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Abstract

Currently, scientific interest has focused on fat accumulation 
outside of subcutaneous adipose tissue. As various imaging 
modalities are available to quantify fat accumulation in partic-
ular organs, fatty pancreas has become an important area of 
research over the last decade. The pancreas has an essential 
role in regulating glucose metabolism and insulin secretion by 
responding to changes in nutrients under various metabolic 
circumstances. Mounting evidence has revealed that fatty 
pancreas is linked to impaired β-cell function and affects in-
sulin secretion with metabolic consequences of impaired glu-
cose metabolism, type 2 diabetes, and metabolic syndrome. 
It has been shown that there is a connection between fatty 
pancreas and the presence and severity of nonalcoholic fatty 
liver disease (NAFLD), which has become the predominant 
cause of chronic liver disease worldwide. Therefore, it is nec-
essary to better understand the pathogenic mechanisms of 
fat accumulation in the pancreas and its relationship with 
NAFLD. This review summarizes the epidemiology, diagnosis, 
risk factors, and metabolic consequences of fatty pancreas 
and discusses its pathophysiology links to NAFLD.
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Introduction

The prevalence of obesity is rapidly increasing worldwide 

because of sedentary lifestyles and the westernization of 
diets.1 It is well known that obesity causes numerous meta-
bolic derangements and accumulation of fat in specific vis-
ceral organs, including the liver and the pancreas.2 In the 
liver, the accumulation of triglycerides in the absence of ex-
cessive alcohol intake and other chronic liver diseases has 
been defined as nonalcoholic fatty liver disease (NAFLD). 
NAFLD can progress from simple steatosis to the more ac-
tive form of nonalcoholic steatohepatitis and eventually 
lead to cirrhosis, hepatocellular carcinoma, and a short life 
expectancy.3,4 Recently, fat accumulation in the pancreas 
has gained considerable attention. Excessive fat storage 
in pancreatic tissue was first reported by Ogilvie in 1933, 
who called it pancreatic lipomatosis.5 The term pancreatic 
lipomatosis has since been replaced by various terms, in-
cluding fatty pancreas, pancreatic steatosis, pancreatic fat 
accumulation, fatty infiltration of the pancreas, lipomatous 
pseudohypertrophy, and nonalcoholic fatty pancreas.6–8 In 
this review, the general term “fatty pancreas” refers to all 
cases of fat accumulation in the pancreas. To date, grow-
ing evidence has shown associations between fat content 
in the pancreas and the liver, suggesting a potential rela-
tionship between fatty pancreas and NAFLD. The data also 
suggest that fatty pancreas has unfavorable effects on glu-
cose metabolism and that it is involved in the pathogenesis 
of NAFLD. This review summarizes the current knowledge 
on the epidemiology, diagnostic modality, risk factors, and 
metabolic consequences of fatty pancreas and its patho-
physiology links to NAFLD.

Epidemiology

The prevalence of fatty pancreas varies significantly popula-
tion ethnicity and the diagnostic methods used. Health ex-
aminations utilizing transabdominal ultrasound (US) show 
a prevalence of fatty pancreas ranging from 11% to 35% 
in Asian populations.9–11 The prevalence of fatty pancreas 
increased to 61.4% in individuals visiting an obesity clin-
ic.12 However, data on the epidemiology of fatty pancreas 
in Western populations is limited. The prevalence of fatty 
pancreas was 27.8% in 230 patients who were referred for 
various reasons to an academic medical center in the United 
States of America for endoscopic ultrasound (EUS).13

To date, Wong and colleagues14 reported the most com-
prehensive data on the prevalence of fatty pancreas in the 
general population. A group of 685 adults chosen randomly 
from the government census database in Hong Kong, un-
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derwent standardized chemical shift-encoded magnetic res-
onance imaging (MRI) of the pancreas. The upper limit of 
normal was the ninety-fifth percentile of intrapancreatic fat 
deposition in individuals who did not meet any of the criteria 
for metabolic syndrome and had no history of alcohol abuse. 
Fatty pancreas was found in 16.1% of the general popula-
tion [95% confidence interval (CI): 13.3–18.8%]. Data on 
the prevalence of fatty pancreas in selected populations of 
persons with various metabolic disorders were systemati-
cally reviewed by Singh and colleagues.15 A meta-analysis 
of 11 studies comprising 12,675 individuals estimated a 
pooled prevalence of 33% (95% CI: 24−41%).15 It is note-
worthy that the included studies used a variety of imaging 
modalities. Fatty pancreas was found to be associated with 
a 67% increased risk of hypertension, a 108% increased 
risk of diabetes mellitus, and a 137% increased risk of met-
abolic syndrome.15 Several studies have reported an asso-
ciation between fatty pancreas and NAFLD.9,10,16 According 
to imaging studies, approximately 50–80% of patients with 
nonalcoholic steatohepatitis have fatty pancreas.17,18 The 
findings indicate that individuals with metabolic syndrome 
and NAFLD should be tested for fatty pancreas; however, 
further research is needed to better define the epidemiology 
of fatty pancreas.

Detection of pancreatic fat

Fat accumulation in the pancreas can be either intralobular 
or interlobular. Intralobular fat comprises lipid droplets in 
endocrine cells, lipid droplets in acinar cells, and the re-
placement of acinar or other apoptotic cells with adipocytes. 
In contrast, interlobular fat constitutes interlobular adipo-
cytes and a small lipid droplet in stellate cells and is exclu-
sively observed in a quiescent state.19 Intrapancreatic fat 
is usually located within the interstitial septa and spares 
the acini and islets of Langerhans,20 as shown in Figure 
1. Of note, fat accumulation may be unequally distributed 
throughout the pancreas.21

Different cut-off values of fat accumulation in the pan-

creas for determining fatty pancreas have been used. An 
initial study reported that 60% of healthy subjects had a 
pancreatic fat content of more than 5%.14 Several studies 
found that a normal pancreas had a maximum fat content of 
10.4%.14,22 A meta-analysis reported that the highest limit 
of normal pancreatic fat in healthy persons participating in 
MRI studies was 6.2%.15 This threshold is recommended for 
use in future research.

There is no standard grading system for the severity of 
fatty pancreas. In a cross-sectional study of 367 patients 
who underwent pancreatoduodenectomy for pancreatic 
ductal adenocarcinoma, the histology of pancreatic fat accu-
mulation was classified into three grades, mild (fat infiltra-
tion of less than 10% of total pancreatic tissue), moderate 
(fat infiltration of 10–20% of total pancreatic tissue), and 
severe (fat infiltration of more than 20% of total pancreatic 
tissue).23 Therefore, to determine the presence and severity 
of fatty pancreas in routine patient care, standardized ex-
amination approaches with a clinically meaningful threshold 
for fatty pancreas must be developed.

Pathophysiology of pancreatic fat accumulation

The two main mechanisms for pancreatic fat accumulation 
are fatty replacement and fatty infiltration.6,8,24,25 Fatty 
replacement, which is often believed to be irreversible, 
occurs because of pancreatic acinar cell death. This theo-
retical pathogenic pathway was derived from animal and 
observational studies. In animal studies, pancreatic duct 
ligation resulted in an increased pancreas volume in mice 
because of interstitial edema in the first 2 days, followed 
by a rapid decrease in pancreas volume because of acinar 
cell apoptosis. After 2 weeks, the pancreas gradually be-
came more prominent because of fatty replacement, reach-
ing a volume comparable. to a normal pancreas within 8 
weeks.26 Several human observational studies showed that 
pancreatic insults causing necrosis of acinar cells resulted 
in fatty replacement. Recurrent acute pancreatitis may re-
duce the parenchymal mass and substitute it with adipo-

Fig. 1.  Histology of normal and fatty pancreas. Histological examination with hematoxylin and eosin stain reveals interlobular adipocytes (arrowhead, A1) pre-
dominately with only a few intralobular lipid droplets (arrowhead, A2), accounting for 3% of the total, indicating a normal pancreas (A3). Histological examination 
shows many peripancreatic (arrowhead, B1) and interlobular adipocytes (arrow, B2) with an increase in intralobular intracellular lipid droplets (B3), accounting for 23% 
of the total, indicating fatty pancreas.
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cytes.27,28 Medications, such as corticosteroids and gem-
citabine, can induce pancreatic necrosis and fatty tissue 
replacement.29–32 Certain congenital syndromes, including 
cystic fibrosis, hemochromatosis, Shwachman-Diamond 
syndrome, Johanson-Blizzard syndrome, and carboxyl-es-
ter-lipase gene mutations, were found to be associated with 
pancreatic fatty replacement.6,25 In cystic fibrosis, mucous 
plugs obstruct the pancreatic ductules, causing pancreatic 
parenchyma damage and death, and the resulting empty 
spaces are occupied by adipocytes.33 In hemochromatosis, 
iron overload causes fatal damage to the pancreatic paren-
chyma, which is subsequently replaced by adipose tissue.6 
The pathophysiology of fatty pancreas in specific congenital 
syndromes is not yet known.

On the other hand, fatty infiltration of the pancreas by 
adipocytes that typically occurs in obesity is potentially 
reversible.6 Circulating free fatty acids, dietary fat intake, 
and de novo lipogenesis are all potential sources of fatty 
infiltration.34 In an animal study, Zucker diabetic fatty rats 
fed a high-fat diet developed fat accumulation in pancreatic 
acinar cells.35 Animal and in vitro studies led to the descrip-
tion of a potential mechanism of fatty infiltration. In the 
presence of oxidative stress, an increase in free fatty acid 
transport to the pancreas by very-low-density lipoprotein 
and changes in various adipokines such as adiponectin,36 
lipocalin-2,37 and hepatokine fetuin-A38 via the serine/thre-
onine-protein kinase 25 (STK-25) pathway may contribute 
to this type of pancreatic fat accumulation.39

Risk factors for fatty pancreas

Age, sex, and ethnicity have been shown to be associated 
with fatty pancreas.9,10,16,40 In addition to genetic predis-
position, metabolic and environmental risk factors, nota-
bly cigarette smoking and alcohol consumption, have been 
linked to fatty pancreas.41,42 Fat accumulation in the pan-
creas increases until the sixth decade, whereas parenchy-
mal pancreatic volume increases until the third decade and 
then declines. That leads to an increase in the fat/paren-
chymal ratio in the elderly.43 According to a study that used 
fat-water MRI and proton-magnetic resonance spectroscopy 
(MRS) to measure pancreatic fat in healthy Chinese sub-
jects, the overall risks of developing fatty pancreas were 
4.95 (95% CI: 2.07–11.8) in elderly and 3.20 (95% CI: 
1.44–7.15) in middle-aged, compared with young adults.14

The prevalence of fatty pancreas also varies with sex. 
Obese men have higher visceral adipose tissue (VAT) and 
ectopic fat deposition in the liver and pancreas than obese 
women, regardless of body mass index (BMI).44 Fatty pan-
creas is more common in men between 40 and 49 years of 
age. In women, the prevalence of fatty pancreas is highest 
after the sixth decade.14 This finding is supported by data 
showing that menopause changes adipose tissue toward a 
more android phenotype.45

The occurrence of fatty pancreas also differs with eth-
nicity. Fatty pancreas defined by MRI is more prevalent in 
Hispanics and Caucasians than in African Americans.46,47 A 
study that used computed tomography (CT) as a diagnostic 
modality found that Asians were more likely than Cauca-
sians to have fatty pancreas.48 Insulin resistance has been 
associated with fatty pancreas in African Americans but not 
in Hispanics.49

The impact of lifestyle factors, such as tobacco smok-
ing and alcohol consumption, on the development of fatty 
pancreas has been evaluated. Alcohol intake, even mod-
erate alcohol consumption, was associated with increased 
fat deposition in the pancreas.17 In a study using MRI to 
measure intrapancreatic fat deposition, the amount of to-
bacco used but not the duration of smoking contributed to a 

higher variation in intrapancreatic fat deposition in patients 
after an attack of acute pancreatitis.42 This finding provides 
insight into the interplay between these risk factors and 
pancreatic fat deposition, particularly after pancreatitis.

Several investigations have discovered an associa-
tion between metabolic syndrome and an increased risk 
of fatty pancreas in individuals with different ethnic back-
grounds.9,13,50,51 Metabolic features, including increased 
BMI and obesity, have been linked to pancreatic fat accu-
mulation.44,52,53 The association is likely attributed to vis-
ceral obesity, as VAT is related to fatty pancreas. Other 
components of the metabolic syndrome, such as hyperten-
sion, diabetes, and hypertriglyceridemia, have also been 
reported to be independent factors associated with fatty 
pancreas.9,10,13,16,40

Local inflammation of the pancreas has been shown to 
be associated with pancreatic fatty replacement. A study 
evaluating clinical and radiological characteristics of pa-
tients with chronic pancreatitis showed that more severe 
chronic pancreatitis was significantly correlated with higher 
intrapancreatic fat content measured by MRI.54 A system-
atic review of 13 studies, including 2178 patients, reported 
a prevalence of fatty pancreas of up to 52% in patients with 
pancreatic cancer or other premalignant lesions.55 Moreo-
ver, the presence of precancerous or cancerous lesions sig-
nificantly increased the risk of fatty pancreas [relative risk 
(RR) 2.78, 95% CI: 1.56−4.94].

Diagnosis of fatty pancreas

Tissue sampling of the pancreas is not feasible for determin-
ing fatty pancreas in daily practice because of its anatomi-
cal position. Imaging modalities allow for the noninvasive 
detection and quantification of fat accumulation in the pan-
creas. Transabdominal US has been used to visualize pan-
creatic tissue and detect fat accumulation within the organ. 
Fatty pancreas is diagnosed by comparing the echogenicity 
of the pancreas with that of the kidney16 or liver10 (Fig. 2). 
The diagnostic accuracy of this method is hampered by op-
erator dependency, body habitus interference, and changes 
in parenchymal echogenicity caused by pancreatic fibrosis.7 
EUS has been used to estimate pancreatic fat content. The 
presence of fatty pancreas was determined by comparing 
the echogenicity of the pancreas to that of the spleen.56 The 
grading system for EUS was proposed based on the pancre-
atic parenchymal echogenicity with the identifiable charac-
teristic fine “salt and pepper” dots in the pancreatic paren-
chyma and the visibility of the pancreatic duct margin (Fig. 
2).13 The severity of fatty pancreas was reported as grade I 
(hypoechoic or isoechoic parenchyma with a clear appear-
ance of salt and pepper dots in the pancreatic parenchyma 
and a clear delineation of the main pancreatic duct), grade 
II (hyperechoic parenchyma with a clear appearance of salt 
and pepper dots in the pancreatic parenchyma and a clear 
delineation of the main pancreatic duct), grade III (moder-
ately hyperechoic parenchyma with moderate obscuration of 
salt and pepper dots in the pancreatic parenchyma and the 
pancreatic duct margin), or grade IV (severely hyperecho-
ic parenchyma with severe obscuration of salt and pepper 
dots in the pancreatic parenchyma and the pancreatic duct 
margin).13 However, the system has not been validated by 
histologic examination or pancreatic fat estimation using CT 
or MRI. Although EUS enables clear visualization because of 
the short distances between the measurement instrument 
and the area of interest, it still has limitations similar to 
transabdominal US, such as operator dependence. Notably, 
the need for an endoscopic examination makes EUS rela-
tively more invasive than other imaging modalities. CT is a 
commonly used imaging technology for quantifying pancre-
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Fig. 2.  Imaging of fatty pancreas. (A) Transabdominal ultrasonography shows iso-echogenicity of normal pancreatic parenchyma (arrowhead) compared with 
the liver. (B) A sonographic image of fatty pancreas reveals increased parenchymal echogenicity of the pancreas (arrowhead) compared with the liver. (C) Com-
puted tomography of the normal pancreas shows iso-attenuation of the pancreas compared with the spleen. (D) Computed tomography of histologically proven 
fatty pancreas reveals lower pancreatic parenchyma attenuation compared to the spleen. (E) Endoscopic ultrasound shows iso-echogenicity of normal pancreatic 
parenchyma with a distinctive salt and pepper appearance and a delineated main pancreatic duct. (F) An endosonographic image of fatty pancreas reveals increased 
parenchymal echogenicity, obscuring the characteristic salt and pepper appearance and the main pancreatic duct margin. (G) Magnetic resonance imaging with the 
Dixon technique of a subject with normal pancreatic fat content. (H) Magnetic resonance imaging of the pancreatic fat fraction with the Dixon technique in a subject 
with fatty pancreas.
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atic fat. As the radiodensity of different tissues and organic 
substances in CT images varies the acquisition and recon-
struction parameters, pancreatic fat measurement is com-
pared to an internal reference tissue with no lipid content, 
such as the spleen. With fatty pancreas, nonenhanced CT 
images depict decreased attenuation of the pancreas (Fig. 
2).57 Further, the difference between pancreatic and splenic 
attenuation can objectively estimate the severity of fatty 
pancreas.51,58,59 The main strengths of this modality are the 
wide availability and relatively short imaging time; however, 
the risk of radiation exposure is a significant drawback.

MRI using the advanced multi-echo Dixon technique is 
a method of quantifying pancreatic fat accumulation. The 
technique provides a reliable and reproducible mapping of 
pancreatic proton density fat fraction, which has been shown 
to be correlated with histologically assessed fat content with 
a correlation coefficient of 0.71.60 Nonetheless, the use of 
MRI is limited by low availability, high acquisition cost, and 
the time requirements of the examination procedure. MRI 
is also susceptible to observer-dependent bias because the 
inhomogeneous distribution of fat in the pancreas on an al-
most homogeneous background of retroperitoneal fat (Fig. 
2). New MRI techniques, such as MRS, MR chemical shift 
imaging, and MR-opsy have improved diagnostic accuracy 
and have minimized interobserver variation.61,62 MRI-pro-
ton density fat fraction (MRI-PDFF) is currently considered 
the most accurate method for quantifying visceral fat. It 
decreases T1 bias and T2* decay and lowers the signal-

interference effect of protons in fat.63 However, few studies 
have used MRI-PDFF to quantify pancreatic fat.64,65 A study 
evaluating pancreatic fat with MRI-PDFF showed that his-
tologic pancreatic fat content was significantly correlated 
with pancreatic fat quantified by MRI-PDFF (r=0.802).65 In 
addition to its good correlation with histology, MRI-PDFF 
has gained popularity because it is more available and less 
technically difficult compared with other MRI-based meth-
ods.66–68

Metabolic consequence of fatty pancreas

Experimental and clinical studies provide evidence that fatty 
pancreas is associated with the development of prediabe-
tes, type 2 diabetes mellitus (T2DM), and metabolic syn-
drome through the main mechanisms of β-cell dysfunction 
and insulin resistance (Fig. 3).

Fatty pancreas and β-cell dysfunction

Animal and preclinical studies have shown that fatty pancre-
as induces local inflammation that causes β-cell destruction. 
In mice fed a high-fat diet, the overexpression of STK-25 
from ectopic adipose tissue aggravates fat infiltration of the 
pancreas, resulting from increased pancreatic inflamma-

Fig. 3.  Organ crosstalk in the pathophysiology of fatty pancreas and nonalcoholic fatty liver disease (NAFLD). Excessive calorie consumption and specific 
dietary components increase the risk of insulin resistance, metabolic disorders, and fat accumulation in the liver, pancreas, and visceral adipose tissue (VAT). In insulin 
resistance, hepatic steatosis with an increased hepatic very-low-density lipoprotein (VLDL) can accelerate fat accumulation in the pancreas, causing islet cell death. 
Alterations in adipocytokines, such as increased lipocalin-2 and serine/threonine-protein kinase 25 (STK-25) and decreased adiponectin from VAT and pancreatic fat, 
directly cause β-cell death. Fetuin-A, a hepatokine generated by the fatty liver, activates adipocytes and macrophages in the pancreatic islets and accelerates β-cell 
dysfunction, leading to insulin resistance and ectopic fat deposition in other tissues. Hepatic fat accumulation further promotes insulin resistance, resulting in a self-
perpetuating loop in which insulin stimulates the synthesis of free fatty acids (FFA) spilling into the pancreas. This vicious cycle interaction between the liver and 
pancreas is the twin cycle hypothesis. Moreover, fatty pancreas and insulin resistance promote fat accumulation in the liver and accelerate the progression of NAFLD.
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tory cell infiltration, apoptosis, stellate cell activation, and 
fibrosis. The process ultimately causes a decrease in islet 
β/α-cell ratio and alteration of islet architecture.69 Moreover, 
increased pancreatic free fatty acid and lipid peroxidation 
are associated with acinar cells and islet destruction.70

Glucolipotoxicity is the conceptual hypothesis that ex-
plains the role of fatty pancreas in β-cell dysfunction. Hy-
perglycemia causes an increase in malonyl coenzyme A via 
the tricarboxylic acid cycle. Increased malonyl coenzyme A 
inhibits carnitine palmitoyltransferase-1 and reduces mito-
chondrial β-oxidation while promoting intracellular triglycer-
ide accumulation in β-cells. The lipolysis from VAT increases 
circulating free fatty acids and then promotes intracellular 
triglyceride accumulation in β-cells. Chronic intracellular tri-
glyceride accumulation blunts insulin gene expression, and 
glucose-stimulated insulin secretion results in β-cell dys-
function. In addition, alterations of adipocytokines, such as 
increased lipocalin-2 and STK-25 and decreased adiponectin 
from VAT and pancreatic fat, directly cause β-cell death.8,34

Human studies have shown an association between fatty 
pancreas and β-cell dysfunction. The mean pancreatic fat 
content using MRI measurement was inversely associated 
with insulin secretion using the oral glucose tolerance test 
(OGTT) in patients with impaired fasting glycemia (IFG) and 
impaired glucose tolerance (IGT).53 A study in men found 
that pancreatic fat content measured by MRS was indepen-
dently associated with various aspects of β-cell function.71 
However, the association was not found in men with diabe-
tes. The findings highlight the importance of fatty pancreas 
in the deterioration of glucose homeostasis. Other factors 
superimposing the effect of fatty pancreas may contribute 
to a progressive decline in β-cell function once diabetes de-
velops. On the contrary, some human studies have found no 
association between fatty pancreas and β-cell dysfunction. 
In a large cohort of adult Chinese subjects, fatty pancreas 
evaluated by MRI was not associated with β-cell function 
measured by homeostasis model assessment (HOMA-β) af-
ter adjusting for liver fat and BMI.14 Another study using 
MRS to diagnose fatty pancreas did not find associations 
between total and intralobular pancreatic adipose tissue in-
filtration and insulin secretion or β-cell function in either 
normal populations or in patients with prediabetes or dia-
betes.72

Fatty pancreas and insulin resistance

Preclinical studies revealed that C57BL/6 mice fed a high-
fat diet developed NAFLD and fatty pancreas that resulted 
in insulin resistance determined by the intraperitoneal insu-
lin tolerance test and the OGTT.73 However, the association 
between fatty pancreas and insulin resistance remains con-
troversial in human studies. Insulin resistance confirmed by 
homeostasis model assessment of insulin resistance (HO-
MA-IR), circulating levels of tumor necrosis factor-α, and 
interleukin-1b, was higher in obese children with NAFLD 
complicated by fatty pancreas than in children without fat-
ty pancreas.74 Although a large cohort of Chinese adults 
did not show an association between fatty pancreas and 
HOMA-β, adults with both fatty pancreas and NAFLD had 
a higher HOMA-IR than those with either condition alone. 
Furthermore, even after adjusting for hepatic fat content 
and BMI, pancreatic fat content was still associated with 
HOMA-IR.14 In patients with IFG or IGT, a positive correla-
tion of insulin resistance determined by both HOMA-IR and 
a euglycemic clamp with the severity of fatty pancreas was 
observed.12,75 However, after adjusting for VAT, the associa-
tion between fatty pancreas and HOMA-IR disappeared, im-
plying that VAT was more strongly associated or mediated 
the relationship between fatty pancreas and insulin resist-

ance. Another study in obese subjects showed that insulin 
resistance using HOMA-IR was associated with NAFLD but 
not with fatty pancreas.44 Based on the existing evidence, it 
is not clear whether fatty pancreas is associated with insulin 
resistance because it contributes to β-cell dysfunction or is 
a consequence of obesity.

Prediabetes, diabetes, and metabolic syndrome

Several clinical studies disclosed the relationship of fatty 
pancreas with prediabetes states, diabetes, and metabolic 
syndrome (Table 1).9–11,15,16,22,40,51,59,76,77 A cross-sectional 
study of 7464 patients showed that fatty pancreas detected 
by transabdominal US was independently associated with 
prediabetes (OR 1.22, 95% CI: 1.00−1.49) and T2DM (OR 
1.38, 95% CI: 1.05−1.82).76 The findings were further sup-
ported by a prospective longitudinal study showing that 
prediabetes was associated with the development of fatty 
pancreas in patients who did not have fat accumulation in 
the pancreas at baseline.58 To account for the potential con-
founding effect of baseline obesity, a prospective cohort of 
nonobese individuals were followed for a median of 6.19 
years. The results confirmed that fatty pancreas diagnosed 
by CT was significantly associated with developing T2DM, 
with an OR of 1.32 (95% CI: 1.06−1.63).59 Each increased 
percentage point of pancreatic fat increased the risk of in-
cident diabetes by 7%.22 Additionally, fatty pancreas was 
associated with the subsequent development of metabolic 
syndrome.51 A meta-analysis of 11 studies including 12,675 
individuals showed that fatty pancreas was significantly as-
sociated with T2DM (RR 2.08, 95% CI: 1.44−3.0), metabol-
ic syndrome (RR 2.37, 95% CI: 2.07−2.71), and hyperten-
sion (RR 1.67, 95% CI: 1.32−2.10).15 The results are in line 
with data from a recent meta-analysis of 13 studies inves-
tigating 49,329 patients displaying an association between 
fatty pancreas and significantly increased risks of T2DM (RR 
1.99, 95% CI: 1.18−3.35), metabolic syndrome (RR 2.25, 
95% CI: 2.00−2.53), arterial hypertension (RR 1.43, 95% 
CI: 1.08−1.90), and central obesity (RR 1.91, 95% CI: 
1.67−2.19).77 Large meta-analyses have explored the as-
sociation between metabolic conditions and NAFLD,78,79 and 
it is now established that there is a vicious cycle of NAFLD 
and metabolic dysfunction (Fig. 3). Taken together, existing 
evidence highlights the interplay between fatty pancreas, 
NAFLD, and components of metabolic syndrome.

Links between fatty pancreas and NAFLD

The pancreas and liver are derived from the same embry-
onic endoderm, which explains the relationship between 
fatty pancreas and NAFLD. Patients with fatty pancreas may 
be at increased risk of NAFLD development and progres-
sion because intrapancreatic fat affects glucose metabolism 
and insulin secretion. Available evidence from experimental 
models and human studies suggests a bidirectional relation-
ship between fatty pancreas and NAFLD.6,19,24,39

Evidence from animal and translational studies

Early studies found that obesity was linked to increased 
fat accumulation in the pancreas by changes of metabolic 
mediators including adiponectin and lipocalin-2.36,37 In the 
context of insulin resistance and hyperglycemia, hepatic 
steatosis with an increased hepatic very-low-density lipo-
protein accelerates fat accumulation in the pancreas, caus-
ing islet cell death.34,80 Fetuin-A, a hepatokine generated by 
a fatty liver, activates adipocytes and macrophages in the 
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pancreatic islets of Langerhans, which are responsible for 
producing and releasing hormones regulating glucose ho-
meostasis. Increased chemoattractant expression promotes 
macrophage or monocyte infiltration and the expression of 
cytotoxic proinflammatory cytokines.38 Pancreatic inflam-
mation induced by triggering a proinflammatory response in 
pancreatic fat cells and islet macrophages/monocytes accel-
erate β-cell failure, leading to insulin resistance and ectopic 
fat deposition in other tissues, including the liver.12,81–85 
Hepatic fat accumulation further promotes insulin resist-
ance, resulting in a self-perpetuating loop in which insu-
lin stimulates the synthesis of free fatty acids spilling into 
the pancreas.86 The cyclic interaction between the liver and 
pancreas is known as the twin cycle hypothesis (Fig. 3).87

Evidence from clinical studies

Several cross-sectional human studies showed that NAFLD 
is an independent factor associated with fatty pancreas (Ta-
ble 1).9–11,16,18,40,52,77,88–91 Likewise, NAFLD was associated 
with more severe fat accumulation in the pancreas.11 On 
the other hand, a recent meta-analysis including 49,329 in-
dividuals revealed that fatty pancreas was independently 
associated with NAFLD (RR 2.49, 95% CI: 2.06−3.02).77 
Fatty pancreas is prevalent among patients with nonalco-
holic steatohepatitis and increases the rate of prediabetes 
and diabetes.18 Further, fatty pancreas was also related to 
subclinical atherosclerosis in NAFLD patients.92

Cumulative evidence has shown that fatty pancreas is 
significantly associated with more severe histologic features 
of NAFLD. The histological evaluation of NAFLD children 
showed a higher liver fibrosis stage, hepatocyte ballooning 
grading, and NAFLD activity score among NAFLD patients 
coexisting with fatty pancreas.74 A postmortem pathology 
study found that intralobular pancreatic fat was associat-
ed with nonalcoholic steatohepatitis.90 An analysis of 104 
adults with biopsy-proven NAFLD demonstrated that ultra-
sonographic fatty pancreas was significantly associated with 
the histologic feature of nonalcoholic steatohepatitis (OR 
5.37).91 As fatty pancreas is independently associated with 
nonalcoholic steatohepatitis and fibrosis stage, fatty pan-
creas is a potential driver of NAFLD progression.91 There-
fore, the existence of fatty pancreas in the NAFLD popula-
tion warrants meticulous attention.81

Interestingly, a study exploring pancreatic and hepatic 
fat after bariatric surgery showed that bariatric surgery re-
duced hepatic and pancreatic fat. Nevertheless, there was 
no correlation between hepatic and pancreatic fat content 
reduction, suggesting the tissue-specific mobilization of 
these ectopic fat stores.93 From this finding, it seems that 
the association between fatty pancreas and NAFLD is medi-
ated by obesity.

Therapeutic approaches for fatty pancreas

Weight reduction is currently the most effective treatment 
for NAFLD. Weight loss, whether accomplished by diet and 
lifestyle modifications, bariatric surgery, or pharmacothera-
py, has been shown to improve NAFLD biomarkers, prevent 
progression, and reverses fibrosis in some cases. Given the 
importance of providing effective weight loss treatment 
to patients suffering from obesity-related disorders, much 
clinical research has examined the effect of weight loss in-
terventions in patients with fatty pancreas.24 Evidence from 
a randomized controlled trial showed that exercise signifi-
cantly reduced fat accumulation in the pancreas as meas-
ured by MRS, and it improved insulin sensitivity.94 A post-
hoc analysis of the data from a randomized controlled trial A
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for assessing weight management intervention for T2DM 
demonstrated that intrapancreatic fat content quantified 
by MRI significantly declined in T2DM patients with weight 
loss-induced diabetes remission.95

Glucagon-like peptide 1 receptor agonists are the only 
pharmacotherapy shown to reduce pancreatic fat content. 
The literature is limited, but a few reports have shown that 
6 months of exenatide,96 liraglutide,97 and dulaglutide,98 
treatment improved liver fat content in patients with T2DM 
but did not significantly change pancreatic fat content meas-
ured by MRI techniques. However, because these drugs in-
duce mild weight reduction in such patients, they may not 
be effective in causing a decrease in pancreatic fat content.

Several studies investigated the effects of bariatric sur-
gery and subsequent significant weight loss on the fat 
content of the pancreas.93,99–102 Although all of the stud-
ies showed a significant decrease in pancreatic fat content 
after surgery, the change was independent of a reduction 
in liver fat content. The results also showed improvement 
of β-cell function in response to loss of pancreatic fat after 
bariatric surgery.93,100 Discovering the molecular pathways 
that mediate the metabolic consequences of fatty pancreas 
would enable clinicians to target the pancreas therapeuti-
cally in the management of patients with NAFLD and fatty 
pancreas.

Conclusion

The understanding of fatty pancreas has evolved since the 
discovery of its relationship with obesity. Age, sex, eth-
nicity, unhealthy lifestyle, and metabolic disorders are all 
risk factors. Several imaging modalities have been devel-
oped to diagnose fatty pancreas, with MRI being the most 
accurate method for quantifying pancreatic fat content in 
clinical studies. Advancements in imaging technology have 
helped to comprehend pathophysiological relationships be-
tween fatty pancreas and other obesity-related disorders, 
including NAFLD. It is evident that fat accumulation in the 
pancreas is harmful and subsequently induces mechanisms 
that impair endocrine function. Moreover, recognizing the 
strong relationship between fatty pancreas and metabolic 
disorders has stimulated considerable interest in the puta-
tive impact of fatty pancreas on the development and pro-
gression of NAFLD. Growing evidence has uncovered poten-
tial linkages and therapeutic possibilities for fatty pancreas 
and NAFLD. Moreover, several questions have been raised. 
How can we better stratify individuals with fatty pancreas 
who are at high risk of developing metabolic syndrome and 
NAFLD? Are there any noninvasive biomarkers that can ac-
curately detect fatty pancreas? Are there different types of 
fatty pancreas, and how do they affect the natural course 
of NAFLD? What are the best therapeutic approaches for 
patients with fatty pancreas and NAFLD? Further studies 
focusing on the pathophysiologic mechanisms may provide 
novel therapeutics for individuals with NAFLD and fatty 
pancreas.
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