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Abstract

Sarcopenia, a condition of low muscle mass, quality, and 
strength, is commonly found in patients with chronic liver 
disease (CLD) and is associated with adverse clinical out-
comes including reduction in quality of life, increased mor-
tality, and complications. A major contributor to sarcopenia 
in CLD is the imbalance in muscle protein turnover wherein 
changes in various metabolic factors such as hyperammone-
mia, amino acid deprivation, hormonal imbalance, gut dys-
biosis, insulin resistance, chronic inflammation, etc. have 
important roles. In particular, hyperammonemia is a key 
mediator of the liver-gut axis and is known to contribute to 
sarcopenia by various mechanisms including increased ex-
pression of myostatin, increased phosphorylation of eukary-
otic initiation factor 2a, cataplerosis of α-ketoglutarate, mi-
tochondrial dysfunction, increased reactive oxygen species 
that decrease protein synthesis and increased autophagy-
mediated proteolysis. Skeletal muscle is a major organ 
of insulin-induced glucose metabolism, and sarcopenia is 
closely linked to insulin resistance and metabolic syndrome. 
Patients with liver cirrhosis are in a hypermetabolic state 
that is associated with catabolism and depletion of amino 
acids, particularly branched-chain amino acids. Sarcopenia 
can have significant implications for nonalcoholic fatty liver 
disease, the most common form of CLD worldwide, because 
of the close link between metabolic syndrome and sarcope-
nia. This review discusses the potential metabolic derange-
ment as a cause or effect of sarcopenia in CLD, as well 
as interorgan crosstalk, which that might help identifying a 
novel therapeutic strategies.

Citation of this article: Kumar R, Prakash SS, Priyadarshi 
RN, Anand U. Sarcopenia in Chronic Liver Disease: A Metabol-

ic Perspective. J Clin Transl Hepatol 2022;10(6):1213–1222.  
doi: 10.14218/JCTH.2022.00239.

Introduction

Skeletal muscle is one of the largest organs in the body. It is 
not just a part of our locomotor system; but is also, an im-
portant secretory organ.1 Muscle fibers produce and release 
a variety of cytokines and other peptides known as myokine 
that which have autocrine, paracrine, and endocrine effects. 
Myokines regulate metabolism in organs including the liver 
and adipose tissues, in addition to maintaining muscle mass 
and strength.2,3 Myokines affect glucose and lipid metabo-
lism as well as systemic inflammation.2 Crosstalk between 
myokines and other organokines, such as hepatokines and 
adipokines, has a critical role in orchestrating systemic 
metabolic alterations that lead to insulin resistance (IR), 
diabetes mellitus (DM), obesity, and metabolic syndrome 
(MetS).2,4 Because both the liver and the muscles are in-
volved in metabolism, simultaneous loss of muscle and liver 
function can have a major influence on overall metabolism. 
In patients with chronic liver disease (CLD), loss of skeletal 
muscle mass, quality, and strength, defined as sarcopenia, 
is being increasingly recognized.5,6 Sarcopenia is thought to 
affect between 25% and 70% of CLD patients, with higher 
rates in men and in Western populations.6 In patients with 
liver cirrhosis (LC), sarcopenia causes significant clinical 
complications and has been linked to higher mortality, lower 
quality of life, longer hospital stays, and the development 
of complications such as infections, hepatic encephalopathy 
(HE), and hepatogenous diabetes (HD), putting a significant 
financial burden on the patient.7–11

A common link between sarcopenia and CLD is metabolic 
imbalance (Table 1). In fact, MetS is a key risk factor for 
sarcopenia, and nonalcoholic fatty liver disease (NAFLD), 
also known as metabolic associated fatty liver disease, the 
most prevalent cause of CLD worldwide.12,13 Skeletal mus-
cle is a major organ of insulin-induced glucose metabolism, 
and thus sarcopenia is closely linked to IR and MetS.14 Sar-
copenia is caused by a complex equilibrium between pro-
tein synthesis and breakdown. Hyperammonemia, amino 
acid deficiency, hormone imbalance, chronic inflammation, 
and other metabolic variables all appear to play a part in 
the pathophysiology.15,16 Patients with LC are in a hyper-
metabolic state characterized by catabolism and amino acid 
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deficiency. Reduced levels of branched-chain amino acids 
(BCAAs) are associated with sarcopenia in LC.15,17 Despite 
the extensive data supporting the predictive relevance of 
sarcopenia in patients with LC, research on metabolic dys-
regulation as a cause or effect of sarcopenia in such patients 
is still evolving. The goal of this review is to summarize 
what is currently known about sarcopenia in cirrhotic pa-
tients, with a focus on metabolic dysregulation and its pos-
sible impact on clinical outcomes, molecular pathophysiol-
ogy, and targeted therapeutic approaches.

Metabolic functions of skeletal muscles

Skeletal muscle is the largest metabolic organ in terms of 
size and is an important site of glucose, protein, and lipid 
metabolism.18 In order to meet energy demands and main-
tain nutritional homeostasis, skeletal muscle alters meta-
bolic pathways in response to varying physiologic needs.

Glucose metabolism

Skeletal muscle has a significant role in glucose metabo-
lism and insulin sensitivity, clearing roughly 80% of post-
prandial glucose via insulin-dependent glucose uptake.14,19 
In a fed state, glucose is actively transported across the 
plasma membrane of skeletal muscle in an insulin-depend-
ent manner by specialized carrier proteins known as glu-
cose transporters (GLUTs). GLUT1 is primarily found on 
the plasma membrane and is involved in basal glucose ab-
sorption, whereas GLUT4 is found in intracellular vesicles 
and is transported to the plasma membrane in response to 
stimuli. GLUT4 is the most abundant and is also known as 
the insulin-regulated glucose transporter.20 Inside the cell, 
hexokinase phosphorylates glucose, which is then be stored 
as glycogen, used as a substrate in glycolysis, used as a 
substrate for protein synthesis via the hexosamine pathway, 
or used as a substrate in the pentose phosphate pathway, 
depending on the metabolic demands of the cell.21

Protein metabolism

Muscle is important for whole-body protein metabolism be-
cause it serves as a primary storage site for amino acids, 
allowing protein synthesis in various tissues as well as pro-
viding precursors for hepatic gluconeogenesis.22 The needs 
for amino acids in all tissues do not alter greatly from the 
post-absorptive to the fed stage because an excess of pro-

tein is stored. Ingested amino acids are mostly consolidated 
into muscle protein in order to replenish the amino acid 
reserves lost during fasting. Thus, gains in muscle protein 
mass in the fed state generally offset losses in protein mass 
in the post-absorptive state.23

Lipid metabolism

Skeletal muscle is also an essential regulator of lipid me-
tabolism in the body. Individuals with skeletal muscle dis-
eases including muscular dystrophy and sarcopenia have 
a much increased risk of developing NAFLD.24,25 Increased 
intramyocellular triacylglycerol concentrations are linked to 
IR in skeletal muscle. This lipid accumulation is most likely 
caused by increased uptake and decreased mitochondrial 
oxidation of fatty acids in the muscle.26 Increased fatty acid 
levels in obese subjects contribute to accumulation of toxic 
lipid molecules, oxidative stress, and muscle autophagy.27

Muscle protein homeostasis and interorgan crosstalk

Muscle mass homeostasis is tightly regulated, requiring a 
balance between muscle protein synthesis and proteoly-
sis. The exercise-activated mammalian target of rapamycin 
(mTOR) pathway is the most important regulator of pro-
tein synthesis.28 Variables that influence protein turnover, 
include cellular energy status, physical activity, substrate 
availability, insulin, insulin-like growth factor-1 (IGF-1), 
corticosteroids, testosterone, myostatin, and cytokines in-
cluding interleukin-4 and interleukin-6 (IL6).29 Muscle deg-
radation is driven by three pathways, the ubiquitin-protea-
some pathway (UPP), caspase-mediated protein cleavage, 
and the autophagy system.30 the UPP is a key proteolysis 
process in which muscle protein is ubiquitinated and then 
degraded and eliminated by the 26S proteasome. Inactiv-
ity, glucocorticoids, tumor necrosis factor (TNF), and poor 
insulin/IGF-1 transmission can all activate UPP.31 Autophagy 
involves removal of misfolded proteins and damaged orga-
nelles by the formation of autophagosome, with subsequent 
degradation by lysosomes. Muscle replacement requires the 
activation and recruitment of muscle satellite cells, which 
are adult stem cells found in skeletal muscle.

Skeletal muscle, liver, and adipose tissue all function as 
endocrine organs, releasing myokines, hepatokines, and 
adipokines to perform interorgan crosstalk via autocrine, 
paracrine, and endocrine pathways.2,4 Myokines are pep-
tides released by myocytes in response to muscle contrac-
tion.32 There are around 600 myokines known to date, with 
myostatin being the first to be identified as a myokine. In 

Table 1.  Metabolic alterations involved in the pathogenesis of sarcopenia in liver cirrhosis

Metabolic alteration Implication

Decreased hepatic glycogen; Decreased body fat to 
muscles volume; Increased gluconeogenesis

Muscles protein breakdown

Muscle anabolic resistance; Altered lipid and amino acid metabolism; 
Reduced BCAA; Decreased bile production; Pancreatic insufficiency

Decreased muscles protein synthesis

Decreased anabolic hormones (IGF-1 and testosterone) Decreased muscles protein synthesis; 
Muscles protein breakdown

Hyperammonemia: Increased myostatin expression; Cataplerosis of 
α-ketoglutarate; Increased phosphorylation of eukaryotic initiation factor 
2a; Altered integrated stress response; Mitochondrial dysfunction

Decreased muscles protein synthesis; 
Muscles protein breakdown

Insulin resistance; Myosteatosis; Pro-inflammatory cytokines Decreased muscles protein synthesis; 
Muscles protein breakdown

BCAA, branch chain amino acid; IGF-1, insulin-like growth factor-1.
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mature myofibers, myostatin forms complexes with Smad4 
and activates protein degradation pathways such as UPP 
and autophagy while suppressing the Akt-mediated mTOR 
signaling pathway, resulting in suppression of protein syn-
thesis and sarcopenia.33 Myostatin also prevents myogen-
esis by blocking satellite cell activation.34 In order to main-
tain muscle homeostasis, myostatin levels are regulated by 
follistatin, another glycoprotein. Follistatin promotes satel-
lite cell recruitment while inhibiting Smad2/3, hence negat-
ing the action of myostatin. Follistatin infusions stimulate 
muscle protein synthesis in experimental models, resulting 
in muscle growth.35 However, the follistatin was recently 
found to be increased in human NAFLD, where it induced 
lipolysis in adipose tissue, but was not associated with skel-
etal muscle mass.36 Organokines are associated with obe-
sity, IR, type 2 DM, MetS, and cardiovascular health. The 
presence of IL6-mediated muscle-liver crosstalk promotes 
glucose homeostasis during exercise, in which glucose ab-
sorption in muscle is followed by enhanced glucose release 
from the liver.37 Hepatokines are novel hormones produced 
by the liver that have a stronger interaction with adipose 
and skeletal muscle tissue, indicating an endocrine depend-
ent crosstalk linkage.38,39 Among the hepatokines, fetuin-A 
was identified early on to be released from the fatty liver 
and found to induce subclinical inflammation and IR.39 Adi-
pokines are a type of cell signaling molecule produced by 
adipocytes and are involved in lipid metabolism, insulin sen-
sitivity, hepatic steatosis, and fibrogenesis.40

Sarcopenia in CLD

According to several observational studies, sarcopenia and 
CLD have a significant association.5–9 Sarcopenia appears 
early in the course of CLD and worsens as the disease pro-
gresses. Within CLD, NAFLD shares multiple risk factors 
with sarcopenia, and hence sarcopenia is linked to an in-
creased risk of NAFLD and NAFLD progression, regardless 
of the presence of obesity, MetS, or IR.41–43 Sarcopenia is 
one of the most common complications of LC and is associ-
ated with poor clinical outcomes as well as metabolic con-
sequences.7–11 The prevalence of sarcopenia ranges from 
25–70% in cirrhotic patients.3,6 The prevalence depends on 
ethnicity, severity of underlying liver disease, and diagnos-
tic criteria and tools used to define sarcopenia. Indians are 
expected to have high prevalence of sarcopenia because 
the lean muscle mass is 15% lower compared with West-
ern populations of the same height.44 According to a meta-
analysis conducted by Kim G et al.,6 the global prevalence of 
sarcopenia in LC is 48.1%, with men being more commonly 
involved (61.6%) than women (36%).

Recently, the European Working Group on Sarcopenia in 
Older People has proposed a new definition of sarcopenia 
giving more importance to muscle function than muscle 
mass, which is difficult to screen in patients with sarcope-
nia.5 The diagnosis of probable sarcopenia can be made 
when muscle strength is low. It is confirmed when there is 
additional documentation of low muscle quantity or quality. 
Severe sarcopenia is accompanied by low muscle strength, 
low muscle quantity/quality, and low physical performance.5 
Patients with sarcopenia in the presence of obesity, a body 
mass index of ≥2 5 kg/m2, is defined as sarcopenic obesity. 
Sarcopenic obesity has greater metabolic implications than 
sarcopenia alone.45

Metabolic changes and pathophysiology of sarcope-
nia in CLD

Sarcopenia in CLD is a multifactorial disorder with a complex 

pathophysiology (Fig. 1). Its pathogenesis is more complex 
than simple protein and calorie malnutrition. Metabolic alter-
ations in cirrhosis, such as depleted glycogen stores, hyper-
ammonemia, and endocrine dysfunctions, cause excessive 
protein catabolism, increased UPP activation, inappropriate 
muscle autophagy, and diminished satellite cell proliferation. 
A combination of elevated myostatin levels, low IGF-1, hy-
pogonadism, IR, and chronic inflammation appear to have 
important roles in the development of sarcopenia.

Altered protein, carbohydrate, and lipid metabolism

Alteration of protein turnover is an important contributor 
to sarcopenia in chronic illness. In general, body protein 
levels are maintained at the expense of carbohydrate and 
fat utilization as an energy source. Cirrhotic patients have a 
reduced ability to utilize carbohydrate as an energy source 
because of the diminished capacity of hepatocytes to syn-
thesize, store, and break down glycogen.46 In the early 
stages of LC, muscle depletion may coexist with normal or 
even increased body fat, particularly visceral fat. Advanced 
cirrhosis, however, has more pronounced fat depletion.47,48 
As a result, fat that may protect muscles in the early stages 
of cirrhosis is no longer available as the disease progresses, 
causing increased muscle protein breakdown. Increased 
mobilization of amino acids for gluconeogenesis and energy 
results in skeletal muscle loss.47 Thus, dysregulated muscle 
protein turnover underpins the pathogenesis of sarcopenia 
in LC patients. However, studies on muscle protein turnover 
have yielded inconsistent results in cirrhosis, with significant 
decreases in protein synthesis and contradictory reports of 
protein breakdown.49 These variations could be the result 
of differences in methodology and patient characteristics. 
Cirrhotic patients are thought to have anabolic resistance, 
which refers to reduced synthesis of muscle protein in re-
sponse to dietary protein or exercise.50,51 One of the prima-
ry drivers of muscle anabolic resistance in patients with LC 
is increased myostatin expression.3 In patients with NAFLD, 
one of the key proinflammatory cytokines, TNF-alpha, in-
hibits muscle protein synthesis by interfering with mTORC 
and promotes muscle protein breakdown by increasing UPP 
activity.52 In alcoholic liver disease, ethanol contributes to 
sarcopenia by increasing myostatin levels and inhibiting 
mTORC1 activation.53

Hyperammonemia

Every day, adult humans produce roughly 1,000 mmol of 
ammonia from amino acids and other nitrogen containing 
compounds. The intestines and kidneys are the primary am-
monia producers, while the liver and muscle are the primary 
ammonia consumers. Some ammonia is used in the synthe-
sis of proteins, amino acids, and nucleic acids, but the rest 
is waste, neurotoxic, and is largely eliminated in the urine 
as urea.54 The liver is involved in ammonia detoxification 
via the urea cycle and glutamine synthesis, although that is 
hampered in patients with LC, resulting in hyperammonemia. 
During a state of hyperammonemia, muscle has an impor-
tant role in detoxifying ammonia to nontoxic glutamine.55

In patients with LC, hepatocellular dysfunction, reduced 
ureagenesis, and portosystemic shunting, all contribute to 
hyperammonemia.55 Gut dysbiosis, infection with urease-
positive bacteria, gastrointestinal hemorrhage, and con-
stipation also contribute to hyperammonemia. Increased 
ammonia absorption by skeletal muscle secondary to hy-
perammonemia contributes to the development of sarco-
penia, which further reduces the muscle mass available to 
eliminate excess ammonia, setting up a vicious cycle.56–58 
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Skeletal muscle hyperammonemia leads to an increase in 
myostatin expression and reduced NF-B activation, resulting 
in impaired synthesis of muscle protein as well as increased 
muscle autophagy.56–58 Myostatin also influences muscle 
satellite cell function. In an animal model study, myostatin 
expression was associated with a decrease in satellite cell 
function, which was mediated by a decrease in myogenic 
transcription factors myoD, myf5, and myogenin.17 Hyper-
ammonemia potentially contributes to a reduction in muscle 
protein synthesis by interfering with tricarboxylic acid (TCA) 
cycle intermediate metabolism. Normally glutamate and 
glutamine are converted to ammonia and alpha-ketoglutar-
ate in the TCA cycle.59 However, because of hyperammone-
mia in LC, removal of TCA intermediates may be favored, 
resulting in decreased availability of alpha-ketoglutarate 
and reduced adenosine triphosphate synthesis, which may 
limit muscle protein synthesis.59,60 Hyperammonemia has 
also been linked to an increase in reactive oxygen species, 
which can cause tissue damage and muscle loss.60

Substrate availability and energy expenditure

Anorexia, malabsorption, and altered macronutrient metab-
olism contribute to malnutrition and substrate availability in 
patients with LC.61 Moreover, LC is a state of accelerated star-
vation.62 An overnight fast causes a greater increase in fat oxi-
dation, gluconeogenesis, and ketogenesis in LC patients than 
in healthy people.62,63 Increased gluconeogenesis often leads 
to increased amino acid use, resulting in a low concentration of 
skeletal muscle BCAA.63,64 Decreased BCAA levels in cirrhosis 
also result from increased use of BCAA as a donor of ami-
no groups to alpha-ketoglutarate for synthesis of glutamate, 
which in muscles is involved in ammonia detoxification.65 Be-
cause of a limited supply of BCAA in cirrhosis patients, syn-
thesis of other essential proteins such as albumin takes prece-
dence over muscle protein synthesis, resulting in sarcopenia.64 
BCAAs are involved in the metabolism of carbohydrates, pro-
teins, and fats, as well as IR and cell proliferation.64 BCAAs 
have been demonstrated to increase glucose uptake in skeletal 

Fig. 1.  Schematic explanation main drivers and mechanism contributing to sarcopenia in patients with liver cirrhosis. Sarcopenia in chronic liver disease 
is a multifactorial disorder with a complex pathophysiology associated with a dysregulated muscle protein turnover. Numerous factors such as hyperammonemia, 
hypogonadism, impaired insulin/IGF-1 signaling, pro-inflammatory cytokines, and depleted glycogen stores are involved in the pathophysiology of sarcopenia in cir-
rhosis. Hyperammonemia contributed by decreased hepatic mass, portosystemic shunt, and gut dysbiosis lead to an increased myostatin expression, cataplerosis 
of α-ketoglutarate, altered integrated stress response, and mitochondrial dysfunction, resulting in impaired muscles protein synthesis as well as increased muscles 
autophagy. Hypogonadism and impaired insulin/IGF-1 signaling in cirrhosis also result in increased myostatin expression. Depleted glycogen stores and an acceler-
ated starvation in patients with liver cirrhosis lead to increased gluconeogenesis resulting in a low concentration of skeletal muscle amino acids (BCAA) contributing 
to sarcopenia. Physical inactivity, pro-inflammatory cytokines and poor insulin/IGF-1 transmission can all activate UPP, causing increased muscles protein breakdown. 
BCAA, branch chain amino acid; GH, growth hormone; IGF-1, insulin-like growth factor-1; IL-interleukin; LPS, lipopolysaccharide; Mt, mitochondrial; NH3, ammonia; 
O2, oxygen; TNF, tumor necrotic factor; UPP, ubiquitin-proteasome pathway.
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muscle via activating PI3K and protein kinase C.66

Generally, amino acid deficiency causes activation of the 
integrated stress response (ISR) via an amino acid deficiency 
sensor, i.e. general control nondepressed 2.67 That causes 
eukaryotic initiation factor 2 to be phosphorylated, resulting 
in a decrease in protein synthesis and an increase in activat-
ing transcription factor 4 (ATF4) mRNA. Activated ATF4 low-
ers the need for amino acids and inhibits mTORC1 signaling 
to promote autophagy in an attempt to preserve amino acid 
levels.68 LC patients have increased general control nonde-
pressed 2 activation and eukaryotic initiation factor 2 phos-
phorylation, as well as reduced mTORC1 signaling, similar to 
the ISR that results from amino acid deficiency.17,69 Hyper-
ammonemia, on the other hand, affects the ISR by prevent-
ing the expression of ATF4 mRNA, which results in an increase 
in autophagy and a reduction in muscle protein synthesis.17 
Moreover, in a second route, an amino acid exchanger is ac-
tivated in LC patients in response to hyperammonemia, re-
sulting in an increase in leucine uptake.17,69 Leucine is used 
in the mitochondria to produce acetyl-CoA to generate en-
ergy.66 Leucine transport relies on glutamine transfer via the 
glutamine exchanger, while glutamine is largely used for am-
monia detoxification in hyperammonemia.17,70 Overall, these 
metabolic alterations result in a negative protein balance that 
contributes to sarcopenia development.

Endocrine dysfunction

Changes in the hypothalamic-pituitary-gonadal axis in male 
patients with LC can result in a decrease in testosterone 
production and an increase in aromatase activity, an en-
zyme that converts testosterone to estrogen.71 Testoster-
one inhibits myostatin expression and signaling, and low 
testosterone levels promote sarcopenia in male patients 
with LC.72 The growth hormone (GH)/IGF-1 axis is disturbed 
in patients with CLD, and endogenous GH secretion is el-
evated.73,74 Because the liver is the principal source of IGF-
1, LC patients with lower levels of IGF-1 produce more GH 
because of a loss of feedback inhibition. As a result, patients 
with LC have a state of hepatic GH resistance. Derangement 
of the GH/IGF axis may contribute to sarcopenia because 
GH and IGF-I are potent regulators of anabolism. Because 
IGF-1 and testosterone repress myostatin, lower levels of 
these growth hormones in LC patients result in increased 
myostatin expression.74,75 IGF-1 promotes muscle growth 
by stimulating the mTORC1 signaling pathway and prevents 
muscle atrophy by inhibiting ubiquitin ligase activity.76

Insulin resistance

Hyperinsulinemia and IR are prevalent in LC patients.77,78 Re-
duced hepatic insulin extraction and portosystemic shunting 
are thought to cause hyperinsulinemia, with hyperglucagon-
emia and pancreatic islet hypertrophy also having a role. As 
a result of persistent hyperinsulinemia, insulin receptors are 
downregulated on target cell membranes, leading to IR.79 
Clamp studies on whole-body glucose utilization revealed 
that IR in LC patients was associated with a decrease in non-
oxidative glucose disposal, mainly in skeletal muscles.80,81 
Thus, sarcopenia also contributes to the development of IR 
as skeletal muscle is the predominant site of post-prandial 
glucose uptake.82 On the other hand, IR promotes sarcope-
nia by causing an increase in muscle protein breakdown and 
a decrease in muscle protein synthesis. IR increases lipolysis 
and the release of free fatty acids in adipose tissue, which 
inhibits IGF-1 signaling.83 IR leads to an increase in lipogen-
esis and suppression of beta-oxidation in muscles, resulting 
in myosteatosis.83 Reduced circulation levels of adiponectin 

and vitamin D may cause IR, resulting in sarcopenia.84 IR is a 
common link between sarcopenia and NAFLD.13,14 However, 
there are different major pathways inducing NAFLD, and the 
one with a strong hepatic genetic component is only weakly 
associated with IR and dysregulated hepatokine release.85 
Thus, stratification of NAFLD by major metabolic pathways, 
may be done while investigating the relationship of fatty liver 
with metabolism and also skeletal muscle mass and function.

Gut dysbiosis

Changes in the composition and function of the gut micro-
biota are common in LC patients, influencing host immunity 
and many metabolic activities. The intestinal translocation 
of lipopolysaccharide, a gut-derived endotoxin, is associated 
with the pathogenesis of IR.86 Obesity, metabolic disorders, 
and diabetes have all been linked to intestinal dysbiosis.87 
In LC patients, gut dysbiosis contributes to hyperammone-
mia, which has a role in the development of sarcopenia and 
peripheral IR.88 Furthermore, the gut microbiota produces a 
number of compounds, including BCAA, whose levels in the 
blood have been associated to the risk of IR and DM.89 A 
recent study demonstrated that the gut microbiome of CLD 
patients with sarcopenia was prodiabetogenic, with a high 
abundance of gram-negative bacteria and a low Firmicutes/
Bacteroidetes ratio.90 As a result, gut dysbiosis could play a 
role in sarcopenia and diabetes in LC patients.

Clinical and metabolic implications of sarcopenia

In patients with LC, sarcopenia is linked to a wide range of 
consequences, such as HE, worse quality of life, infection 
risk, and increased mortality (Table 2).7–11,42,91–98 Notably, 
the impact of sarcopenia on survival has been found mainly 
in early stages of cirrhosis, with no such association found 
in patients with high MELD scores, Child-Pugh class C, and 
hepatic venous pressure gradient >20 mmHg, implying that 
sarcopenia has little additive impact on mortality prediction 
for patients who are severely ill.91,99 Other clinical effects 
of sarcopenia include decreased functional independence, 
such as difficulty walking and doing daily basic activities, 
as well as an increased risk of falls and fractures.100 From 
a metabolic standpoint, sarcopenia influences glucose toler-
ance, ammonia metabolism, amino acid metabolism, and 
bone production. Osteosarcopenia, defined as sarcopenia 
and osteoporosis occurring at the same time, is also com-
mon in CLD patients.101 In cirrhosis patients, sarcopenia im-
pairs creatinine production, affecting renal evaluation.

Sarcopenia and HE

Hyperammonemia is a common in LC and has been linked to 
the development of sarcopenia. Sarcopenia, in turn, tends 
to exacerbate hyperammonemia by limiting muscle ammo-
nia consumption. Ammonia is a neurotoxic chemical that 
has been linked to the development of HE and minimal he-
patic encephalopathy (MHE). Furthermore, skeletal muscle 
proteolysis compensates for high amino acid consumption in 
patients with advanced LC, allowing for enhanced gluconeo-
genesis. Both BCAAs and aromatic amino acids (AAAs) are 
produced in this process. In skeletal muscle, however, the 
localized branched-chain keto dehydrogenase preferentially 
catabolizes BCAAs.48,102 As a result, BCAA levels drop while 
AAA levels rise, lowering the Fischer ratio. A decreased Fis-
cher ratio has been linked to HE via increasing AAA uptake 
in the brain and altering neurotransmission.103

Several studies have found an independent link between 



Journal of Clinical and Translational Hepatology 2022 vol. 10(6)  |  1213–12221218

Kumar R. et al: Metabolic perspective of sarcopenia

sarcopenia and HE.92,93,104 Merli et al.92 reported that sar-
copenia was independently linked with overt HE during hos-
pitalization in a multivariate logistic regression analysis of 
300 cirrhotic patients.92 A Japanese group of researchers 
revealed that handgrip strength stratifies LC patients at 
high risk of developing overt HE.104 In a study of 46 LC pa-
tients undergoing transjugular intrahepatic portosystemic 
shunt (TIPS), Nardelli et al.93 found that all patients who 
developed post-TIPS-HE (46%) had sarcopenia, and only 
MELD score and sarcopenia were independently linked with 
the development of HE.93 In a prospective study, 84% of LC 
patients with MHE had sarcopenia, compared with only 31% 
in those without MHE. Sarcopenia also independently pre-
dicted the occurrence of MHE in the multivariate analysis.105

Sarcopenia and HD

LC has long been known to have diabetogenic potential, and 
the term hepatogenous diabetes was coined to describe the 
condition.106 Although the pathophysiology of HD is com-
plex and poorly understood, sarcopenia, sarcopenic obesity, 
gut dysbiosis, and hyperammonemia have been linked to 
the abnormal glucose metabolism in LC.10,107 The majority 
of postprandial glucose consumption occurs in skeletal mus-
cle, making it an important insulin target organ for glucose 
uptake and utilization.14 As a result, skeletal muscle loss 
can lead to significant IR.14,107 Patients with HD often have 
abnormal oral glucose tolerance tests despite having normal 
fasting blood glucose levels, prompting us to believe that 

Table 2.  Studies on clinical implications of sarcopenia in CLD

Author, year Design Aims/objectives Population Main outcomes

Koo et al., 
201742

Cross-
sectional

Association between 
sarcopenia and 
histological severity 
of NAFLD

309 patients 
(240 with 
NAFLD)

Sarcopenia was significantly associated 
with NASH, OR 2.28 (1.12–4.30), and 
significant fibrosis, OR 2.05 (1.01–4.16)

Tandon et 
al., 201211

Retrospective Prevalence and clinical 
impact of sarcopenia 
in LC patients

142 LC 
patients 
listed for LT

Sarcopenia was independent predictor 
of mortality, HR 2.36 (1.23–4.53), after 
adjustments for age and MELD scores

Montano-Loza 
et al., 20127

Cross-
sectional

Incidence and 
association of 
sarcopenia with 
prognosis of LC

112 patients 
with LC

The incidence of sarcopenia was 40%. 
Sarcopenia was associated with mortality 
in patients with LC, HR 2.21, p=0.008

Montano-Loza 
et al., 201591

Retrospective Impact of sarcopenia 
on mortality 
prediction in LC

669 patients 
with LC

Sarcopenia was independently associated 
with mortality, HR 0.97 (0.96–0.99). 
Inclusion of sarcopenia in MELD 
further improved the prediction

Merli et al., 
201392

Prospective Relationship between 
sarcopenia and HE

300 LC 
patients

HE were significantly higher in LC 
patients with muscle depletion or 
decreased muscle strength. (30% vs. 
15%, and 29% vs. 16%, respectively)

Kim et al., 
201494

Retrospective Association between 
sarcopenia and 
mortality in LC 
patients with ascites

65 patients 
with LC

Sarcopenia is an independent predictor 
for long-term mortality in LC patients 
with ascites, HR 0.812 (0.684–0.965)

Durand et 
al., 20148

Retrospective Prognostic value 
of muscle atrophy 
in cirrhosis

562 patients 
with LC

Transversal psoas muscle thickness
/height on computed tomography 
independently predicted mortality in 
LC patients, HR 0.86 (0.78–0.94)

Masuda et 
al., 201495

Retrospective Impact of sarcopenia 
on mortality and 
sepsis after LDLT

204 LC 
patients

Sarcopenia was an independent 
predictor of mortality (HR 2.06) and 
sepsis (HR 5.31) after LDLT

Fujiwara et 
al., 201596

Retrospective Impact of sarcopenia 
and adiposity on HCC

1,257 patients 
with HCC

Sarcopenia (HR 1.52) and myosteatosis 
(HR 1.34) independently predicted 
mortality in patients with HCC

Nardelli et 
al., 201793

Prospective Association between 
sarcopenia and 
post-TIPS HE

46 LC patients Sarcopenia independently predicted 
the development of HE after TIPS 
(HR, 31.3 (4.5–218.07)

Kaido et al., 
201397

Retrospective Impact of sarcopenia 
on pot-LT survival

124 LC 
patients

Sarcopenia was an independent risk factor for 
mortality after LT (OR 4.846 (2.092–11.790))

Montano-Loza 
et al., 201498

Retrospective Impact of sarcopenia 
on outcomes after LT

248 LC 
patients

Sarcopenia was associated with 
longer hospital stays (40 vs. 25 
days) and a higher risk of bacterial 
infection (26% vs. 15%) after LT

HR, hazard ratio; HCC, hepatocelluar carcinoma; HE, hepatic encephalopathy; LC, liver cirrhosis; LDLT, living donor liver transplantation; LT, liver transplantation; 
MELD, model for end-stage liver disease; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; OR, odds ratio; TIPS, transjugular intrahepatic 
portosystemic shunt.
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cirrhosis-related sarcopenia may play a role in HD patho-
physiology. Sarcopenia is commonly accompanied by my-
osteatosis, macrophage infiltration, inflammatory cytokine 
production, and mitochondrial dysfunction, all of which con-
tribute to IR and reduced glucose uptake and utilization.15 
Moreover, skeletal muscles release a number of cytokines, 
including irisin and IL6, that control insulin sensitivity.108,109 
As a result, sarcopenia-related reduction of muscle secre-
tary function may contribute to the glucose intolerance in 
LC patients. Sarcopenic obesity has even greater impact on 
metabolic profile than sarcopenia alone.45

Sarcopenia and serum creatinine

Creatinine is a low-molecular-weight endogenous molecule 
generated from creatine and creatine phosphate, both of 
which are present mainly (95%) in muscle. Because serum 
creatinine levels correlate with muscle mass, it has been 
used as marker to measure muscle mass.110 Creatinine is a 
useful agent for estimating glomerular filtration rate (GFR) 
because it is uncharged, unbound to serum proteins, and 
filtered freely by the glomerulus without tubal reabsorption. 
However, creatinine production is reduced in cirrhosis patients 
with sarcopenia, which may lead to an overestimation of GFR 
and consequently an underestimation of renal impairment.111

Therapeutic perspective of metabolic correction

Sarcopenia is treated with a multifaceted strategy that in-
cludes lifestyle, nutrition, exercise, and adjunct medicine to 
treat metabolic imbalance. Several therapeutic options have 
been explored for sarcopenia, but only a handful have fo-
cused on CLD patients, with the majority of them being nutri-
tional. A caloric energy intake of 3.0–35 kcal/kg/day should 
be advised, with a target protein consumption of 1.2–1.5 g/
kg/day.112 Eating 3–5 meals each day and a late evening 
snack is also recommended to keep the starvation period 
short and improve protein turnover.112 Alcohol and smoking 
cessation should also be recommended. Recent studies have 
looked into ways to minimize ammonia, replenish BCAA, ad-
dress hormonal imbalances, and use myostatin antagonists.

In a preliminary study, ammonia-lowering treatment us-
ing L-ornithine L-aspartate improved skeletal muscle mass 
and strength, along with lowered circulation and skeletal 
muscle ammonia levels.113 Ammonia-lowering strategies 
for the treatment of sarcopenia in CLD need to be proven 
in large, well-controlled clinical trials. The use of BCAAs to 
promote muscle protein synthesis appears to be supported 
by research.69,114–119 Long-term BCAA supplementation 
has been reported to improve protein metabolism in LC pa-
tients, resulting in increased muscle mass and MHE (Table 
3).69,114–119 However, despite the positive results, a formal 

Table 3.  Studies on BCAA treatment for sarcopenia in patients with liver cirrhosis

Author, year, country Study type Study subjects Intervention Main results

Tsien, 2015, Canada69 Prospective 
study

06 compensated, 
alcoholic cirrhosis 
patients and 
08 controls

Single dose of BCAAs 
mixture enriched 
with leucine

Acute reversal of Impaired 
mTOR1 signaling and 
skeletal muscle autophagy 
by BCAA/leucine

Hiraoka, 2017, Japan114 Prospective 
study

33 patients 
with LC

BCAA supplementation 
(protein 13.5 g) 
as a late evening 
snack and walking 
exercise for average 
of 2.7±0.7 months

Average daily steps, muscle 
volume, leg strength, and 
handgrip strength were 
increased at 3 months

Uojima, 2017, Japan115 Prospective 
study

82 patients 
with LC

24-week, twice 
a day, treatment 
with oral BCAAs 
supplement powder

BCAAs improved low muscle 
strength without any positive 
effect on muscle mass

Kitajima, 2018, 
Japan116

Prospective 
study

21 patients 
with LC

48 weeks of 
supplementation 
with BCAAs

Amelioration of hypoalbuminemia 
associated with BCAAs was 
correlated with decreased 
myosteatosis with better 
survival rates, maintained 
skeletal muscle mass, and 
improved glucose sensitivity

Ruiz-Margáin, 
2018, Mexico117

Randomized 
trial, open 
label

37 LC patients in 
the intervention 
group and 35 
in the controls

BCAAs (110 g daily) 
plus HPHF (1.2 g/kg 
protein and 30 g fibers). 
Controls were given only 
HPHF; For 6 months

BCAA group had an increased 
muscle mass and a decreased 
fat mass, compared with 
the control group

Marchesini, 
2003, Italy118

Randomized 
study, 
double-blind

174 patients 
with advanced 
cirrhosis.

1-year BCAAs against 
lactoalbumin or 
maltodextrins

BCAAs prevented progressive 
hepatic failure and improved or 
maintained nutritional parameters 
and liver function tests

Les, 2011, Spain119 Randomized 
study, 
double-
blind,

116 patients 
with cirrhosis

30 g of BCAA or 
maltodextrin during 
56 weeks

BCAA supplementation improved 
muscle mass and minimal 
hepatic encephalopathy

BCAA, branched-chain amino acid; HPHF, high-protein, high-fiber diet; LC, liver cirrhosis.
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recommendation on the use of BCAA for sarcopenia in CLD 
is still in the works. Testosterone treatment has been found 
to help LC patients gain muscle and bone mass.120 Testos-
terone increases IGF-1 and decreases myostatin, both of 
which are beneficial to muscle growth. However, in patients 
with CLD, adverse events such as cardiovascular disease, 
fluid retention, gynecomastia, and prostatic disease pro-
gression have been reported, and long-term safety has yet 
to be proven. Similarly, while GH replacement therapy can 
increase muscle mass, it is associated with a high rate of 
adverse effects, such as increasing ascites and edema, as 
well as expensive cost.121 Because of the deleterious ef-
fects of myostatin on muscle protein turnover, many my-
ostatin inhibitors (e.g. stamulumab, landogrozumab, and 
trevogrumab) are now being investigated for their safety 
and efficacy.122 Furthermore, glucose-lowering medications 
such as metformin and thiazolidinedione have been shown 
to improve skeletal muscle mass, strength, and performance 
in diabetes patients, indicating the need for their evaluation 
in a long-term, well-designed study in CLD patients.

Conclusions

In conclusion, sarcopenia is common in patients with CLD 
and is associated with a number of metabolic dysregula-
tions. The decreased endocrine activity of both the liver and 
the skeletal muscles in such patients has reciprocal impli-
cations that necessitate special attention. Hyperammone-
mia, amino acid depletion, hormonal imbalance, and IR are 
among the key pathophysiological changes seen in LC pa-
tients that contribute to sarcopenia development. Given the 
clinical implications, a thorough metabolic evaluation in LC 
patients with sarcopenia should be performed for improved 
risk stratification and therapeutic guidance. However, ther-
apy for sarcopenia that targets potential risk factors is still 
evolving, and more study in this field is needed.
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