Human 
LT; SCS

Grafts developed ITBL 
(n=20) vs. Grafts without 
biliary strictures (n=37)

CDmiRs could be predictive of 
bile duct injury and ITBL

miR-122 Selten et al. 
(2017)80

Human DCD/
DBD LT; SCS

EAD (n=35) vs. 
non-EAD (n=48)

High miR-122 level could predict EAD

FMN Muller et al. 
(2019)81

Human DCD/
DBD LT; HOPE

53 donor livers High FMN level could predict severe 
graft dysfunction following LT

D-dimer Karangwa et 
al. (2017)82

NMP 12 discarded human livers High D-dimer level was 
associated with graft damage

NGA2F Verhelst et 
al. (2018)83

Human DCD/
DBD LT; SCS

PNF (n=3) vs. non-
PNF (n=63)

Increased NGA2F level 
could predict PNF

CDmiR, cholangiocyte-derived miRNA; DBD, donation after brain death; DCD, donation after circulatory death; EAD, early allograft dysfunction; FMN, flavin mono-
nucleotide; HOPE, hypothermic oxygenated perfusion; LT, liver transplantation; NGA2F, agalacto core-alpha-1,6-fucosylated biantennary glycan; NMP, normothermic 
machine perfusion; PNF, primary graft nonfunction; SCS, static cold storage.
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of bile and higher bile flows during NMP contributed to bet-
ter bile duct histology. In addition, Matton et al.78 showed 
that high biliary bicarbonate and pH, and low biliary glucose 
in human liver grafts (n=23) during NMP were significantly 
associated with high risk of bile duct injury. In a porcine LT 
model, Linares-Cervantes et al.5 demonstrated that a bile/
perfusate glucose ratio ≤0.7 and a bile/perfusate Na+ ratio 
≥1.1 within 4 h of NMP predicted graft survival after LT. 
Given that the role of donor graft miRNAs in predicting post-
transplant outcomes, perfusate miRNAs may serve similarly. 
Furthermore, miRNAs have been shown to be stable in per-
fusate for at least 1 day.79 Verhoeven et al.79 showed that 
cholangiocyte-derived miRNAs (CDmiRs) in perfusate were 
predictive of bile duct injury and the development of ITBL. 
They also found that a significantly elevated hepatocyte-
derived miRNA to CDmiRs ratio was associated with the in-
cidence of ITBL. Moreover, Selten et al.80 reported that both 
high miR-122 levels and a high miR-122/miR-222 ratio in 
SCS perfusate predicted the development of EAD and poor 
graft survival after LT in 83 recipients.

Flavin mononucleotide (FMN), a critical molecular of gen-
erating electrons for ubiquinone reduction in mitochondrial 
complex 1, was shown to be associated with mitochondrial 
injury.81 Muller et al.81 preserved 53 grafts with HOPE and 
demonstrated that a high perfusate FMN level after 30 m of 
HOPE was strongly linked to severe graft dysfunction. Wang 
et al.84 infused 23 DCD livers with normothermic regional 
perfusion and found that the levels of perfusate FMN in trans-
plantable grafts (n=15) were dramatically lower than those 
in nontransplantable grafts (n=8). D-dimer, a product of fi-
brin degradation, is a small protein fragment released dur-
ing fibrinolysis. Karangwa et al.82 preserved 12 discard donor 
livers with NMP and showed that D-dimer levels >3,500 ng/
mL were significantly associated with graft liver injury, sug-
gesting that it was predictive of poor graft function.

In a multicenter cohort study, Verhelst et al.83 compared 
the glycome patterns in SCS perfusate in PNF (n=3) and 
non-PNF (n=63) groups and found that increased NGA2F, a 
single under galactosylated biantennary glycan, predicted 
the development of PNF with 100% accuracy. That high-
lighted the essential role of omics, especially the metabo-
lomics, in discovering potential perfusate markers of poor 
graft function during LT.

Potential strategies for restoring graft function

In recent years, in vivo and ex vivo potential protective in-
terventions that have been used to restore graft function 
are listed in Table 3.85–102 During the process of ex vivo 
therapies, the role of MP is apparent because it provides a 
platform for graft preconditioning.

Gene therapy

Previous in vivo studies were performed to treat liver IRI by 
using small interfering RNA (siRNA). Jiang et al.85 silenced 
toll-like receptor 4, a critical mediator of inflammation, in a 
hepatic IRI mouse model, resulting is significant reduction 
of serum transferases and histological injury. In another 
study, Zhao et al.86 downregulated nuclear high-mobility 
group box 1 by transfecting mice with siRNA and found that 
it effectively inhibited the expression of serum inflammatory 
cytokines and protected the liver against IRI. Although the 
efficacy of hydrodynamic injection has been shown in these 
animal models, it is difficult to use in the clinic because of 
off-target effects. Recent studies of graft perfusates showed 
a potential to solve this problem. For example, Gillooly et 
al.87 found that Fas siRNA directly added to the perfusate 

was successfully delivered to rat livers during HMP and NMP. 
This technology ensured that the siRNA only targeted the 
grafts, opening a new door for graft reconditioning. Anti-
sense oligonucleotide, another gene modulation agent, was 
demonstrated to significantly reduce miR-122 expression 
and inhibit hepatitis C virus replication or reinfection after 
LT in a porcine LT model with NMP, further confirming the 
possibility of ex vivo gene therapy in grafts.88

Cell therapy

In vivo cell therapies such as tolerogenic DCs, Tregs, and 
mesenchymal stem cells (MSCs) have a role in immu-
nomodulation. In a rat LT model, we innovatively treated 
acute rejection with a combination of galectin-1-induced 
tolerogenic DCs and apoptotic lymphocytes, which resulted 
in prolonged survival of the treated rats, with 37.5% surviv-
ing over 100 days, compared with untreated, all of which 
died within 14 days.90 In a phase I clinical trial, Sanchez-
Fueyo et al.90 demonstrated that autologous Tregs transfer 
was safe and effective in reducing antidonor T cell respons-
es after LT by intravenously administering autologous Tregs 
to the LT candidates. In addition, Shi et al.91 found that 
human MSCs injection in LT recipients suppressed acute re-
jection and improved graft histology by upregulating the 
Treg/T help 17 cell ratio. Compared with in vivo treatment, 
ex vivo technology provides novel strategies for graft resto-
ration. For instance, Verstegen et al.92 showed in a porcine 
LT model that MSCs directly added to the perfusate dur-
ing HOPE were effectively distributed to the porcine grafts, 
which continued to maintain their paracrine activity after 
distribution.

Extracellular vesicles

It has been reported that the above tolerogenic cells had 
the potential to undergo spontaneous malignant trans-
formation.103 Therefore, some investigators began to use 
MSC-, DC- and trig-derived extracellular vesicles (EVs) as 
alternatives to cell therapy. In in vivo mice and rat IRI mod-
els, MSC-derived EVs had a diverse set of functions includ-
ing mitochondrial autophagy,104,105 inhibition of immune 
response106,107 and liver regeneration.108,109 Zheng et al.93 
found in a rat IRI model that DC-derived EVs could protect 
liver against IRI through modulating differentiation of Tregs. 
In a rat LT model, Chen et al.94 demonstrated that injection 
with Tregs-derived EVs after LT suppressed the proliferation 
of CD8+ cytotoxic T cells and prolonged liver graft survival. 
Compared to the in vivo injection, the ex vivo technology 
has the potential to directly target donor grafts without con-
cern for off-target effect. Rigo et al.95 successfully delivered 
human liver stem cells-derived EVs into the rat livers during 
NMP, leading to less histological damage and lower levels of 
AST and lactate dehydrogenase in the treated group.

Anti-inflammatory agents

Liver IRI is characterized by the activation of pro-inflamma-
tory responses. Therefore, adding anti-inflammatory agents 
to perfusate may regulate immune response and alleviate 
graft damage. In a porcine LT model, Goldaracena et al.96 
put alprostadil, n-acetylcysteine, carbon monoxide, and 
sevoflurane into the NMP perfusate, showing significantly 
decreased interleukin-6, tumor necrosis factor-α, and AST 
during NMP, and lower AST and bilirubin levels in serum 
after LT in the treated group.96 In addition, Yu et al.97 used 
Mcc950, which strongly inhibited the nucleotide-binding 
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domain leucine-rich repeat containing family pyrin domain 
containing 3 inflammasome, as an addition to the HMP per-
fusate in a porcine LT model. They found that Mcc950 sig-
nificantly reduced inflammatory cytokines and histological 
injury, and prolonged long-term survival after LT.

Vasodilators

During the ischemic phase of LT, rapid adenosine triphos-
phate depletion and lack of blood flow result in mitochon-

drial dysfunction and liver sinusoidal endothelial cell (LSEC) 
injury.110 After reperfusion, the injured LSECs not only pro-
duce insufficient vasodilators but also expressed P-selectin 
to accumulate platelets, which resulted in microcirculation 
disorder.110 In a rat LT model, Hara et al.98 inhibited the ac-
cumulation of platelets by adding prostaglandin E1 (PGE1) 
to the perfusate under normothermic conditions. PGE1 
ameliorated serum liver enzymes and histologic necrosis, 
and significantly improved bile production and energy sta-
tus. In addition, Nassar et al.99 added a prostacyclin analog 
(epoprostenol) to NMP perfusate to preserve porcine livers 

Table 3.  Potential therapies to restore donor liver function

Therapy Study Target Model Outcome

Gene therapy Jiang et al. 
(2011)85

Toll-like receptor 4 siRNA Mice-IRI in vivo Reduce liver IRI

Zhao et al. 
(2017)86

High-mobility group 
box 1 siRNA

Mice-IRI in vivo Reduce liver IRI

Gillooly et al. 
(2019)87

siRNA against the 
Fas receptor

Rats HMP 
and NMP

Absorbed by rat donor livers 
during HMP and NMP

Goldaracena et 
al. (2017)88

Antisense oligonucleotide Porcine LT NMP Prevent HCV replication or 
reinfection after LT

Cell therapy Peng et al. 
(2018)89

DC+ apoptotic lymphocytes Rat LT in vivo Prolong rat survival

Sanchez-Fueyo A 
et al. (2020)90

Tregs Human LT 
in vivo

Reduce antidonor T cell responses and 
play the potential role of graft rejection

Shi et al. 
(2017)91

MSCs Human LT 
in vivo

Suppress acute rejection and 
improve graft histology

Verstegen et 
al. (2020)92

MSCs Porcine LT 
HOPE

Absorbed by porcine grafts and 
continue to maintain paracrine 
activity after distribution

Extracellular 
vesicles

Zheng et al. 
(2018)93

EVs deprived from DCs Rat IRI in vivo Modulate differentiation of Tregs 
and protect liver against IRI

Chen et al. 
(2019)94

EVs deprived from Tregs Rat LT in vivo Prolong liver graft survival

Rigo et al. 
(2018)95

EVs deprived from 
human liver stem cells

Rats NMP Absorbed by hepatocytes 
and reduce liver injury

Anti-
inflammatory 
agents

Goldaracena et 
al. (2016)96

Alprostadil, 
n-acetylcysteine, carbon 
monoxide, and sevoflurane

Porcine LT NMP Reduce liver injury

Yu et al. (2019)97 mcc950 Porcine LT HMP Reduce liver injury

Vasodilators Hara et al. 
(2016)98

Prostaglandin E1 Rat LT NMP Reduce liver injury and improve 
bile production, energy 
status, and rat survival

Nassar et al. 
(2014)99

Prostacyclin analog 
(epoprostenol)

Porcine LT NMP High bile production and 
good histopathology

Echeverri et 
al. (2018)100

Endothelin1 antagonist 
(BQ123), epoprostenol, 
verapamil

Porcine LT NMP High hepatic artery flow and 
reduce hepatocyte injury

Defatting Nagrath et al. 
(2009)101

A cocktail* Rat NMP Decrease the intracellular lipid content 
of liver by 50% during 3 h perfusion

Boteon et al. 
(2019)102

A cocktail* + L-carnitine Human NMP Decrease liver triglycerides by 
38% and macrosteatosis by 
40% over 6 h perfusion

Cocktail*, a combination of peroxisome proliferator activated receptor α ligand GW7647, peroxisome proliferator activated receptor δ ligand GW501516, pregnane X 
Receptor ligand hypericin, the constitutive androstane receptor ligand, the glucagon mimetic and cAMP activator forskolin, and the insulin-mimetic adipokine visfatin. 
DCs, dendritic cells; EVs, extracellular vesicles; HCV, hepatitis C virus; HMP, hypothermic machine perfusion; HOPE, hypothermic oxygenated perfusion; IRI, ischemia-
reperfusion injury; LT, liver transplantation; MSCs, mesenchymal stem cells; NMP, normothermic machine perfusion; siRNA, small interfering RNA; Tregs, regulatory 
T lymphocytes.
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and found that the use of prostacyclin analog led to high bile 
production and good histopathology. Furthermore, Echever-
ri et al.100 compared the effects of endothelin1 antagonist 
(BQ123), prostacyclin analog (epoprostenol) and calcium 
channel antagonist (verapamil) to treat hepatic artery va-
sospasm induced by IRI in a porcine LT model. They dem-
onstrated that grafts with BQ123 and verapamil treatment 
had higher hepatic artery flow and less hepatocyte injury 
compared with those treated with epoprostenol.

Defatting agents

Moderate to severe (>30%) macrosteatosis is a well-known 
risk factor for poor graft quality, making it necessary to de-
fat prior to LT.14 Nagrath et al.101 treated rat fatty livers 
with a combination of six defatting agents normothermically 
and showed that the treatment could decrease the intracel-
lular lipid content of rat liver by 50% after 3 h perfusion. 
Furthermore, Boteon et al.102 assessed the efficacy of the 
above six agents combined with additional L-carnitine in de-
fatting human livers with severe steatosis. They found that 
this method reduced liver triglycerides and macrosteatosis 
by 38% and 40% over 6 h NMP, enhanced metabolic pa-
rameters including increased urea and bile production, and 
downregulated biomarkers of liver injury (e.g., lower ALT 
and reduced inflammatory cytokines).

Other agents

In addition to the above agents, human atrial natriuretic 
peptide (hANP), heavy water, marine worm super hemo-
globin (M101), glycine, relaxin, and polyethylene glycols 
have been found to alleviate liver injury.111–116 Nigmet et 
al.111 added hANP, a protective cardiovascular hormone for 
vascular endothelia, to SCS perfusate to preserve rat livers, 
showing that hANP supplementation decreased transami-
nase release, increased bile production, and protected si-
nusoidal architecture. In a porcine LT model, Alix et al.113 
added M101 to SCS perfusate and demonstrated that M101 
significantly reduced blood levels of ALT, AST, and tumor 
necrosis factor α in recipients 3 days following LT. Moreover, 
Gassner et al.114 used glycine, a simple amino acid that 
protected sinusoidal cells and hepatocytes, as an addition 
to NMP rat liver perfusate. They found less sinusoidal dilata-
tion and tissue damage in the treated group.

Conclusions and perspectives

This review summarized and updated biomarkers in donor 
blood, liver tissue or graft perfusate to evaluate early graft 
injury (e.g., EAD, and PNF) and ITBL, and to identify poten-
tial therapies for graft repairment during the era of ECD. We 
focused on studies using human liver grafts and investiga-
tions of potential biomarkers involved in anti- or pro-inflam-
matory processes, which in turn shape immunity, regulate 
graft IRI, and further influence the development of EAD, 
PNF, or ITBL following LT. Given that relevant mechanisms 
of some molecules are lacking, further prospective studies 
and experiments are urgently needed to clearly understand 
their roles.

Although various biomarkers with available prognostic 
and diagnostic value in graft quality assessment have been 
widely explored, few are currently used in clinical practice. 
Current challenges associated with biomarker discovery 
research are as follows. Firstly, the sample sizes of these 
studies were small and mainly limited to single centers, 
suggesting that large multicenter cohorts or prospective 

randomized clinical trials are greatly necessary. Another 
problem is that the studies lack standardized endpoints and 
control groups.117 Graft quality is commonly considered to 
be associated with early graft dysfunction or ITBL, yet other 
complications after LT (e.g., ACR, metabolic disorders, and 
graft steatosis or fibrosis) are still a matter of substantial 
debate. Therefore, we primarily summarized biomarkers 
predictive of EAD, PNF, and ITBL. Current studies mainly 
focus on finding biomarkers related to early graft injury, do 
not have prolonged follow-up and overlook long-term com-
plications like ITBL. Importantly, the measurement of bio-
markers should be rapid and easy and have high predictive 
specificity and sensitivity for graft quality. However, detec-
tion of potential biomarkers is costly and time consuming. 
Moreover, biomarkers need to be stable and measurable 
during graft procurement, preservation, and implantation.

Despite the availability of liver biopsies for histological 
assessment and quantification of liver injury during LT, they 
are invasive and only represent specific parts of the grafts. 
On the contrary, perfusates can be collected in large vol-
umes and contain markers from the whole graft. In recent 
years, MP has constantly advanced, and it use in evaluation 
of graft viability has gradually increased. Nevertheless, dif-
ferent regions or centers have their own standards to deter-
mine graft quality.78,118 More clear international guidelines 
that could guide the decision for organ usage, discard, or 
restoration prior to LT are recommended. In addition, we 
believe that MP could provide a platform for graft precondi-
tioning, making it convenient to explore novel strategies for 
graft repair. Although high cost and the technical complexity 
limit wide usage of MP at its current stage, recently com-
pleted and ongoing clinical trials will make it an indispensa-
ble part of LT.72,73
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