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Abstract

Background and Aims: Hepatocellular carcinoma (HCC) is 
listed as one of the most common causes of cancer-related 
death. Oncolytic therapy has become a promising treatment 
because of novel immunotherapies and gene editing tech-
nology, but biosafety concerns remain the biggest limitation 
for clinical application. We studied the the antitumor activ-
ity and biosafety of the wild-type Newcastle disease virus 
HK84 strain (NDV/HK84) and 10 other NDV strains. Meth-
ods: Cell proliferation and apoptosis were determined by 
cell counting Kit-8 and fluorescein isothiocyanate Annexin V 
apoptosis assays. Colony formation, wound healing, and a 
xenograft mouse model were used to evaluate in vivo and 
in vitro oncolytic effectiveness. The safety of NDV/HK84 
was tested in nude mice by an in vivo luciferase imaging 
system. The replication kinetics of NDV/HK84 in normal tis-
sues and tumors were evaluated by infectious-dose assays 
in eggs. RNA sequencing analysis was performed to explore 
NDV/HK84 activity and was validated by quantitative real-
time PCR. Results: The cell counting Kit-8 assays of vi-
ability found that the oncolytic activity of the NDV strains 
differed with the multiplicity of infection (MOI). At an MOI 
of 20, the oncolytic activity of all NDV strains except the 
DK/JX/21358/08 strain was >80%. The oncolytic activities 
of the NDV/HK84 and DK/JX/8224/04 strains were >80% 
at both MOI=20 and MOI=2. Only NDV/HK84 had >80% 

oncolytic activities at both MOI=20 and MOI=2. We chose 
NDV/HK84 as the candidate virus to test the oncolytic effect 
of NDV in HCC in the in vitro and in vivo experiments. NDV/
HK84 killed human SK-HEP-1 HCC cells without affecting 
healthy cells. Conclusions: Intratumor infection with NDV/
HK84 strains compared with vehicle controls or positive 
controls indicated that NDV/HK84 strain specifically inhib-
ited HCC without affecting healthy mice. High-throughput 
RNA sequencing showed that the oncolytic activity of NDV/
HK84 was dependent on the activation of type I interferon 
signaling.
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Introduction

Hepatocellular carcinoma (HCC) is a leading cause of can-
cer-related death worldwide.1,2 Although immunotherapy 
and targeted therapy have improved in recent years, global 
surveillance indicates a 5-year survival of 10–19% in most 
countries and regions.3 It is urgent to explore novel treat-
ments for HCC. Oncolytic viruses have shown promise as 
a targeted HCC therapy,4 and as long ago as the 1950s 
and 1960s, it was reported that some viruses can eradicate 
cancer.5,6 The National Cancer Institute recommends viro-
therapy as a complementary cancer therapy.7 Over the last 
two decades, studies have focused on the modification of 
oncolytic viruses or the insertion of genes such as granulo-
cyte colony stimulating factor (G-CFS) to enhance the cyto-
toxic effect on tumor cells, but no significant progress has 
been made.8,9 In addition, the safety of gene transfers, in 
which new DNA sequences are incorporated into the viral 
genomes to create “armed” oncolytic viruses has yet to be 
evaluated.

Some preclinical studies have evaluated oncolytic viruses 
in HCC. Adenoviruses have good tropism for hepatocytes,10 
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vesicular stomatitis virus can infect tumor cells,11 and vac-
cinia virus has been studied as a cancer virotherapy.12,13 
Intratumor or intravenous administration of vaccinia virus 
JX-594, a modified Wyeth strain, was shown to inhibit the 
growth of malignant solid liver tumors in rodent models14 
and to elimination of pulmonary metastases of hepatocel-
lular carcinoma in rabbits.14 A few oncolytic viruses have 
been investigated in clinical studies. Adenovirus was re-
ported to have no significant effect on HCC progression,15 
and a study of vaccinia virus JX-594 (Pexa-Vec) was ter-
minated early because the median overall survival did not 
reach the study endpoint16 The common reasons for the 
termination of clinical trials were lack of specificity, lack of 
tropism, and transduction of tumor cells that resulted in in-
effective clinical application, and adverse effects, including 
influenza-like symptoms, dose-related thrombocytopenia, 
and hyperbilirubinemia.17 Safety is a key concern that has 
restricted the development and selection of oncolytic viro-
therapy.18

Novel approaches for the virotherapy of solid tumors in-
volve developing the potential of naturally oncolytic virus 
strains. The Newcastle disease virus (NDV) is a highly con-
tagious poultry pathogen, but is nonpathogenic or mildly 
virulent in humans compared with vaccinia virus, herpes 
simplex virus or adenovirus.19 It has been studied for more 
than half a century,20 and NDV receptors are widely ex-
pressed in humans.21 Various NDV strains have been evalu-
ated for the treatment of tumors in preclinical studies, in-
cluding the Hitchner B1 strain,22 the HUJ strain,23 the rNDV/
F3aa strain,24 the LaSota strain,25 and the rAF-IL12 strain.26 
Clinical research is progressing slowly. Because the antitu-
mor activity of NDV strains is associated with their pheno-
types and molecular biological characteristics, research has 
focused on genetic modification or recombination of NDV 
strains to promote immunity27–29 and improve the tumor 
microenvironment30 compared with the wild-type strain. 
Only a few NDVs have entered clinical trials, and none have 
been used in clinical practice. However, significant antitu-
mor activity, selective replication in malignant cells, and low 
toxicity in human normal human cells20,31–33 have raised 
scientists’ greatstimulated interest in the oncolytic effects 
of NDV.

Potential NDV strains should have a low safety risk and 
high oncolytic effectiveness. Based on previous studies, we 
investigated the in vivo and in vitro oncolytic effectiveness 
and systemic safety of an NDV/HK84 strain identified within 
a group of 10 NDV strains. We confirmed its oncolytic ef-
fectiveness and low systemic toxicity, and RNA sequencing 
(RNA-seq) indicated that upregulation of genes regulating 

the interferon (IFN) signaling pathway was involved.

Methods

Viruses and cell culture

The NDV LaSota strain was obtained from veterinarian vac-
cines and nine other NDVs were isolated from poultry in 
Southern China (Table 1). The viruses were stored at the 
Joint Institute of Virology (Shantou University and The Uni-
versity of Hong Kong), purified and grown in pathogen-free 
chicken eggs. All experiments were performed in biosafety 
level 3+ (BSL3+) laboratories. SK-HEP-1 and Hep3B hu-
man HCC cell lines were purchased from the American Type 
Culture Collection (Manassas, VA, USA). The cells were cul-
tured in high-glucose Eagle’s minimum essential medium 
(Gibco) containing 10% fetal bovine serum. The cells were 
incubated at 37°C in a 5% CO2 humidified chamber.

Cell proliferation assay

Cell proliferation was assayed with a cell counting Kit-8 
(CCK-8; AbMole, USA) following the manufacturer’s in-
structions. SK-HEP-1 HCC cells were transferred to 96-well 
plates and incubated overnight before inoculation by NDVs 
and further incubation for specified time intervals. The in-
fected cells were washed with phosphate buffered saline 
and then exposed to the CCK-8 reagents for 3 h. The ef-
fects of the NDV strains on cell proliferation were read at 
a wavelength of 450 nm with an iMark Microplate Reader 
(BIO-RAD Corp., USA). Inhibition of tumor-cell viability, i.e. 
cytotoxicity was reported as the percentage of living cells 
as previously described.34 The assays were performed in 
triplicate. The effect of NDV/HK84 on Hep3B HCC cells was 
also determined by the CCK-8 assay. The effectiveness and 
safety of NDV/HK84 in normal liver cells was evaluated in 
AML12 normal mouse hepatocytes and PMH primary mouse 
hepatocytes by CCK-8 assays after overnight culture in 96-
well plates.

Cytopathic effect (CPE) of NDV/HK84

NDV/HK84 or phosphate buffered saline (PBS) were added 
to SK-HEP-1 cells seeded in 96-well plates. The cultures 

Table 1.  Inhibition of SK-HEP-1 cells by 10 NDV strains at different MOIs

Virus strain Inhibition (%) at MOI=20 Inhibition (%) at MOI=2.0 Inhibition (%) at MOI=0.2

DK/JX/945/07 100.16 76.10 34.21

DK/JX/8224/04 98.59 89.69 28.89

WDK/JX/10487/04 98.49 67.36 27.41

DK/HK/2/1975 97.67 68.07 41.55

DK/JX/21332/08 86.34 60.55 36.84

DK/JX/18579/09 95.90 74.21 38.99

CK/ZZ/296/08 93.93 63.13 25.31

DK/HK/84/1976 88.90 86.12 83.19

DK/JX/21358/08 66.35 32.78 29.03

LaSota 84.29 41.26 10.53

NDV, newcastle disease virus; MOI, multiple of infection; DK, duck; JX, Jiangxi Province; WDK, wild duck; HK, Hong Kong; CK, chicken; ZZ, zhangzhou city.
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were incubated at 37°C and 5% CO2, and CPE was assayed 
at 24, 48, and 72 h.

Apoptosis

SK-HEP-1 cells were seeded into 6-well plates and treated 
with NDV/HK84 (MOI = 2) or cisplatin (DDP; 7.5 µg/ml) for 
24 or 48 h. The cells were harvested and washed in cold 
(PBS). Following the apoptosis detection kit manufacturer’s 
(BD Pharmingen, USA) instructions, Annexin V FITC and 
propidium iodide were added to the cell suspensions for 15 
min at room temperature in the dark. Binding buffer was 
added and apoptosis was assayed with a C6 flow cytometer 
and FowJo 10 (BD Pharmingen, USA) within 1 h.

Colony formation assay

SK-HEP-1 HCC cells (50 cells/well) or Hep3B HCC cells (100 
cells/well) were seeded into a 6-well plate and cultured to 
60% confluence. Cells were then treated with NDV/HK84 
(MOI = 2), LaSota (MOI = 2) and DDP (7.5 µg/ml), or PBS 
for 48 h. The culture medium was replaced every 4–5 days 
with continuous culture for 2 weeks. Visible colonies, with at 
least 50 cells were stained with crystal violet, and counted 
by light microscopy.

Wound healing assay

SK-HEP-1 cells (2.0×106 cells/well) were plated into 6-well 
plates and cultured to confluency. A 1 mm wide gap was 
scratched with a micropipette tip, detached cells were re-
moved by washing with warm PBS. The attached cells were 
cultured with virus for specified times. The virus-containing 
medium was discarded, and the infected cells were washed 
twice with PBS. The wounds were observed and photo-
graphed with a phase-contrast microscope (ZEISS, DE) and 
the width of gaps in the monolayers were measured. The 
assays were performed in triplicate.

Cell invasiveness

Cell invasion was assayed in Matrigel coated Transwell 
chambers (Corning Inc., USA). SK-HEP-1 cells were treat-
ed with NDV/HK84, LaSota, DDP, or PBS for 48 h. Cells 
(1×105) were suspended in 200 µL fetal bovine serum-free 
medium in the upper chambers of 12-well plates. The lower 
chamber was filled with 500 µL of medium containing 20% 
FBS to induce cell movement. After 24 h, the cells on the 

lower surface of the membrane were fixed with 70% etha-
nol and stained with 0.5% crystal violet. The number of 
cells in five randomly selected fields (×100 magnification) 
were counted.

RNA sequencing (RNA-seq)

Total RNA was isolated with TRIzol (Takara Bio Inc., JPN). 
cDNA libraries were prepared by Illumina Paired End Sample 
Prep kits (Illumina Inc., USA) and sequenced with an Illumi-
na Hiseq 4000 system (Illumina Inc., USA). Differential ex-
pression of transcripts in the treatment and control groups 
was measured. RNA-Seq was performed by Hangzhou Lian-
chuan Biotechnology Co., and differentially expressed genes 
were identified with the linear models for microarray data 
(limma) package in GEO2R; the cutoff criteria were P <0.05 
and a fold-change of >2.0.

Differential expression analysis and validation

A rigorous algorithm was used to identify differentially ex-
pressed genes. To determine significant of differences in 
gene expression, the threshold was a false discovery rate 
(FDR) ≤0.001 with an log2 ratio absolute value ≥1. Cluster 
analysis of differentially expressed genes was with Clus-
ter and Java TreeView. We annotated and mapped DEGs 
to terms in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) databases. DEGs ere vali-
dated by quantitative real-time PCR (qRT-PCR). Primer se-
quences are shown in Table 2.

Xenograft mouse model

The procedures followed the guidelines of the animal exper-
imentation ethics committee of Shantou University Medi-
cal College. BALB/c female nu/nu athymic nude mice (4–6 
weeks old) were maintained in a pathogen-free environ-
ment. SK-HEP-1-Luc HCC cells (1×107 cells/100 µL) were 
implanted by subcutaneous injection. Tumor volume was 
measured every 3 days with a digital caliper, and calculated 
as V=4/3×π×S2/2×L/2, where S is the smallest diameter, 
V is the tumor volume and L is the largest diameter. When 
tumors were 5–7 mm in diameter, they were injected with 
1×107 egg infectious dose (EID50) NDV/HK84 per 100 µL 
every 3 days (n=10 mice per group). There were five in-
jections. PBS (100 µL) and 5 mg/kg DDP (100 µL) were 
controls. Body weight and behavior were monitored every 
other day; survival was monitored every day. Animals were 
sacrificed if (1) the 10% of the total body weight was lost 

Table 2.  The primer sequences of differentially expressed genes

Gene Forward primer Reverse primer

OASL 5′-GGAGTGGAAGGAAGAGGTGC-3′ 5′-TTTCTCTGCAGCTCGCTGAA-3′

IFIT1 5′-CTAGCTCACTCCACGTAGCG-3′ 5′-TGGTTTTGCCATTGCCAAGG-3′

ISG15 5′-TGCCAGTACAGGAGCTTGTG-3′ 5′-ATTTCCGGCCCTTGATCCTG-3′

IFITM1 5′-AAACGACAGGGGAAAGGAGG-3′ 5′-CAAAGGTTGCAGGCTATGGG-3′

IRF7 5′-CAACCAAGGCTCCTGGAGAG-3′ 5′-TACACCTTGCACTTGCCCAT-3′

DDX58 5′-CTGGTTCCGTGGCTTTTTGG-3′ 5′-AGCAGGCAAAGCAAGCTCTA-3′

IFI44 5′-TTTGGAGGGAAGCGGCTTAG-3′ 5′-ATGCGTTACATGCCCTTGGA-3′

MX1 5′-TCCGAAGTGGACATCGCAAA-3′ 5′-CAGCCACTCTGGTTATGCCA-3′
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in 1 week; (2) the animal stopped feeding or drinking; (3) 
the tumors ruptured; (4) the tumors were >18 mm in any 
dimension (5) study termination had been reached. Mice 
were sacrificed by cervical dislocation when their condition 
was moribund.

Luciferase imaging

Before in vivo imaging, mice were anesthetized with isoflu-
rane-oxygen and injected intraperitoneally with D-luciferin 
potassium salt 150 mg/kg (Xenogen, USA). An integration 
time of 6 m was used for acquisition of luminescent images 
with an in vivo imaging system (Perkin Elmer Corp., USA) 
and living image acquisition and analysis software (version 
2.11; Xenogen Corp., USA).

Histopathology

Samples of the mouse tumors were obtained by dissection 
and fixed in 10% formaldehyde in pH 7.4 PBS. The fixed 
tissues were embedded in paraffin, sectioned, and stained 
with hematoxylin/eosin (H&E). The infiltration of immune 
cells was also observed.

Isolation and primary culture of mouse hepatocytes

The livers of 8-week-old wild-type male mice were per-
fused in situ via the postcava for 3 m with 42° calcium 
and magnesium-free HEPES buffer and for 5 m with CM 
HEPES buffer containing protease (14 mg/mouse) and for 
7 m with collagenase D (3.7 U/mouse) at a flow rate of 
3 mL/m. Isolated mouse primary hepatocytes were plated 
onto collagen-coated 6-well plates at a density of 2×105 
cells/well. After the cells had attached for 6 h, the medium 
was changed to fresh medium supplemented with 10% FBS 
overnight.

Replication kinetics of NDV/HK84 in SK-HEP-1 and 
normal cells

We investigated the replication kinetics of NDV/HK84 in 
HCC and in normal tissue and evaluate its safety as previ-
ously described.24 A dose of 1×107 NDV/HK84 cells in 100 
µL was injected into normal tissues in the left flank or tu-
mors in the right flank of nude mice. The mice were killed 
at 1, 2, 3, 4, 5, 6, 7, or 8 days after treatment and pieces 
of normal and tumor tissue were collected and prepared for 
determination of the median viral embryo infective dose 
(EID50).

Statistical analysis

The values of continuous variables were reported as means 
± standard deviation (SD). Multigroup comparisons were 
performed by one-way analysis of variance followed by 
Dunnett’s test. Welch’s analysis of variance followed by 
Dunnett’s T3 test was used for data with unequal variances. 
Differences in the values that were not normally distributed 
were compared by Kruskal-Wallis tests; between-group dif-
ferences were compared by Mann-Whitney U tests. P < 0.05 
was considered statistically significant. The statistical anal-
ysis was performed with SPSS 23.0 (IBM Corp., Armonk, 
NY, USA) and Graph Pad Prism 8.0 (Graph Pad software, La 
Jolla, CA, USA).

Results

Inhibition and cytopathic effect (CPE) of NDVs on SK-
HEP-1 HCC cells were high regardless of MOI

Inhibition of SK-HEP-1 HCC cells by the 10 NDV strains is 
shown in Figure 1A. The oncolytic activity of the NDV strains 
was >80%, except DK/JX/21358/08. The oncolytic activi-
ties of NDV/HK84 and DK/JX/8224/04 were more than 80% 
at MOIs of 20 and 2. As only NDV/HK84 had more than 80% 
inhibition at all three MOIs was chosen as a novel NDV strain 
for further evaluation. The CCK-8 assay results showed sig-
nificant inhibition of the proliferation of SK-HEP-1 cells with 
increasing concentrations of NDV/HK84 for 72 h. At all three 
MOI values, the inhibition of SK-HEP-1 cells was >80% (Fig. 
1A). Even at a low concentration (MOI=0.2), the inhibition 
rate was high (Fig. 1B, D). The median effective concentra-
tion (EC50) of NDV/HK84 was 0.0019 MOI for SK-HEP-1 
(Fig. 1C) and was 0.6159 for Hep3B, which demonstrated 
good antitumor activity (Fig. 1E). The CPE on HCC cells at 
24, 48, and 72 h post-inoculation included rounding, de-
tachment from the culture surface, and death (Fig. 1F, G).

NDV/HK84 induced apoptosis and inhibited HCC cells 
proliferation

Apoptosis plays a key role in both tumor development and 
treatment. Flow cytometry showed that after treatment for 
48 h, NDV/HK84 caused a significant increase in late apop-
tosis (right upper quadrant) compared with either the PBS 
vehicle or positive DDP control (Fig. 2A). The percentages 
of late apoptotic cells were 5.41% for PBS, 31.20% for DDP, 
and 67.27% for NDV/HK84 (p<0.05, Fig. 2A). In the colony 
formation assay, the anti-proliferation activity of NDV/HK84 
resulted in a time-dependent decrease of colony formation 
by both SK-HEP-1 and Hep3B HCC (Fig. 2B, C). The inhibi-
tion of proliferation by NDV/HK84 was greater than that by 
LaSota (Fig. 2B, C).

NDV/HK84 suppressed in vitro migration and inva-
sion of hepatocellular carcinoma cells

The wound healing assay (Fig. 2D) showed that NDV/HK84 
caused a time-dependent reduction in cell migration com-
pared with the control. DDP and the LaSota NDV also in-
hibited cell migration, but the most significant decrease of 
migration distance at each time of measurement was found 
in the NDV/HK84 group (Fig. 2D). In the Transwell assays, 
at each concentration that was tested, significantly fewer 
SK-HEP-1 cells in the upper chambers, and the numbers 
of migrateding to the lower membrane surface in the NDV/
HK84 group than in the DDP and LaSota groups (Fig. 2E). 
Taken together, the results demonstrate that NDV/HK84 in-
hibited HCC cell migration and invasiveness.

NDV/HK84 inhibited tumor growth in nude mice

Subcutaneous injection of SK-HEP-1 cells into the right hip 
flank of nude mice was followed by the development of vis-
ible tumors within 7 days. When the tumors were 5–7 mm 
in diameter, they were injected with a 100µL suspension 
containing 1×107 EID50 of NDV/HK84 every 3 d for a total of 
five injections. PBS and DDP (5 mg/kg) were negative and 
positive controls (Fig. 3A). Tumor inhibition was stronger 
with NDV/HK84 than with PBS and DDP. In six of 10 mice 
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Fig. 1.  Inhibition, EC50 and CPE of NDV/HK84 on HCC cells. (A) Inhibition rates of 10 NDV strains on SK-HEP-1 cells. (B) At different concentrations, NDV/HK84 
significantly inhibited the proliferation of SK-Hep-1 cells. (C) The EC50 of NDV/HK84 on SK-HEP-1 cells. (D) NDV/HK84 inhibition of Hep3B cells at different MOIs. (E) 
The EC50 of NDV/HK84 on Hep3B cells. (F) CPE of the negative control (PBS) on SK-HEP-1 cells at different times post-inoculation. (G) CPE of NDV/HK84 on SK-HEP-1 
cells at different times post-inoculation. EC50, the median effective concentration; CPE, cytopathic effect; NDV/HK84, newcastle disease virus HK84; HCC, primary 
hepatocellular carcinoma; MOI, multiplicity of infection.
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Fig. 2.  NDV/HK84 induced apoptosis, and inhibited proliferation, migration, and invasiveness on HCC cells. (A) Apoptosis was assayed by flow cytometry 
after staining with Annexin V and PI, and treatment by PBS control, DDP (7.5 µg/ml), or NDV/HK84 (MOI=2) for 48 h. (B, C) NDV/HK84 and DDP significantly inhibited 
colony formation compared with the LaSota strain and PBS. (D) Wound-healing assays showed that NDV/HK84 significantly inhibited migration at 24 h compared with 
controls. (E) Transwell assays (representative images, ×200 magnification) showed that NDV/HK84 significantly inhibited cell migration compared with PBS, DDP, or 
the LaSota strain. Data are means±SD. *p<0.05, **p<0.01, ***p<0.001. PBS, phosphate buffered solution; DDP, cisplatin.
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Fig. 3.  NDV/HK84 inhibits tumorigenicity in the xenograft model. (A) Mice were subcutaneously injected with SK-HEP-1 cells and treated with PBS, DDP, or 
NDV/HK84, on days 7, 10, 13, 16 and 19. (B) Mice with complete tumor remission. (C) Body weight of DDP- NDV/HK84-, or PBS-treated mice. Data are means±SD. (D) 
Tumor volume in NDV/HK84-treated mice. (E) Tumor volume in PBS-treated mice. (F) Tumor volume DDP-treated mice. (G) NDV/HK84 viral titers in normal tissues and 
tumors after infection by EID50. Data are means±SD. (H) Representative sections of hematoxylin and eosin-stained tumor tissues collected on day 15 the first injection 
of NDV/HK84, DDP, or PBS. EID50, 50% egg infective dose.
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treated with NDV/HK84, the tumors completely regressed 
after 2 weeks of treatment (Fig. 3B). On day 19, 2 weeks 
after the first injection, the average tumor volumes were 
206.3 mm3 in the control group, 110.6 mm3 in the DDP 
group, and 4.3 mm3 in the in NDV/HK84 group. The growth 
in tumor volume was significantly suppressed by NDV/
HK84, and the difference in tumor volume in the NDV/HK84 
and DDP groups was significant (Fig. 3D–F). The results are 
evidence of the antitumor activity of NDV/HK84.

Histopathological evaluation of hematoxylin and eosin 
stained tissue revealed tumor necrosis in tumors treated 
with DDP and NDV/HK84. Few viable tumor cells were vis-
ible, but large patches of necrosis with some scattered apo-
ptotic or tumor cells were present (Fig. 3H).

Safety evaluation of NDV/HK84 strain

Decreases in in vivo luciferase expression in tumor cells oc-
curred along with decreases in tumor volume after treat-
ment with DDP positive control and NDVs viruses during the 
15 day study period (Fig. 4A–F). Six of 10 subcutaneous 
tumors in the NDV/HK84 group were no longer measurable 
(Figs. 3D, 4F). Mice in the DDP group, the nude mice devel-
oped significant weakness and weight loss (Figs. 3C, 4E), 
and experienced less tumor shrinkage than mice the NDV/
HK84 group (Figs. 3F, 4E). Three mice in the DDP group 
lost more than 20% of the body weight and were sacrificed 
for ethical reasons. Mice in the NDV/HK84 group, did not 
experience any obvious therapy-associated side effects or 
weight loss (Fig. 3C). The results indicate that NDV/HK84 
had a better safety profile than DDP.

The NDV/HK84 EID50 results demonstrated tumor-spe-
cific viral replication and little replication in normal cells. In 
the 8 days after treatment, the viral titer of tumors in nude 
mice decreased, but remained at a relatively high level. In 
normal tissues, the viral titer rapidly dropped to near 0 on 
day 2 of treatment (Fig. 3G). This persisted until the eighth 
day of the experiment, showing that NDV/HK84 replicated 
poorly in normal tissues and had good safety. CCK-8 as-
says in normal AML12 mouse hepatocytes AML12 and PMHs 
found that at a low MOI (0.02), NDV/HK84 had nearly no ef-
fect on proliferation or the viability normal liver cells (nearly 
0%), which was significantly different from the effects on 
HCC cells. As MOI increased, the inhibition of normal hepat-
ocytes by NDV/HK84 remained low. The results show that 
NDV/HK84 killed tumor cells selectively (Fig. 4G, H).

Global changes in mRNA expression in SK-HEP-1 HCC 
cells after NDV/HK84 infection

The results of RNA-seq analysis of NDV/HK84 treated SK-
HEP-1 cells and the upregulated and the downregulated 
genes are summarized in Figure 5A and differences in tran-
script abundance are shown in a Venn diagram (Fig. 5B). GO 
enrichment analysis found significant enrichment in type I 
Interferon signaling and innate immune-response genes in 
control and NDV/HK84 groups (Fig. 5C). KEGG enrichment 
analysis found that retinoic acid inducible gene (RIG)-1)-
like receptors and Toll-like receptors were involved in NDV/
HK84 treatment (Fig. 5D).

Upregulation of type I interferon signaling in SK-
HEP-1 cells following NDV/HK84 infection

GO and KEGG enrichment analysis found that some immune 
reaction-related genes participated in the events triggered 

by NDV/HK84 infection in SK-HEP-1 cells. Human oligoad-
enylate synthetase-like (OASL),35,36 XIAP-associated factor 
1 (XAF1),37–39 IFN-stimulated gene15 (ISG15),40,41 inter-
feron-induced transmembrane protein 1 (IFITM1),42,43 MX 
dynamin like GTPase 1 (MX1),44,45 interferon regulatory fac-
tor 7 (IFR7),46,47 interferon-induced protein 44 (IFI44),48 
and DExD/H-box helicase 58 (DDX58) genes,49,50 and those 
associated with the interferon signaling pathway were man-
ually selected (Table 3). The RNA-seq analysis results were 
validated by real-time PCR (Fig. 5E). In addition, lympho-
cyte, neutrophil, macrophage, fibroblast, and plasma cell 
infiltration was observed in the tumor tissue xenografts 
in nude mice treated by NDV/HK84 but not in the control 
group (Fig. 5F). The results are consistent with the involve-
ment of type I IFN signaling in the inhibition of HCC by NDV/
HK84 (Fig. 5G).

Discussion

HCC has high morbidity and mortality. Poor survival high-
lights the need for new drugs. NDV is cytotoxic to many 
cancer cell lines with diverse embryonic origin,51 including 
nervous, connective and epithelial tissues. It is not cyto-
toxic to normal tissues.20 Many in vitro and in vivo studies 
have reported the oncolytic effectiveness and good safety 
profiles of NDVs,20 but the progress of NDV-dependent on-
colytic therapy for HCC has been slow. Genetic engineering 
and gene editing may be able to increase the oncolytic ef-
fectiveness of NDVs,22,23,26 but the roles of specific phe-
notypes and the molecular mechanisms of NDV oncolysis 
remain poorly understood.20 The potential biosafety of ge-
netically engineered NDV strains have been intentionally or 
unintentionally ignored. There have still not been any suc-
cessful clinical studies of NDVs for HCC treatment. Hence, 
the exploration of novel wild-type NDVs with high oncolytic 
effectiveness is urgent and deeply meaningful.

We have previously reported on the collection of dozens 
of NDVs for avian influenza and other virus research. The 
oncolytic effectiveness and safety of NDV in tumor therapy 
has been reported.20 our intention was to find novel natural 
novel NDV strains with low risk and high oncolytic effective-
ness. The hope is that systematic screening of the existing 
wild-type NDV- strain pool would offer a new perspective for 
HCC oncolytic therapy.

NDV strains have differing tumor inhibition activity.22–26 
Pap et al. showed that MTH-68/H was cytotoxic to 13 hu-
man melanoma cell lines, and that but their EC50s values 
were significantly different.53 Kseniya S. Yurchenko et al. 
reported high oncolytic activity of seven of 44 natural pi-
geon NDV strains against diverse cancer-cell lines.54 In this 
study, even for the same SK-HEP-1 liver cancer cell line, 
the tumor inhibition rates of different NDV strains varied 
significantly. We choose the NDV/HK84 strain to test its po-
tential oncolytic effectiveness and safety in HCC cell lines 
and in nude mouse xenografts because of its inhibition rate 
of 86.12%.

Compared with a DDP positive control and the NDV La-
Sota strain, NDV/HK84 significantly inhibited the prolifera-
tion, migration, and invasiveness of SK-HEP-1 cells and the 
cytotoxic effectiveness of NDV/HK84 on HCC was better 
than that of cisplatin. In addition, the CPE of NDV/HK84 on 
SK-HEP-1 cells was significant. We observed the cytotoxicity 
of NDV/HK84 within 24 h, and within 72 h, the cells became 
round, necrotic, exfoliated, formed clusters, and died. We 
also investigated the oncolytic effectiveness of NDV/HK84 in 
HCC in xenotransplants in nude mice. NDV/HK84 inhibition 
of tumor development was superior to that of DDP. Fifteen 
days after the first intratumoral injection of NDV/HK84, 
subcutaneous tumors in the right flank of six of 10 nude 
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Fig. 4.  Imaging of luciferase expression in nude mice after the first and fifth injections during the 15 day study period. (A–C) Mice injected with PBS 
(A), DDP (B), or NDV/HK84 (C) after the first injection. (D–F) Mice injected with PBS (D), DDP (E), or NDV/HK84 (F) after the fifth injection. Compared with the first 
injection, fluorescence intensities in two nude mice decreased (F). No fluorescence was detected in three mice, indicated the tumors had vanished after NDV/HK84 
treatment. (G, H) Inhibitory rates of NDV/HK84 in normal mouse hepatocytes, AML12 cells, and primary mouse hepatocytes At MOIs of 0.02, 2 and 20.
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Fig. 5.  IFN signaling pathway in SK-HEP-1 cells after NDV/HK84 treatment. (A) RNA-seq and analysis of differential gene expression in SK-HEP-1 cells treated 
for 12 h and 24 h by bioinformatics tools. White indicates upregulated genes and black indicates downregulated genes. (B) Venn diagram showing differences in tran-
script abundance. (C, D) GO and KEGG enrichment analysis of the putative functions of differentially expressed genes. (E) Transcription of OASL, XAF1, ISG15, IFITM1, 
MX1, IFR7, IFI44, and DDX58 genes assayed by qRT-PCR in SK-HEP-1 cells treated by NDV/HK84 for 12 h and 24 h. (F) Increased infiltration of immune cells in the 
xenograft model following NDV/HK84 treatment. Representative hematoxylin and eosin staining of tumor tissue from control mice (top, without immune infiltration, 
×200, and NDV/HK84-treated mice (middle, showing extensive inflammatory cells, ×200; bottom infiltration of lymphocytes, neutrophils, macrophages, fibroblasts, 
and plasma cells, ×400. (G) Diagram of the potential oncolytic mechanism of NDV/HK84 by activating type I IFN (IFNα/β) signaling against hepatocellular carcinoma. 
After invading liver cancer cells, NDV/HK84 is recognized by intracellular innate immune receptors to activate an immune response mediated by type I IFN. Many 
interferon-stimulating genes, including DDX58, OASL, IFITM1, MX1, XAF, IFI44 and ISG15 are involved the initiation of antitumor immunity. IFN, interferon; RNA-seq, 
RNA Sequencing; GO, Gene ontology; KGEE, Kyoto encyclopedia of genes and genomes; qPCR, real-time quantitative PCR; OASL, human oligoadenylate synthetases-
like; XAF1, XIAP-associated factor1; ISG15, IFN-stimulated gene15; IFITM1, interferon-induced transmembrane protein1; MX1, MX dynamin like GTPase 1; IFR7, IFN 
transcription factor; IFI44, interferon-induced protein 44; DDX58, DExD/H-box helicase 58 (RIG-1).
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mice completely disappeared, with no visible measurable le-
sions. Hematoxylin and eosin staining of tumors from NDV/
HK84 group mice with tumor regression revealed almost no 
viable tumor cells. We were surprised to find complete tu-
mor regression in six of 10 tumors treated with a wild-type 
NDV/HK84 strain. Vigil et al. previously reported complete 
regression of two of 10 tumors in a rat model treated by a 
genetically engineered NDV (rNDV/F3aa). Complete regres-
sion was not observed in 10 tumors treated by wild-type 
NDV/B1.22 In addition, in this study, the NDV/HK84 infected 
mice gained weight and had good vitality, compared with 
the vehicle and DDP groups. The NDV/HK84 strain had 
excellent oncolytic-effectiveness and safety for HCC treat-
ment, which need confirmation in other tumor types.

The study focus was to verify the oncolytic ability of NDV/
HK84. We had great interest in its oncolytic mechanism be-
cause of its excellent effectiveness in animal experiments. 
Differential gene expression profiles were significantly en-
riched in genes involved in type I IFN signaling and innate 
immune responses. Type I IFN is a powerful antiviral agent 
that rapidly induces transcription of interferon-stimulated 
genes, and is involved in the first-line antiviral defense after 
pathogen invasion, especially viral infection.40 The induced 
products provoke antivirus effects by activating Janus ty-

rosine kinase-signal transducer and activator of transcrip-
tion (JAK-STAT) signaling.55 Type I IFN is also involved in 
the innate immune response to developing malignancies 
by actively participating in cancer immunosurveillance. It 
remains to be determined which tumor-derived products 
and signal transduction pathways underlie such an effect.56 
Therefore, based on our results, we speculate that NDV/
HK84 induces antitumor immunity through the type I IFN 
pathway. As we expected, RNA-seq analysis found that RIG-
I like receptors, Toll-like receptors, and type I IFN signaling 
were significantly enriched. Eight differentially expressed 
genes related to the IFN pathway were chosen to validate 
the fidelity of RNA-seq. Because the understanding of the 
IFN-stimulated genes is limited, it is essential to describe 
the nature of the host increase linked to type I IFN signal-
ing and oncolytic effectiveness associated with NDV/HK84 
infection. The roles of some of the eight candidate genes 
have been described. Oligoadenylate synthase-like (OASL) 
protein increases the RIG-I activity to modulate immune re-
sponse.35 Interferon-stimulated gene 15 (ISG15) is rapidly 
upregulated after stimulation by IFN, and ISG15 knockout 
mice increased susceptibility to influenza, herpes, and Sind-
bis virus infection.40 An IFN-stimulated gene (ISG) protein 
family member, interferon-induced transmembrane protein 

Table 3.  Differentially expressed genes and their functions in HCC cells treated with NDV/HK84

Gene symbol Gene name Location Function Relationship to cancer Ref.

OASL human oligoadenylate 
synthetases-like

12q24.31 Promotes antiviral activity 
by enhancing the sensitivity 
of RIG-I activation

Association with immune 
cell infiltration in 
pancreatic cancer36

35,36

XAF1 XIAP-associated 
factor1

17p13.1 unknown Promoted apoptosis either 
by p53 stabilization,37 or 
control of G2/M phase,38 
induced autophagy by 
upregulating Beclin 1, or 
inhibiting AKT signaling39

37–39

ISG15 IFN-stimulated gene15 1p36.33 An interferon-induced protein 
that has been implicated 
as a central player in the 
host antiviral response

Direct impact on the 
pleiotropic cellular 
functions of ubiquitin, 
and leading to several 
human diseases 
including cancer41

40,41

IFITM1 interferon-induced 
transmembrane 
protein1

11p15.5 Restrict viral 
membrane fusion

Knock down of IFITM1 
regulated the proliferation, 
cell cycle arrest and 
apoptosis, and disturbed 
the MAPK signaling43

42,43

MX1 MX dynamin like 
GTPase 1

21q22.3 Inactivate viral ribosome 
capsid through Toll-
like receptor signaling 
pathway to prevent viral 
genome transcription

unknown 44,45

IFR7 IFN transcription factor no Acts within the JAK/STAT 
pathway in response to viral 
infection by regulating IFN

Antitumor effects through 
inducing TNF-related 
apoptosis signaling47

46,47

IFI44 interferon-induced 
protein 44

1p31.1 unknown Anti-proliferative activity 
in melanoma cell48

48

DDX58 DExD/H-box helicase 
58 (RIG-1)

9p21.1 An intracellular “whistler”, an 
important pattern recognition 
receptor (PRR) for viral 
RNA. Induction of IFN and 
proinflammatory cytokines

Suppresses the migration 
and invasion of HCC50

49,50

HCC, primary hepatocellular carcinoma; IFN,interferon; OASL, human oligoadenylate synthetases-like; RIG-I, Ret inoic acid inducible gene I; XAF1, XIAP-associated 
factor1; G2/M, G2 and M cell cycle; ISG15, IFN-stimulated gene15; IFITM1, interferon-induced transmembrane protein1; MX1, MX dynamin like GTPase 1; IFR7, IFN 
transcription factor; IFI44, interferon-induced protein 44; DDX58, DExD/H-box helicase 58 (RIG-1).
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1 (IFITM1) participates in the prevention of viral entry into 
host cellular membrane at the early stage of virus infection.42 
IFITM1 has antiproliferative activity and participates in im-
mune surveillance and tumor suppression.43 MX1 encoding 
protein (MX dynamin like GTPase 1) generates a protective 
antiviral response by sensing nucleocapsid-like structures 
under increased IFN-α stimulation by Toll-like receptors sign-
aling.44,45 DExD/H-Box Helicase 58 (DDX58) is a pattern rec-
ognition receptor for viral RNA in sensing viral nucleic acids 
and an intracellular signaling protein in maintaining innate 
immune system homeostasis.49 We failed to find any strong 
correlations or associations of the eight candidate genes with 
liver tumorigenesis or host immune response induced by a 
virus. Lymphocytes and other immune cells were observed 
in the tumor tissue that was treated with NDV/HK84. The 
result indicated that NDV/HK84 may trigger the IFN pathway, 
recruit inflammatory factors, and kill tumor cells.

Although the candidate genes are involved in the innate 
immune response to virus infection, it remains unknown 
whether the eight candidate genes are principal compo-
nents or signals directly responsible for the oncolytic abil-
ity of NDV/HK84. Our results provide evidence that the on-
colytic effectiveness against HCC was linked to the activity 
of type I IFN triggered by infection by the wild-type NDV/
HK84 strain. The molecular mechanism that links the candi-
date genes with the oncolysis or second bystander killing by 
NDV/HK84 and the canonical innate antivirus activity need 
investigation.

In summary, the wild-type NDV/HK84 strain had a strong 
oncolytic effect against HCC cells and was safe in a nude 
mouse model. The RNA-seq results were consistent with 
upregulation of interferon signaling as the major oncolysis-
related pathway. The IFN-related genes were very impor-
tant elements in the inhibition of SK-HEP-1 cells by NDV/
HK84. Future studies should focus on the molecular bio-
logical characteristics of the NDV strains and the oncolytic 
molecular mechanism of NDV/HK84. We believe that this 
novel wild-type NDV/HK84 strain will be useful in future 
clinical trials of oncolytic therapies for HCC and other tumor 
species.
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