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Abstract

Metabolic-associated fatty liver disease (MAFLD) is a new 
disease definition, and is proposed to replace the previous 
name, nonalcoholic fatty liver disease (NAFLD). Globally, 
MAFLD/NAFLD is the most common liver disease, with an in-
cidence rate ranging from 6% to 35% in adult populations. 
The pathogenesis of MAFLD/NAFLD is closely related to insu-
lin resistance (IR), and the genetic susceptibility to acquired 
metabolic stress-associated liver injury. Similarly, the gut mi-
crobiota in MAFLD/NAFLD is being revaluated by scientists, as 
the gut and liver influence each other via the gut-liver axis. 
Ferroptosis is a novel form of programmed cell death caused 
by iron-dependent lipid peroxidation. Emerging evidence sug-
gests that ferroptosis has a key role in the pathological pro-
gression of MAFLD/NAFLD, and inhibition of ferroptosis may 
become a novel therapeutic strategy for the treatment of 
NAFLD. This review focuses on the main mechanisms behind 
the promotion of MAFLD/NAFLD occurrence and development 
by the intestinal microbiota and ferroptosis. It outlines new 
strategies to target the intestinal microbiota and ferroptosis 
to facilitate future MAFLD/NAFLD therapies.
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Introduction

Because of its close association with metabolic diseases and 
the many challenges faced by previous diagnostic strategies 
of exclusion, a new disease nomenclature, metabolic-asso-
ciated fatty liver disease (MAFLD), has been proposed to 

replace the previous name, nonalcoholic fatty liver disease 
(NAFLD).1 Globally, MAFLD/NAFLD is the most common liver 
disease, with an incidence rate between 6% and 35% in 
adult populations.2 Studies have shown that the long-term 
existence of NAFL and NASH are important causes of liver 
cirrhosis and hepatocellular carcinoma (HCC).3 Indeed, the 
predominant HCC etiology in the USA is MAFLD/NAFLD. 
NASH is the second most frequent reason for liver trans-
plantation in the USA, and is likely to supersede hepatitis C 
as the most common cause of transplantation in the future.4 
Although MAFLD/NAFLD is not inherently serious, its com-
plications are, and include liver cirrhosis and HCC which se-
riously affect quality of life or even endanger patient lives. 
MAFLD/NAFLD occurrence is an extremely complex patho-
logical process that involves a variety of hepatic cells and 
multiple extrahepatic signals.5 In recent years, immunoin-
flammatory responses, genetic metabolism, insulin resist-
ance (IR), ferroptosis, and the gut microbiome have been 
closely associated with MAFLD/NAFLD.2,5

Bacteria, viruses, fungi, and archaea collectively colonize 
the human intestines, and are known as the gut microbiome. 
More than 1×1014 microorganisms are found in healthy in-
dividuals and comprise more than nine million genes, which 
is approximately 150 times larger than the human genome.6 
Although the human gut microbiome is closely related to host 
physiological activities, its importance to human health and 
disease has long been neglected because of inadequate re-
search methods. However, in recent years, technical advanc-
es in DNA/RNA sequencing, bioinformatics data analysis, and 
culture-based microbiology have increased our understand-
ing of microbes in health and disease.7,8 Simultaneously, the 
increased gut microbiome literature has been instrumental 
in delineating metabolic diseases, including NAFLD, obesity, 
cardiovascular disease, carcinoma, and type 2 diabetes mel-
litus.9,10 Thus, rather than existing as individual pathogens, 
microbes exist as complex consortia with myriad interactions 
with their hosts.

The liver and intestinal tract are anatomically and func-
tionally related, having both developed from the same germ 
layer in the embryo.11 Since the gut-liver axis was first pro-
posed by Marshall in 1998, it has attracted much interest 
in the relationships between liver disease and the intestinal 
tract.12 The portal vein connects the gut to the liver and pro-
vides 70% of its blood supply. The unique anatomical struc-
ture of the liver increases its susceptibility to gut bacteria, 
bacterial products, endotoxins, and microbiome inflamma-
tory molecules.13 Under normal physiological conditions, the 
intestinal mucosal barrier is the first bodily defense against 
external pathogen invasion.14 The liver also produces specific 
antibodies and inflammatory factors that monitor the intesti-
nal mucosa.15 However, under some pathological conditions, 
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these defense mechanisms become disrupted, thereby fa-
cilitating bacterial migration outside the gut. In patients with 
NAFLD, intestinal bacteria migrate through the portal vein 
into the liver and cause abnormal activation of the immune 
system, leading to inflammation responses and injury.16 In 
addition, interactions between the intestine and liver are 
bidirectional, and hepatogenic inflammatory cytokines thus 
impair intestinal mucosal barrier function, disrupting tight 
junctions of the intestinal epithelium, and forming a malig-
nant liver-gut cycle during NAFLD.17,18

Ferroptosis is a novel form of cell death characterized by 
iron overload and reactive oxygen species (ROS)-dependent 
accumulation of lipid peroxides. Ferroptosis, morphologically 
manifests as mitochondrial shrinkage, reduction or disappear-
ance of mitochondrial cristae, and increased mitochondrial 
membrane density. Like other cell death modes, ferroptosis 
is tightly regulated by a variety of intracellular metabolic pro-
cesses, including glutathione (GSH) synthesis, lipid peroxi-
dation, cysteine transport, iron homeostasis, and NADPH.19 
In recent years, many studies have found that ferroptosis is 
involved in the progression of NAFLD, and preliminarily con-
firmed that ferroptosis of hepatocytes and intrahepatic mac-
rophages can trigger NASH.20 Inhibition of ferroptosis may 
become a new therapeutic strategy for NAFLD in the future. 
In this review, we focus on how the gut microbiota and fer-
roptosis promote NAFLD development via the gut-liver axis 
and explore gut microbiome potential as a novel diagnostic 
biomarker and therapeutic strategy for NAFLD.

Interaction between the Gut-Liver axis and the gut 
microbiome

The liver and intestinal tract are physiologically bidirectional 
organs. In one direction, the liver excretes bile and other 
bioactive mediators into the intestinal cavity via the bile 
duct, while in the other direction, metabolic nutrients are 
transported into the liver via the portal vein after reabsorp-
tion from the small intestine.11 Simultaneously, intestinal 
bacteria and their products, e.g., vitamins, short-chain fatty 

acids (SCFAs), lipopolysaccharide (LPS), endogenous etha-
nol, and other metabolites are transported through the por-
tal vein, exposing the liver to intestinal microenvironments 
and pathological changes.17,21

Bile acids (BAs) and enterohepatic circulation

BAs are small molecules synthesized from cholesterol via cho-
lesterol 7a-hydroxylase (CYP7A1) catalysis by liver cells.22 
They not only participate in lipid digestion and absorption, but 
are also important signal regulators that affect energy me-
tabolism, inflammation, and development of liver disease.23 
Recent studies have reported that interactions between BAs 
and intestinal microbiota are closely related to NAFLD.24 BA 
synthesis is highly complex and includes multistep reactions 
involving at least 17 different catalytic enzymes (Fig. 1).25 
Synthesis occurs in the liver and is accomplished via two dif-
ferent steps. Under normal physiological conditions, at least 
75% of BA is synthesized by the classical pathway, which is 
initiated by cholesterol 7a-hydroxylation catalyzed by CY-
P7A1.26 CYP7A1 is the rate-limiting enzyme in the process 
and determines total BAs production.27 The selective pathway 
is initiated by sterol-27-hydroxylase (CYP27A1) and is further 
hydroxylated by hydroxysterol 7a-hydroxylase (CYP7B1).28 
Studies have shown that the gut microbiota regulates the ex-
pression of key enzymes in BA synthesis, including CYP7A1, 
CYP7B1, and CYP27A1.29 Sayin et al.30 confirmed that liver-
based CYP7A1 was regulated by gut microbiota via farnesoid 
X receptor (FXR)-dependent mechanisms throughout the en-
terohepatic system in germ-free and conventionally raised 
mice.30 Moreover, recent research confirmed that inhibiting 
the intestinal microbiota of hamsters up-regulated CYP7B1 
in the alternative BAs synthesis pathway, increased BAs hy-
drophilicity, and increased tauro-β-muricholic acid (TβMCA).31

Intestinal barriers and permeability

The intestinal barrier is an important bodily defense mecha-

Fig. 1.  Bile acid metabolism in the liver and intestine. CYP7A1, cholesterol 7a-hydroxylase; CYP27A1, sterol-27-hydroxylase; CYP7B1, hydroxysterol 7a-hy-
droxylase; AKR1D1, aldo-keto reductase family 1, member D1; HSD3B7, hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 7; CA, cholic acid; CDCA, 
chenodeoxycholic acid, DCA, deoxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid.
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nism and is composed of mechanical, chemical, biological, 
and immune barriers.14 Under normal physiological condi-
tions, large numbers of anaerobic bacteria grow in the in-
testinal lumen or intestinal mucosa surfaces and include Bifi-
dobacterium that adhere closely to the intestinal epithelium 
to form a membrane barrier that resists and repels invasion 
by foreign pathogens.32 Studies have shown that the intes-
tinal microbiota maintain intestinal barrier stability by pro-
ducing a series of metabolites and instigating signal path-
ways. Ijssennagger et al.33 reported that sulfide produced by 
sulfate-reducing bacteria dissolved the mucin polymer net-
work, thinned the mucus layer, and changed the mechani-
cal barrier of the intestinal mucosa. In addition, the Bacte-
riodes fragilis toxin had proteolytic enzyme-like activity that 
degraded mucin and destroyed mucus layer structures.34 
Furthermore, SCFAs like acetic, propionic, and butyric acids, 
which are the main metabolites of colonic bacteria required 
for carbohydrate fermentation, protect the chemical barrier 
of the intestinal mucosa. Researchers transplanted the bu-
tyric acid-producing bacteria, Butyrivibrio fibrisolvens into 
sterile mice and observed that bacteria restored energy me-
tabolism to colonic epithelial cells and restored cell oxidative 
phosphorylation and ATP levels, maintained energy homeo-
stasis, inhibited autophagy, and protected colonic epithelial 
cell integrity.35 More important, the intestinal microbiota are 
important elements of the intestinal biological barrier; their 
mechanism of action toward intestinal barrier function is to 
primarily secrete bacteriocins to kill pathogenic bacteria,36 
antagonize pathogen colonization,37 and compete for oxygen 
and nutrients.38

Destruction of one or more of the barriers affects intesti-
nal barrier integrity. The main driving factors for increased 
permeability are intestinal inflammation and dysbiosis,39 
which are related to long-term antibiotic use,40 chronic alco-
hol intake,41 continuous high-fat diets,42 and immune-me-
diated inflammatory disease.43 Akkermansia muciniphila is 
a Gram-negative anaerobic bacterium that colonizes intes-
tinal mucus layers and is an important link between the in-
testinal microbiota, inflammation, and intestinal barrier in-
tegrity.44 Decreased abundance of A. muciniphila is related 
to thinning of the mucus layer and increased inflammation, 
which promotes alcoholic and nonalcoholic liver damage.45 
When intestinal permeability increases, microorganisms 
and microorganism-derived molecules are transferred to 
the liver through the gut-liver axis causing inflammation 
and liver damage.46 Some translocated intestinal metabo-
lites may directly interact with host factors, leading to liver 
disease.18,47 The next section discusses the influence of the 
gut microbiota on NAFLD and underlying mechanisms.

Gut microbiota in NAFLD

During embryological development, the gut and liver are 
intrinsically connected, with the liver budding directly from 

the foregut during this period. Increasing evidence shows 
that the intestine and liver have multiple interdependence 
levels and that dysbiosis and metabolic changes in intes-
tinal microbiota are closely associated with NAFLD (Table 
1).45,48–53 This includes observations that patients with 
NAFLD experience increased intestinal permeability when 
compared with non-NAFLD patients,54 exhibit correlations 
between liver disease and microbiota changes,55 and the 
impact of flora manipulation on liver injury.16

Dysbiosis

Dysbiosis refers to the destruction of the normal intestinal 
microbiota, including the loss of beneficial bacteria, changes 
in bacterial abundance, and increased pathogen levels.6 The 
condition is induced by factors that include drastic environ-
mental changes, immune or host factors, changes in bile 
composition, gastric pH, and intestinal motility disorders.6,56 
In recent years, studies linking dysbiosis with NAFLD patho-
genesis have rapidly increased, focusing on the metabolism 
of intestinal microbes and their metabolites. However, the 
exact mechanism by which the gut microbiota promotes the 
progression of NAFLD needs additional study, and it is also 
necessary to discover more effective new treatments for gut 
microbes in NAFLD. A 2001 study by Wigg et al.57 was the 
first to describe the link between gut dysbiosis and liver dis-
ease. Using a 14C-D-xylose-lactulose breath test, the study 
showed that small intestinal bacterial overgrowth (SIBO) 
was present in 50% of patients with nonalcoholic steatosis, 
but in only 22% of control subjects (p=0.048). However, 
low participant numbers and excluded diseases potentially 
affected SIBO, such as diabetes and anemia, were major 
study limitations. In addition, subsequent studies showed 
that SIBO was related to low intestinal motility and other 
factors such as the inhibition of gastric acid secretion, de-
creased secretion of intestinal enzymes, and decreased bile 
flow, which is a causative factor in NAFLD.58,59 Furthermore, 
patients with SIBO experienced increased intestinal perme-
ability with more severe portal endotoxemia that may have 
exacerbated NAFLD progression.48

Animal studies where the microbiome is manipulated 
provide powerful evidence of dysbiosis in NAFLD. Turnbaugh 
et al.60 reported that obesity was related to changes in the 
relative abundance of two main bacteria, Bacteroides and 
Firmicutes by comparing the gut microbiota of genetically 
ob/ob mice with lean littermates. They also showed that the 
ability that the obese microbiota to obtain energy from the 
diet was partially transmissible, for a significant increase 
in total body fat after colonizing obese flora in sterile mice 
compared with the lean flora group. Furthermore, transgen-
ic mouse models have been used to study NAFLD-related in-
testinal dysbiosis to unravel mechanisms underpinning liver 
disease progression. Rahman et al.61 used F11r (−/−) mice 
encoding junctional adhesion molecule A (JAM-A) found that 

Table 1.  Changes in the gut microbiota in fatty liver disease

Disease Species Increased gut microbiota Decreased gut microbiota Reference

ALD Mouse Candida spp Intestinal fungi 51

Human Bifidobacteria, Lactobacilli, 
Proteobacteria, Fusobacteria

Faecalibacterium, prausnitzii, 
Coprococcus, Roseburia spp

52,53

NASH/NAFLD Mouse Bacteroides and Firmicutes A. muciniphila 45,48

Human Proteobacteria, Enterobacteriaceae, 
Escherichia, Bacteroides, Ruminococcus

Ruminococcaceae, Anaerospacter, 
Coprococcus, Eubacterium, 
Faecalibacterium, Prevotella

49,50,51

ALD, alcohol-related liver disease; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.
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JAM-A deficiency led to more severe NASH. Associated in-
flammation was reduced by antibiotics, which emphasized 
the contribution of microbial dysbiosis to NASH develop-
ment.

Although some animal studies have emphasized the role 
of gut microbiota in NAFLD, the literature on intestinal dys-
biosis in human NAFLD is scarce, especially on the full spec-
trum of NAFLD lesions. An obesity study reported that an 
increased abundance of Bacteroides was related to percent-
age weight loss but not to changes in dietary calorie levels. 
The study was performed by sequencing 16S ribosomal RNA 
genes from stool samples, suggesting obesity displayed cor-
relations with gut microbiota changes.49 Another study us-
ing 16S ribosomal RNA gene sequencing in 57 patients with 
biopsy-proven NAFLD, revealed that Bacteroides and Rumi-
nococcus were significantly increased, whereas Prevotella 
abundance was decreased in those with NASH compared 
with those without the condition.50 Indeed, studies of fecal 
microbiota transplantation have provided direct evidence. 
In one study, obese patients with metabolic syndrome re-
ceived small intestinal infusions of allogenic microbiota from 
a thin male donor with a body mass index (BMI) <23 kg/
m2 or autologous microbiota. Six weeks after infusion, re-
cipient insulin sensitivity and intestinal butyrate-producing 
microbiota levels were both significantly increased.62 The 
findings suggest that gut microbiota changes may be used 
to improve human insulin sensitivity, indicating the poten-
tial benefit for NAFLD treatment.

Leaky gut

As the hepatic portal vein collects blood supplies from the 
intestine, the liver is often exposed to potentially harmful 
intestinal metabolites, including translocated bacteria, LPS, 
endotoxins, and secreted cytokines.63 Therefore, leaky gut, 
previously associated with liver disease, has attracted con-
siderable attention in recent decades, and has been widely 
associated with complementary/alternative medicine ap-
proaches.64 Leaky gut is typically caused by several patho-
genic factors, including high-fat diet, gut microbiota dysbio-
sis, and reduced BAs secretion. The conditions change the 
intestinal mucosal barrier, which increases intestinal mu-
cosa permeability, causing leakage of bacteria, toxic diges-
tive metabolites, and bacterial toxins into the blood, induc-
ing liver immune responses.6,63,65 Dysbiosis changes tight 
junction proteins in the intestinal mucosa, increases mu-
cosa permeability, and exposes intestinal mucosal cells and 
the liver to potentially pro-inflammatory bacterial products. 
Cani et al.66 reported that gut dysbiosis induced by obe-
sity increased lower plasma LPS and cytokine levels and in-
creased the expression of inflammatory and oxidative stress 
markers associated with higher intestinal permeability and 
tight junction integrity changes. Meanwhile, gut microbiota 
are reported to have positive effects on intestinal barriers 
and permeability. For example, Bifidobacteria was shown 
to enhance barrier function in experimental necrotizing en-
terocolitis in mice and the yeast Saccharomyces boulardii 
had beneficial effects on altered intestinal microbiota and 
epithelial barrier defects in different pathologies.67

Products from translocated microorganisms may partici-
pate in NAFLD pathogenesis through a variety of mecha-
nisms. LPS is the central component of the outer membrane 
of Gram-negative bacteria and is an endotoxin related to 
NAFLD pathogenesis. Studies have shown that plasma LPS-
binding proteins in patients with NAFLD are significantly 
increased.68 LPS binds to LPS-binding proteins than then 
bind to toll-like receptor 4 (TLR4), triggering IR and inflam-
mation.69 During NAFLD occurrence and development, gut 
dysbiosis leads to increased LPS secretion. SIBO, changed 

intestinal barrier, and increased permeability promotes cir-
culating LPS level, which then elevated portal levels of gut-
derived TLR ligands. Activated TLR4 on hepatic Kupffer cells 
and stellate cells further stimulated pro-inflammatory and 
profibrotic pathways via a range of cytokines, including inter-
leukin-1 (IL1), IL6, and tumor necrosis factor (TNF).56,70,71 
TLR signal proteins have complex and cooperative interac-
tions with inflammasomes in metabolic diseases.72 Henao-
Mejia et al.72 reported that inflammasome-deficient mice 
had an increased expression of TLR4 and TLR9 agonists and 
more severe liver steatosis, which were closely related to 
an imbalance of intestinal microbiota. In fact, TLR signaling 
enhanced NASH progression by increasing the expression 
of pro-inflammatory cytokines, such as TNF-α. Specifically, 
TNF-α regulates liver cell death and prevents insulin signal 
transduction by inhibiting the insulin receptor and insulin 
receptor substrate-1, leading to IR.73 Inflammasomes have 
also been shown to activate several liver processes, includ-
ing cleavage of pro-caspase 1 to active caspase 1 leading to 
cell apoptosis.74 Another downstream effect mediated by in-
flammasomes is the release of IL1β, which promotes NAFLD 
progression. IL1β regulates lipid metabolism by inhibiting 
peroxisome proliferator-activated receptor alpha (PPARα) 
and downstream molecules, leading to accumulation of tri-
glycerides in the liver and promoting steatosis.73

Microbiota metabolism

Studies that evaluated the metabolic characteristics asso-
ciated with NAFLD or NAFLD-fibrosis and are summarized 
elsewhere.75 Changes in metabolites, including molecules 
produced by intestinal microorganisms, e.g., ethanol,76 SC-
FAs such as butyric, propionic, and acetic acid,56 and BA 
metabolites that target FXR in the liver or intestine,17,77,78 
all have important roles in liver injury pathophysiology. 
Here, we discuss the role of intestinal microbial metabolic 
substrates and circulating intestinal microbial-derived me-
tabolites in promoting NAFLD progression.

BAs

BAs are synthesized by hepatocytes and are discharged 
into the intestinal tract via the large papilla of the duode-
num. Their physiological functions include promoting fat 
digestion, increasing pancreatic lipase and lipoprotein es-
terase activity, and regulating the intestinal microbiota.79 
BA metabolism (enterohepatic circulation) and associated 
interactions with gut microbes are extremely complex and 
have been discussed earlier. In recent decades, BA func-
tions in the pathogenesis and treatment of the fatty liver 
have received considerable attention and are discussed 
in several reviews.29,80,81 As a signal regulator molecules, 
BAs regulate bodily immune homeostasis and inflammatory 
responses via the FXR (also known as NR1H4) and the G 
protein-coupled BA receptor, Gpbar1 (TGR-5; also known as 
GPR131, GPBAR1, M-BAR, and BG37), and further affect the 
physiological processes of liver cell fatty degeneration, cell 
damage, and apoptosis.82 FXR is a nuclear receptor believed 
to be the master regulator of BA metabolism. It is involved 
in all phases of the biosynthetic pathway and is expressed 
in a variety of tissues and organs, with the highest expres-
sion in liver and ileum cells.83 In addition, the FXR is acti-
vated by BAs to inhibit NLRP3 inflammasome activation by 
interacting with caspase-1, and to reduce release of IL-1B 
and other inflammatory factors to relieve NAFLD.84 A recent 
study reported that FXR knockout mice had an increased 
proportion of secondary BAs and infiltration of lymphocytes 
and neutrophils, whereas FXR overexpression alleviated liv-
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er damage caused by inflammation and infection.85 Indeed, 
FXR signaling is modulated by the gut microbiota. Li et al.86 
used the antioxidant, Tempol, to alter the microbiota and BA 
distribution, resulting in increased TβMCA levels and sup-
pressed FXR signaling.

TGR-5 is another BA response receptor involved in host 
metabolism. Functioning as a plasma membrane-bound G 
protein-coupled receptor (GPCR), the protein is generally 
highly expressed in the gallbladder, placenta, lung, spleen, 
intestine, liver, brown and white adipose tissue, skeletal 
muscle, and bone marrow.87 Recently, TGR-5 was shown to 
have a key role in anti-inflammatory effects,88 reinforcing 
barrier functions,89 and regulating BA metabolism in partici-
pation with intestinal microbiota.23,90 TGR-5 knockout mice 
had conventional phenotypes and reproductive abilities, but 
their BA pool was significantly reduced, suggesting that the 
TGR-5 receptor had important roles in maintaining BA ho-
meostasis.91 In addition, it was demonstrated that treating 
obese db/db mice with INT-767, a TGR-5 agonist, reduced 
liver steatosis and inhibited the expression of pro-inflam-
matory cytokines, indicating the TGR-5 signaling pathway 
had the potential to treat NAFLD.77

SCFAs

SCFAs are organic fatty acids with 1–6 carbon atoms that 
are produced by microbial carbohydrate fermentation in 
the intestinal tract. The most common SCFAs are acetic 
acid, produced by both the host and bacteria; propionic 
acid, butyric acid, produced by bacterial fermentation; is-
ovaleric acid, and valeric acid. Acetic, propionic, and bu-
tyric acid account for more than 95% of the entire SCFA 
complement.92 Butyrate is an energy source for intestinal 
cells and helps maintain the intestinal barrier.6 Recently, it 
was shown that SCFAs inhibited cell proliferation,93 induced 
cell differentiation and apoptosis,94 and is closely associat-
ed with inflammatory bowel disease (IBD),95 irritable bowel 
syndrome (IBS),96 colon cancer,97 NAFLD,56,98 and other 
digestive diseases. SCFA types and levels in the intestine 
vary with carbohydrate consumption and gut dysbiosis, but 
they promote NAFLD progression via several mechanisms 
such as binding to GPCRs. Using isotope-labeled SCFA en-
emas in rats, Besten et al.99 found that acetic acid, propi-
onic acid, and butyric acid were involved in the expression 
of fat metabolism-related genes. SCFAs protected the liver 
by reducing intestinal mucosa permeability through the gut-
liver axis and inhibiting endotoxin translocation.99 A recent 
study by Mollica et al.100 reported that butyric acid and its 
synthetic derivative, N-(1-carbamoyl-2-phenyl-ethyl) but-
yramide (FBA), regulated mitochondrial function, efficiency, 
and kinetics, and proposed it as a new therapeutic strat-
egy to combat obesity and IR. Specifically, butyric acid and 
FBA improved respiratory capacity and fatty acid oxidation, 
activated the AMPK acetyl-CoA carboxylase pathway, and 
promoted inefficient metabolism, thereby reducing intracel-
lular lipid accumulation and oxidative stress.100 Moreover, 
in another study, acetic acid inhibited liver fat accumula-
tion without changing food consumption or skeletal muscle 
weight, and was also associated with the PPARα and AMPK 
pathways.101 Notably, an NAFLD study demonstrated sta-
tistically significant differences in Clostridium and Bacteroi-
detes percentages compared with normal groups. Indeed, 
the changes between Clostridium and Bacteroidetes may 
adjust the proportion of SCFAs that affect the energy supply 
and demand in the liver, altering the progress of NAFLD.102

The GPCRs, GPR41 and GPR43 are the main targets of 
SCFAs acting on intestinal endocrine cells, and produce a 
variety of effects that may lead to NAFLD. The exact mecha-
nisms are related to the slowing of gastric emptying and 

intestinal transit and improved nutrient absorption,103 in-
hibiting lipolysis and promoting fat cell differentiation,16,104 
and increasing intestinal inflammation and permeability to 
participate in NASH pathogenesis.105

Bacterially-derived ethanol

Endogenous alcohol refers to ethanol produced by dietary 
sugar fermentation, with intestinal microbiota being the 
main source of this alcohol. Under normal physiological 
conditions, the body’s metabolism will continuously produce 
ethanol.106 After eating nonalcoholic food, the blood ethanol 
concentration also increases. Bacterially-derived ethanol is 
quickly and completely eliminated in the portal vein by liver 
alcohol dehydrogenase (ADH), catalase, and the microso-
mal ethanol oxidizing system. When ADH is inhibited, blood 
ethanol concentrations increase. The fact that the human 
liver and digestive tract both have the highest ADH activi-
ties proves that the intestinal tract produces alcohol.107

NAFLD and alcoholic fatty liver disease are pathologically 
similar and may have common pathogenic mechanisms. 
Studies have confirmed that blood ethanol concentrations 
are higher in obese patients or obese mice than in lean 
individuals, suggesting intestinal alcohol may be related to 
the occurrence of NASH.108 In addition, excess growth of 
small intestinal bacteria and gut dysbiosis (e.g., increased 
Escherichia coli) may lead to increased levels of endoge-
nous alcohol. Zhu et al.109 reported significantly increased 
E. coli levels in patients with NASH compared with obese 
patients. As E. coli is the main alcohol-producing bacteria, 
differences in blood ethanol concentrations were observed, 
suggesting a role for alcohol-producing microbiota in this 
condition. Moreover, recent studies reported the increased 
expression of alcohol-metabolizing enzymes (i.e. ADH) in 
patients with NASH. Specifically, increased ADH activity in-
creased acetaldehyde levels, which further increased small 
intestine mucosa permeability. The absorption of intestinal 
microbiota metabolites increased, which augmented acetal-
dehyde levels and promoted NASH.110

Ferroptosis in NAFLD

Iron overload is prevalent in NAFLD patients, and it is widely 
accepted that iron-induced lipid peroxidation is one of the 
major triggers of NAFLD.111 In addition, iron imbalance is 
associated with obesity and IR, both of which are typical 
features of patients with NAFLD.112 In general, people tend 
to speculate that ferroptosis may be involved in the patho-
genesis of NAFLD, which has been confirmed by numerous 
studies.113 Fortunately, some drugs that act on ferroptosis 
targets (e.g., sorafenib, sulfasalazine, and artesunate) have 
been widely reported, making it possible that ferroptosis 
could be a key target for the treatment of NAFLD (Table 
2).114–126

Dietary Fe3+ is absorbed by duodenal intestinal epithelial 
cells and reduced to Fe2+ by divalent metal-ion transporter-1 
(DMT1). Fe2+ absorbed into the blood is oxidized to Fe3+ by 
ceruloplasmin, bound by transferrin, and then transported 
to tissues. However, because of the first-pass effect of the 
hepatic portal circulation, iron exposure of the liver is much 
greater than that of other tissues, resulting in liver dam-
age and various complications.127 Serum ferritin is a clinical 
biomarker for detecting iron homeostasis in the body. When 
the serum ferritin content is abnormal, the overload opera-
tion of the liver as an organ responsible for removing serum 
ferritin further aggravates liver damage. The expression of 
ferritin is influenced by iron stores and inflammation, and 
elevated ferritin levels are common in NAFLD.128 In a study 
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of 628 adult patients with biopsy-proven NAFLD, a serum 
ferritin (SF) 1.5 times the upper limit of normal has been 
associated with a diagnosis of NASH, higher steatosis grade, 
and lobular inflammation. Elevated SF was also found to 
be an independent predictor of advanced hepatic fibrosis in 
patients with NAFLD.129 Also, a study of 25,597 participants 
in Korean National Health and Nutritional Examination Sur-
veys between 2007 and 2012 and confirmed that people 
with higher SF levels were more likely to have NAFLD. An in-
crease in SF of 10 ng/mL increased the likelihood of NAFLD 
by 3–10%.130 Therefore, many researchers have proposed 
that in equivocal circumstances, SF measurement can be 
used to assess the risk of NAFLD.131 However more long-
term studies are needed to assess the relationship between 
SF levels and complications of liver disease (e.g., HCC) and 
liver-related mortality.

Iron overload is prevalent in NAFLD patients.132 In a ret-
rospective study, patients with biopsy-proven NAFLD and 
iron overload had poor long-term outcomes133 that may 
have been the result of increased IR, excess hepatic lipid 
peroxidation, and accelerated liver fibrosis progression 
caused by iron overload.134 Loguercio et al.135 found that 
more than 90% of NAFLD patients had increased levels of li-
pid peroxidation markers, including malondialdehyde (MDA) 
and 4-hydroxynonenal (4-HNE), which were significantly 
higher in NASH patients than in steatosis patients. Qi et 
al.113 studies the impact of ferroptosis on the progression of 
NASH induced by a methionine/choline-deficient diet (MCD) 
for 10 days. RSL3, a ferroptosis activator, aggravated symp-
toms, including serum biochemical index levels, liver ste-
atosis, and inflammation) in mice with NASH induced by 
the MCD diet. Sodium selenite, a GPx4 activator, rescued 
RSL3-induced lipid peroxidation and cell death. Similarly, Li 
et al.20 used RNA-seq analysis to show that arachidonic acid 
metabolism promote ferroptosis in the MCD diet-induced 
NASH mouse model, suggesting that ferroptosis may be a 
therapeutic target for NASH treatment. Consistently, other 
studies found that some drugs like Ginkgolide B and dehy-
droabietic acid alleviated NASH severity by inhibiting fer-
roptosis. In that context, Nrf2 and GPx4 stand out as major 
protective mechanisms.114,136 Overall, the results imply that 

the regulation of ferroptosis in the context of NAFLD is an 
intriguing notion that deserves further investigation.

Targeting the gut microbiota to prevent NAFLD

As discussed, gut dysbiosis and associated metabolites such 
as BAs, SCFAs, and endogenous ethanol, and inflammatory 
responses and damage of the intestinal barrier are impor-
tant factors during NAFLD occurrence and development. If 
those conditions are corrected, NAFLD progression can be 
slowed and possibly reversed. This section focuses on gut 
microbiota regulation as a therapeutic target for NAFLD pre-
vention, including lifestyle and diet therapies, antibiotics, 
probiotics, and prebiotics, glucagon-like peptide-1 (GLP-1) 
receptor agonists (GLP-1 RA), and sodium/glucose cotrans-
porter-2 inhibitors (SGLT2i; Table 3).[137,–146]

Lifestyle and diet therapy

NAFLD is closely related to obesity.147 Studies have shown 
that eating foods rich in fat and fructose alters the intestinal 
microbiota, changes intestinal barrier function, and causes 
endotoxemia and inflammatory reactions, all of which pro-
mote obesity and NAFLD.148 Therefore, the most important 
treatment goal for patients with NAFLD is weight reduction 
and maintenance of a healthy lifestyle to reduce liver fat 
deposition and inflammatory responses. In addition, a bal-
anced diet, adequate sleep, and appropriate exercise are 
essential to maintain intestinal microbiota stability and 
health, and to reduce the risk of other diseases. Dietary 
interventions are effective in the treatment of NAFLD pa-
tients. Even a modest 3–5 kg weight gain predicts the de-
velopment of NAFLD independent of baseline BMI. In addi-
tion, patients with NAFLD were found to experience a 75% 
remission rate with a weight loss of 5% or more from base-
line.149 Much evidence suggests that the Mediterranean diet 
can reduce liver fat, even without weight loss. It is the most 
recommended diet for NAFLD.150 The Mediterranean diet in-

Table 2.  Drugs targeting ferroptosis in liver disease

Drug Target Mechanism Reference

Ferroptosis 
promoters

Erastin, glutamate, 
ulfasalazine, sorafenib

System Xc− Inhibits system Xc−, resulting 
in GSH depletion

177,116

FIN56 GPX4 Depletes CoQ10, resulting 
in lipid peroxidation

117

FINO2 GPX4 inhibits GPX4 enzymatic function 
and directly oxidizes iron, ultimately 
causing widespread lipid peroxidation

118

Statin HMG-CoA 
reductase

Inhibits CoQ10, resulting 
in lipid peroxidation

119

Artesunate Ferritinophagy Activates ferritinophagy 120

Ferroptosis 
inhibitors

Ferrostatins, liproxstatins-1, 
vitamin E

PUFAs, GPX4 Inhibits lipid peroxidation 121–123

Ginkgolide B Nrf2 Activates Nrf2, leading to 
reducing lipid peroxidation

114

Deferoxamine (DFO), deferiprone Iron Chelate iron ions 124,125

Dihydrobiopterin (BH2), 
tetrahydrobiopterin (BHA)

Lipid Remodeling Selectively preventing depletion 
of phospholipids with two 
polyunsaturated fatty acyl tails

126

CoQ10, coenzyme Q10; GPX4, glutathione peroxidase 4; GSH, glutathione; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; Nrf2, nuclear factor erythroid 2-related 
factor 2; PUFAs, polyunsaturated fatty acids.
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cludes nuts, fruits, legumes, olive oil, vegetables, and fish, 
in which consumption of sugar and refined carbohydrates is 
decreased and consumption of monounsaturated fatty acids 
and omega-3 fatty acids is increased. Dietary micronutri-
ents also greatly influence the progression of NAFLD. Stud-
ies have shown that the intake of micronutrients such as 
vitamin C, vitamin D, and choline is significantly negatively 
correlated with the prevalence of NAFLD, which may be re-
lated to their antioxidant and antifibrotic activity.151 How-
ever, randomized controlled trials have not resulted in clear 
evidence that high-dose vitamin D supplementation is ben-
eficial for hepatic steatosis or IR in NAFLD.152 Although the 
Mediterranean diet advocates moderate alcohol consump-
tion, whether or not alcohol should be allowed in NAFLD pa-
tients remains controversial. Regular alcohol consumption 
increases the risk of developing HCC in NASH patients with 
cirrhosis, so alcohol should be avoided in such patients.153 
However, in patients without cirrhosis, uncertainty about 
the impact of moderate drinking (e.g., 12 ounces of beer, 4 
ounces of wine, or 1 ounce of liquor) is not clear, so prudent 
drinking is advised.

Sleep is an essential physiological process required for 
normal function, and adequate sleep patterns help main-
tain normal homeostasis. In recent decades, studies have 
shown that sleep-related factors, especially sleep time, in-
fluence the risk of obesity.154 A prospective study by Nielsen 
et al.155 reported that patients with obesity slept for signifi-
cantly shorter periods than nonobese individuals. Also, Gild-
ner et al.156 observed that in middle-aged individuals, short 
sleep duration was significantly correlated with elevated 
BMI and waist circumference. However, obesity-associated 
mechanisms caused by shortened sleep times remain un-

clear. A recent study showed that a chronic lack of sleep 
decreased leptin and increased ghrelin levels, resulting in 
a “hyperappetite.”157 Increased eating rate caused by pro-
longed wakefulness was also a cause of obesity.158 People 
with short sleep times are prone to fatigue that leads to 
reduced exercise, increased weight gain, or obesity. In ad-
dition to sleep time, changes in circadian rhythm influence 
development of obesity and NAFLD progression.137 Voigt 
et al.159 reported that reversing circadian rhythms in mice 
changed the Firmicutes and Bacteroidetes composition in 
those fed a high-sugar diet, but the microbiome in mice fed 
normal diets did not change. Summa et al.160 also found that 
circadian rhythm disorders increased intestinal permeability 
in mice, promoting alcohol-induced steatohepatitis.160

Weight loss is recognized as a basic and key measure 
for NAFLD management, and exercise is an effective and 
safe way to lose weight. For patients with NAFLD, exercise 
not only directly reduced liver fat content, but also reduced 
fatty acid absorption, improved insulin sensitivity,161 re-
duced liver transaminase indicators, and improved other 
metabolic indicators.162 In 2009, George et al.162 compared 
the low intensity exercise, medium intensity exercise, and 
control groups. After a 3-month intervention, patients who 
maintained more than 150 min/week had decreased serum 
transaminase levels, independent of changes in body mass, 
effectively illustrating physiological exercise advantages for 
these patients. Previous studies have also shown that ex-
ercising changes the composition of intestinal microbes and 
affects NAFLD progression.163 Munukka et al.164 recruited 
17 overweight adult women for a 6-week bicycle endurance 
training study and found that exercises decreased Proteo-
bacteria, but significantly increased Akkermansia levels. 

Table 3.  Gut microbiota-targeted therapies of NAFLD

Interventions Main effects Experimen-
tal model

Clinicaltri-
als.gov ID Reference

Lifestyle and 
diet therapy

Keeping circadian 
rhythm

Circadian rhythm disorders 
increase intestinal permeability, 
promoting hepatic steatosis

High-fat diet 
(45% fat)

– 137

Weight loss/
exercise

Increasing gut microbe diversity, 
improving metabolic capacity, 
and reducing Bacteroides 
to Firmicutes ratio

Mice with HFD 
(45% kcal from 
fat) for 12 weeks

– 138

Antibiotic Rifaximin (1,200 
mg/daily)

Reduction in serum AST, 
ALT, and endotoxin

Biopsy-proven 
NAFLD, n=42

NCT02009592 139

Cidomycin Lowering serum levels of ALT, AST 
and alleviating the severity of NASH

Rats with NASH – 143

Probiotics Lactobacillus 
(LcS)

Suppressing NASH development MCD diet-induced 
NASH in mice

– 144

Bifidobacterium 
(Bif)

Ameliorating visceral fat 
accumulation and insulin sensitivity

HFD-fed rats – 145

VSL#3 Improving the degree of 
liver disease in children

44 obese children 
with NAFLD

NCT01650025 146

Prebiotic Fructo-
oligosaccharides 
(FOS)

Restoring normal gastrointestinal 
microflora and decreasing 
steatohepatitis

MCD diet-induced 
NASH in mice

– 140

Lactulose Ameliorating the hepatic 
inflammation and decreasing 
serum levels of ALT and AST

HFD-induced 
NASH in rats

– 141

GLP-1 RA liraglutide decreasing Proteobacteria and 
increasing Akkermansia muciniphila

HFD mice – 142

NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; HFD, high-fat diet; MCD, methionine-choline-deficient; GLP-1 RA, glucagon-like peptide-1 
(GLP-1) receptor agonists.
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Animal studies have also confirmed the effect of exercises 
on gut microbiota. Petriz et al.165 reported that treadmill 
exercises changed the composition and abundance of mi-
croorganisms, and training increased lactobacilli, (beneficial 
bacteria) numbers in obese rats. Denou et al.138 conducted 
a 6-week high-intensity exercise regime in rats fed a high-
fat diet, and found that the exercise intervention increased 
gut microbe diversity, improved metabolic capacity, and re-
duced the Bacteroides to Firmicutes ratio.

Antibiotics

Therapeutic antibiotics inhibit excessive proliferation of in-
testinal microbes and bacterial translocation. They alter 
disease-related microbial communities to ensure healthy ho-
meostasis. Antibiotics eliminate harmful microbiota, and are 
effective in several digestive-system models, including he-
patic encephalopathy,166 IBS,[1167] IBD,168 and NAFLD.47,169 
The therapeutic effects of antibiotics in NAFLD are attributed 
to (1) improving leaky gut by reducing pathogens and poten-
tial pathogens and suppressing liver inflammation and (2) re-
ducing harmful bacterial metabolites which promote NAFLD. 
In an observational study, Gangarapu et al.139 reported that 
after 28 days of with rifaximin treatment of NASH patients, 
circulating endotoxin levels were significantly reduced. 
Short-term rifaximin treatment acted on intestinal bacteria 
to achieve the desired therapeutic effectiveness. However, 
more clinical trials are required to confirm effective rifaximin 
treatment cycles for patients with NAFLD.

Animal studies have reported that antibiotics quickly and 
significantly altered the intestinal microbiota. Broad-spec-
trum antibiotics, such as ampicillin, neomycin, metronida-
zole, and vancomycin reduced hepatitis by regulating free 
secondary BA levels and improving liver steatosis by inhib-
iting the FXR pathway to downregulate liver SREBP1C ex-
pression.85,170 However, another study found that penicillin 
G and erythromycin aggravated liver lipid metabolism and 
inflammatory reactions.171 Antibiotics also promoted liver li-
pid accumulation, inflammatory responses, and liver fibrosis 
by increasing liver immune damage.172 At the same time, 
we cannot ignore the impact of antibiotics on the beneficial 
intestinal microbiota, therefore correct use of effective anti-
biotic treatment requires more comprehensive research.

Probiotics and prebiotics

Probiotics are living microorganisms that benefit host 
health.6 Studies show that they regulate the intestinal mi-
crobiota,173 enhance intestinal barrier function,174 reduce 
intestinal permeability,175 alleviate immune and metabolic 
damage,176 up-regulate fatty acid oxidation,177 and reduce 
liver steatosis and inflammatory-response damage.178 A 
recent meta-analysis confirmed that Lactobacillus, Bifido-
bacterium, Streptococcus probiotics, when used for 8–24 
weeks were beneficial for the recovery of liver enzymes and 
IR in patients with NAFLD.179 A clinical study reported that 
after a 6 month intervention with the probiotic, Lepicol in 10 
patients with NASH, intrahepatic triacylglycerol levels were 
reduced by more than 30% compared with baseline levels 
and serum AST levels were significantly reduced.180 A ran-
domized controlled trial of 42 patients with NAFLD found 
that fasting blood glucose, insulin, IR, TNF-a, and IL6 were 
significantly reduced after 8 weeks of probiotic treatment 
(two capsules/day).181 Other studies have reported an as-
sociation of probiotics on liver fibrosis or death in NAFLD 
patients, therefore results are inconsistent. A liver biopsy 
clinical study reported that Bifidobacterium longum sup-
plementation significantly improved liver steatosis, but not 

liver fibrosis.182 In a long-term survey of 39 biopsy-con-
firmed patients with NAFLD, the continuous use of the pro-
biotic, VSL#3 for 1 year significantly improved NAFLD activ-
ity scores, hepatocyte swelling, and liver fibrosis. Prebiotics 
are dietary supplements that benefit the host by selectively 
stimulating the growth and/or activity of one or several bac-
terial colonies.183 Matsumoto et al.140 studied the effects 
of fructo-oligosaccharides (FOSs) on intestinal barrier func-
tion and steatohepatitis in mice with methionine-choline 
deficiency. Liver inflammation and hepatocyte steatosis 
in FOS-treated mice were significantly reduced (p<0.01), 
suggesting that 3 weeks of treatment improved NAFLD and 
restored barrier functions in the intestinal tract.140 The pro-
biotic lactulose promoted Bifidobacteria and lactic acid bac-
teria growth. Fan et al.141 used it to treat mice with NAFLD 
induced by a high-fat diet, and showed that liver inflamma-
tion indicators such as AST and ALT in the lactulose treat-
ment group (0.9 mL/kg/day for 8 weeks) were significantly 
reduced, but hepatocyte steatosis was not significantly im-
proved, suggesting that lactulose reduced liver inflamma-
tion but did not improve fat degeneration in liver cells.141

Glucagon-like peptide-1 (GLP-1) receptor agonists 
(GLP-1 RAs) and sodium/glucose cotransporter-2 
inhibitors (SGLT2is)

GLP-1 is an incretin secreted by L cells in the distal small 
intestine and colonic mucosa after meal stimulation in a glu-
cose concentration-dependent manner. It promotes insulin 
secretion and participates in the regulation of blood glucose 
homeostasis. GLP-1 has a very short half-life in vivo, and 
is degraded by dipeptidyl peptidase-4 (DPP-4), so it cannot 
be used for disease treatment.184 GLP-1 RA belongs is an 
incretin drug with pleiotropic effects such as lowering blood 
glucose and blood lipids and reducing body weight.185 Recent 
studies have found that GLP-1 RA improved IR in NAFLD, 
reduced liver steatosis, and improved liver fibrosis. It is of 
great significance for the treatment of NAFLD, especially 
NAFLD complicated with T2DM.186 A randomized, multicent-
er, double-blind, placebo-controlled phase 2 trial in the UK 
that evaluated the safety and efficacy of subcutaneous lira-
glutide, an acylated GLP-1 RA, 1.8 mg daily compared with 
placebo in patients with biopsy-confirmed NASH. Liraglutide 
significantly improved hepatic steatosis by 83% in the lira-
glutide group and 45% in the placebo group, and hepato-
cyte swelling by 61% in the liraglutide group and 32% in the 
placebo group. which indicated that the patient’s NASH was 
in remission. The histological effects of liraglutide on NASH 
were not entirely mediated by its action on the improvement 
of glycemic control.187 A study by Moreira et al.142 showed 
that liraglutide not only reduced hepatic fat accumulation by 
78% in ob/ob mice and reversed steatosis in HFD mice, but 
also altered the overall gut microbial composition. Proteo-
bacteria decreased and Akkermansia muciniphila increased 
in the mice fed the HFD. The studies suggest that GLP-1 RA 
contributed to the improvement of NAFLD by the regulation 
of gut microbiota, which offers a new perspective for us to 
find gut microbiota-targeted therapies of NAFLD.

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are 
a class of hypoglycemic drugs that is commonly used in 
clinical practice to reduce the reabsorption of glucose by the 
kidneys, intestines, and heart. Several studies showed that 
SGLT-2i was associated with improvement of hepatic stea-
tosis.143 In an open-label, randomized, active-controlled 
trial, Ito et al.189 of 66 patients with type 2 diabetes and 
NAFLD found that ipragliflozin 50 mg significantly reduced 
body weight and visceral fat area. A similar study by Nasiri-
Ansari et al.190 in mice fed an HFD found that empagliflozin 
reduced fasting glucose, total cholesterol, and serum tri-
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glyceride levels; and decreased the NAFLD activity score, 
expression of lipogenic enzymes, and inflammatory mol-
ecules. However, side effects associated with SGLT-2 inhibi-
tors, such as increased risk of urinary and genital infections 
cannot be ignored. The increased risk may be explained by 
the fact that persistent diabetes may promote the growth of 
pathogenic microorganisms. A meta-analysis showed that 
gliflozins were associated with an increase in genitourinary 
infections,191 and they have also been reported to increase 
the risk of malignancy, particularly of the breast or bladder, 
but no studies have confirmed that possibility.192

Conclusions

Evidence that the gut microbiota has important mechanistic 
roles in NAFLD occurrence and progression is increasing. 
Gut microbiota dysbiosis usually reduces beneficial bacteria 
and SIBO, changes small intestine mucosal barriers, and 
increases intestinal permeability and microbial metabolites 
(e.g., LPS and SCFAs). That increases endotoxins and in-
flammatory factors that enter the liver via the gut-liver axis, 
inducing immune and inflammatory reactions, and culmi-
nating in NAFLD (Fig. 2).

No drugs are currently licensed for NAFLD therapy, but 
diet and exercise have proven to be effective treatments. 
Because of the relationship between NAFLD and T2DM, 
many diabetes drugs have achieved positive results in re-
lieving NASH. In addition, experimental drugs targeting in-
termediate metabolism in NAFLD have also been shown to 
be beneficial, but adverse effects may limit their use. This 
review focuses of the gut microbiota and ferroptosis treat-
ments for NAFLD, as well as proposing new treatment strat-

egies. Lifestyle and diet, antibiotics, regulation of ferropto-
sis, probiotics, and prebiotics, GLP-1 RA, and SGLT2i may 
become effective and safe treatments to alleviate NAFLD. 
However, to effectively transform and apply animal model 
findings to humans, well-designed large clinical trials, span-
ning multiple disease etiologies and patient characteristics, 
are required.
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