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Abstract

Background and Aims: The prognosis of hepatocellular 
carcinoma (HCC) is extremely poor; therefore, there is an 
urgent need for novel prognostic molecular biomarkers of 
HCC. The current investigation utilized circular (circ)RNA-
associated competing endogenous (ce)RNAs analysis in 
order to identify significant prognostic biomarkers of HCC. 
Methods: CircRNAs and mRNAs that were differentially 
expressed between normal and HCC tissues were identi-
fied. Their respective functions were predicted with Gene 
Ontology enrichment and Kyoto Encyclopedia of Genes and 
Genomes enrichment analyses. A nomogram was used for 
model verification. Results: A ceRNA network composed 
of differentially expressed circRNAs and mRNAs was con-
structed. Significant hub nodes in the ceRNA network were 
hsa_circ_0004662, hsa_circ_0005735, hsa_circ_0006990, 
hsa_circ_0018403 and hsa_circ_0100609. By using this in-
formation, a prognostic risk assessment tool was developed 
based on the expressions of seven genes (PLOD2, TARS, 
RNF19B, CCT2, RAN, C5orf30 and MCM10). Furthermore, 
multivariate Cox regression analysis revealed risk and T-
stage parameters as independent prognostic factors. The 
nomograms that were constructed from risk and T-stage 
groups were used to further assess the prediction of HCC 
patient survival rates. The nomogram, which consisted of 
risk and T-stage scores assessment models, was found to 
be an independent factor for predicting prognosis of HCC. 
Conclusions: Five circRNAs, including hsa_circ_0004662, 
hsa_circ_0005735, hsa_circ_0006990, hsa_circ_0018403 
and hsa_circ_0100609, that may play key roles in the pro-
gression of HCC were identified. Seven gene signatures 
were identified, which were associated with the aforemen-
tioned circRNAs, including PLOD2, TARS, RNF19B, CCT2, 
RAN, C5orf30 and MCM10, all of which were significant 
genes involved in the pathophysiology of HCC. These genes 
may be used as a prognosticating tool in HCC patients.

Citation of this article: Han L, Wang M, Yang Y, Xu H, Wei 
L, Huang X. Detection of Prognostic Biomarkers for Hepa-
tocellular Carcinoma through CircRNA-associated CeRNA 
Analysis. J Clin Transl Hepatol 2022;10(1):80–89. doi: 10. 
14218/JCTH.2020.00144.

Introduction

Hepatocellular carcinoma (HCC) ranks sixth among fre-
quently encountered malignant tumors and is the third 
most common cause of cancer-associated mortality.1 The 
global incidence of HCC has increased in recent years.2 The 
most common causes of this cancer include alcohol abuse, 
aflatoxin exposure and hepatitis B and C viral infections.3 
These risk factors trigger a cascade of genetic and epige-
netic changes that accumulate and result in the activation 
of oncogenes and in the inhibition of the function of tumor 
suppressor genes, leading to the development of HCC over 
time.4 A total of 42,030 subjects were diagnosed with HCC 
in 2019 in the United States, of which 31,780 died due to 
this disease.5 The current mortality to morbidity ratio of 
HCC is estimated to be 0.95, implying an extremely poor 
prognosis.6 Therefore, there is an urgent need for novel 
prognostic molecular biomarkers of HCC.

The serum levels of carcinoembryonic antigen, alpha-feto-
protein, CA125, CA153, CA199, HSP90α and TK1 were sig-
nificantly increased in patients with HCC.7 The application of 
a single tumor marker in detecting HCC in combination with 
alpha-fetoprotein levels is an interesting approach. The com-
bined detection of alpha-fetoprotein and HSP90 can improve 
the diagnostic value of alpha-fetoprotein for HCC and the cost 
is considerably lower. The combined detection of alpha-feto-
protein and HSP90α and CA125, CA153 and carcinoembryonic 
antigen can significantly improve the sensitivity and specific-
ity of diagnosis.8 This approach demonstrates optimal clinical 
value for early screening and early diagnosis of malignant 
tumors.9 Although it has been shown that alpha-fetoprotein 
and other biomarkers are associated with the prognosis of 
HCC, their cut-off values have not been adequately defined.

Long intergenic non-coding RNA transcripts are regulated 
by competitive endogenous RNAs (ceRNAs) via competition 
for shared microRNAs (miRNAs/miRs).10 Previous stud-
ies have documented the involvement of miRNA-mediated 
ceRNA modulator mechanisms in cancer development, in 
which circular RNA (circRNA) acts as a sponge for miRNA. 
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circRNA is an RNA transcript, which resembles mRNA. 
A limited number of circRNAs have the ability to encode 
proteins.11 Ma et al.12 reported that the dysregulation of 
hsa_circRNA_100290 reversed miR-378a-triggered inhibi-
tion of GLUT1 receptors by functioning as a ceRNA in oral 
squamous cell carcinoma. Jia et al.13 further explored the 
potential of a three-circRNA signature as a group of ther-
apeutic biomarkers for gastrointestinal stromal tumors. 
The roles of circRNA were also examined in HCC by sev-
eral studies. One report highlighted that hsa_circ_0008287 
and hsa_circ_0005027 significantly affected both Hippo and 
ErbB signaling pathways via miR-548c-3p.14 However, the 
prognostic value of circRNA-associated ceRNA regulatory 
networks in HCC remains unclear.

The present study aimed to identify HCC-associated prog-
nostic biomarkers from The Cancer Genome Atlas (TCGA), 
Gene Expression Omnibus (GEO) database and RNA se-
quencing through circRNA-associated ceRNA analysis. The 
data were processed and circRNAs were reannotated prior 
to differential expression analysis. Subsequently, a ceRNA 
network was constructed. The functional enrichment and 
pathway analyses of the target gene mRNAs were carried 
out. Potentially prognostic genes were screened prior to 
establishing a prognostic model. These genes were used to 
perform analysis of independent prognostic factors. Lastly, 
a line diagram model composed of independent prognostic 
factors was constructed for survival rate prediction in pa-
tients with HCC.

Methods

High-throughput data

Three datasets were extracted from the following sites: the 
GEO database at http://www.ncbi.nlm.nih.gov/geo; TCGA 
(https://portal.gdc.cancer.gov/) database; and RNA se-
quencing library. The dataset of the GEO database (acces-
sion number: GSE125469) was uploaded by Luo et al.,15 
which included circRNA data derived from three HCC and 
three paracancerous tissues. The data from TCGA database 
comprised RNA sequencing data from 369 HCC and 50 pa-
racancerous tissues. The information was analyzed by the 
limma package and is presented as log2 (count+1). The 
extracted mRNA was rich in oligomeric (dT) beads. A RNA 
sequencing library was constructed and verified using Agi-
lent 2100 before undergoing qRT-PCR quantification. Sam-
ple sequencing was performed with an Illumina Hiseq 4000 
and subsequently analyzed by Aksomics (Shanghai, China). 
In addition, clinical demographics and patient survival data 
were extracted (download time: December 2019).

Patient samples

From June to December 2013, 82 samples of HCC tissues 
with their pairs of adjacent non-cancerous tissues were 
supplied by the Department of Hepatobiliary Surgery of 
Qingdao University Hospital (Supplementary Table 1). All 
samples were provided with complete clinical information. 
The patients provided informed consent regarding the use 
of their resected tissues for the study. As shown in Supple-
mentary Table 2, the prognostic information is counted in 
detail. The protocols were approved by the Ethics Commit-
tee of Qingdao University Hospital (approval number QY-
FYWZLL-25568). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). Liquid 
nitrogen was used to freeze and preserve all samples until 
RNA extraction was performed. The 5-year prognosis of 

the patients was followed up by telephone after the opera-
tion.

Identification of differentially expressed circRNA 
(DEcircs)

The Limma software package16 in R was used to determine 
DEcircs between HCC and adjacent normal tissues. False 
discovery rate (FDR) <0.05 and fold change >1 were re-
garded as the threshold of differential RNA expression. Fig-
ure 1 depicts the process of bioinformatics analysis. Heat-
map and volcanic maps were illustrated with the ggplot217 
software package in R.

ceRNA network construction and prediction of the 
target miRNA and circRNA

Bioinformatic analysis was used to predict the miRNA-
binding sites of circRNAs, including circbank (http://www.
circbank.cn/) and CircInteractome (https://circinteractome.
nia.nih.gov/). Subsequently, a total of 10 potential miRNAs 
were selected. The targets of miRNAs were predicted and a 
possible association between miRNA and the targeted gene 
was identified using TargetScan (http://www.targetscan.
org/vert_72/) and miRanda (http://www.microrna.org/). 
CircRNAs exert a ‘sponge effect’ on miRNAs and regulate 
their expression and activity, indicating that both circRNAs 
and mRNAs could be regulated by miRNAs in a competitive 
manner. Based on this hypothesis, a circRNA-miRNA-mRNA 
ceRNA network was constructed.

However, the ceRNA network construction and pairwise 
analysis are associated with several indirect interactions. 
These associations were eliminated with the use of HERMES 
(http://califano.c2b2.columbia.edu/hermes/).18 Lastly, the 
circRNA-miRNA-mRNA pairs were combined with circRNA 
and mRNA coexpression (correlation coefficient t>0.6) to 

Fig. 1.  Flow diagram of the analysis procedure indicating data collec-
tion, preprocessing, analysis and validation. 

http://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/
http://www.circbank.cn/
http://www.circbank.cn/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://www.microrna.org/
http://califano.c2b2.columbia.edu/hermes/
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produce a final ceRNA network, which was illustrated using 
the Cytoscape version 3.7.1.

Gene Ontology (GO) enrichment and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses of 
DEcircs

In order to obtain a more comprehensive representation of 
gene and protein functions, a cluster profiler package was 
used to annotate, visualize and integrate the discovery of 
the genes.19 KEGG is a resource dedicated to the detailed 
representation of functional and biological processes de-
rived from large-scale molecular datasets generated using 
high-throughput experimental techniques.20 GO is a verified 
genetic annotation tool that can also analyze target gene 
biological functions.21 A p-value <0.05 was considered to 
indicate significant differences.

Establishment and validation of the prognostic gene 
signature

The intersection of genes differentially expressed between 
the three cohorts was used to build a survival prediction 
signature. The screening of differentially expressed mRNAs 
with prognostic value was performed in the ceRNA network. 
First, patients were grouped into low and high expression 
groups based on the median expression of each mRNA. The 
survival curves were constructed based on Kaplan-Meier 
survival analysis. The logarithmic rank test was used to cal-
culate the p-values. The mRNAs were screened according 
to p<0.05. Univariate Cox regression analysis was used for 
screening mRNAs associated with prognosis.

SurvExpress is a tool used to verify biomarkers and to 
perform online survival analysis and was used to fit these 
prognostic genes from TCGA cohort into a multivariate Cox 
regression model. The risk score was calculated as follows: 
=risk score=expr gene1×β1gene1+expr gene2×β2gene2+… 
expr genen×βngenen, where expr was the expression value 
of each gene and β indicated the prognostic correlation coef-
ficient of each gene in each multiple Cox regression analysis.

Based on the median risk score, the samples were classified 
into low-and high-risk cohorts prior to Kaplan-Meier survival 
analysis and log-rank tests. The most significant prognostic 
model was the risk score model with the lowest p-value.

Independent prognostic factors

In order to determine prognosis-associated independent 
factors, univariate Cox regression analysis was performed 
on age, sex, TNM stage and tumor histological grade. The 
factors that were determined by p<0.05 were also included 
in the multivariate Cox regression analysis. The factor is 
regarded as an independent prognostic factor, if p<0.05 in 
multiple regression analysis.

Construction and verification of nomogram model for 
predicting the survival rate of HCC patients

A nomogram model was built that included description of 
independent prognostic factors. In order to verify the pre-
dictive ability of the line diagram, the consistency index 
(C-index), which was composed of independent prognos-
tic factors and the nomogram model (fitted by T-stage and 
risk group and Coxph model), was calculated. Significant p-
values were calculated using the resampling technique. The 

fitting degree of independent prognostic factors and com-
pound factors was assessed by the Coxph model and the 
calibration curve was derived from the component with the 
lowest p-value. The model with the best predictive ability 
was the model with an approximate calibration curve of 45°.

Real-time quantitative reverse transcription-poly-
merase chain reaction (qRT-PCR)

Total RNA was extracted using the TRIzol® reagent (Invit-
rogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
from HCC tissues. qRT-PCR was performed using the SYBR 
Green PCR Kit (Takara Biotechnology Co., Ltd., Dalian, 
China). Specific primers (Tsingke Biological Technology, 
Qingdao, China) were used, which are listed in Supplemen-
tary Table 1. The steps were as follows: 95°C for 5 m, 95°C 
for 30 s, 60°C for 20 s and 72°C for 30 s. A total of 30 cycles 
were used. A final extension was performed at 72°C for 3 
m. GAPDH was used as a positive control and all procedures 
were repeated three times. The relative expression levels of 
circRNAs were compared to those of internal controls and 
were analyzed by the 2−ΔΔCt method.

Results

DEcircs screening in HCC

A total of 86 DEcircs were identified from GSE125469 with a 
fold-change of >1, of which 33 were down-regulated and 53 
were up-regulated. A total of 48 up-regulated and 37 down-
regulated DEcircs were identified between HCC and normal 
samples by RNA sequencing. Five circRNAs were common be-
tween the two datasets and were differentially expressed be-
tween HCC and normal samples as follows: hsa_circ_0004662, 
hsa_circ_0005735, hsa_circ_0006990, hsa_circ_0018403 
and hsa_circ_0100609. The sequencing analysis was correct 
according to the database (Supplementary Fig. 1). The vol-
cano plot and heatmap of the gene expressions are illustrated 
in Figure 2A, B and D. The intersection of the two datasets 
is shown in Figure 2C. The position of DEcircs is comprehen-
sively displayed in the circos plot (Fig. 2E).

Prediction of miRNA and ceRNA network construction

The circRNAs, miRNAs and mRNAs that were differentially 
expressed between HCC samples and adjacent normal tis-
sues were extracted from the GEO and TCGA databases 
(absolute fold change >1; p<0.05). The current analysis 
resulted in a total of five circRNAs, ten miRNAs and seven 
hundred and seventy-two mRNAs that were coexpressed in 
the ceRNA network of HCC (Fig. 3).

Functional enrichment and pathway analyses for dif-
ferentially expressed mRNAs

The dysfunctional mRNAs were further enriched and ana-
lyzed by clusterProfiler. The up-regulated mRNAs that were 
significantly enriched in the top 20 GO-biological process 
(BP) terms included regulation of RNA splicing, regulation 
of cell cycle arrest, maintenance of cell number and homeo-
stasis of number of cells as well as KEGG pathways, includ-
ing metabolic pathways, the cAMP signaling pathway, the 
MAPK signaling pathway and cancer-associated pathways 
(Fig. 4).
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Fig. 2.  Identification of DEcircs. (A, B) Volcano plot constructed using fold-change values and p-values for GSE125469 and RNA-Sequencing. (C) Intersection of 
the two datasets. (D) Cluster analysis of differentially expressed genes between T and N samples of HCC. Red represents up-regulated genes, green represents down-
regulated genes, and white represents undifferentiated genes. (E) Circos plots indicating the specific chromosomal positions of DEcircs. N, normal; T, tumor.
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Prognostic gene screening

The mRNA expression levels of 19 genes were compared 
with patient survival using the Kaplan-Meier plotter. The 
data indicated that the higher the mRNA expression levels 
of the genes, the shorter the survival time and the worse 
the prognosis of the patients. In other words, these 19 
genes may be potential prognostic factors.

Univariate Cox regression analysis was performed for 
these 19 mRNAs and revealed that 7 mRNAs, including RAN, 
a member of the RAS oncogene family, procollagen-lysine, 
2-oxoglutarate 5-dioxygenase 2 (i.e. PLOD2), chaperonin 
containing TCP1 subunit 2 (i.e. CCT2), threonyl-tRNA syn-
thetase (i.e. TARS), ring finger protein 19B (i.e. RNF19B), 
chromosome 5 open reading frame 30 (i.e. C5orf30) and 
minichromosome maintenance 10 replication initiation factor 
(i.e. MCM10), exhibited hazard ratios that were higher than 1, 
indicating their positive role in HCC (Supplementary Table 2).

Prognostic model construction

The patients were grouped into low- and high-risk groups 
based on their median risk scores. The survival time of the 
patients in the high risk group was shorter than that in the 
low risk group (Supplementary Fig. 2 and Fig. 5A). The risk 
scoring distribution of the high risk and low risk groups is 

shown in Figure 5B. The patients of the former group dem-
onstrated lower levels of the seven aforementioned genes in 
contrast to those of the latter (Fig. 5C). These results were 
also shown in the analysis of the 5-year survival curve per-
formed in our hospital. The data indicated that the patients 
with lower risk exhibited a longer survival time (p=0.0003) 
(Fig. 5D). Based on these findings, it can be concluded that 
the seven predicted genes were protective against HCC pro-
gression.

Independent prognostic factors

Independent prognostic factors were determined using 
multivariate Cox regression analysis. Univariate and mul-
tivariate Cox regression analyses revealed that only the 
risk group and the T-stage groups exhibited p<0.05 (Sup-
plementary Table 3), highlighting the utility of both these 
groups as independent prognostic factors.

Construction and verification of nomogram model for 
the survival rate prediction of HCC patients

The annual survival rates at 3 and 5 years were predict-
ed upon construction of a nomogram based on the de-
rived independent prognostic factors. Figure 6A indicates 

Fig. 3.  ceRNA network. Red circle denotes deregulated circRNA. Blue triangle denotes miRNA. Green square denotes targeted mRNA.
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Fig. 4.  GO of target genes (A) top 20 terms of GO-BP and (A) top 30 KEGG pathway terms. 
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a line-type model, comprised of pathological_T and risk 
groups. According to the nomogram, the 3- and 5-year an-
nual survival rate of HCC patients was accurately predicted 
based on the T-stage and the risk group. The C-index of 
the T-stage, the risk group and the nomogram model (T-
stage+risk group) were contrasted and the results indicated 
that the C-index of the risk group and the nomogram model 
(>0.7) were higher than those of the T-stage. Line diagram 
models exhibited the lowest p-value. The line chart model 
curve calibration indicated optimal consistency between the 
predicted annual overall and actual survival rates in 3 and 5 
years. This indicated that the line chart model had optimal 
predictive ability (Fig. 6B).

Validation of crucial circRNAs and mRNAs

qRT-PCR was used to predict the gene expression levels of 
hsa_circ_0004662, hsa_circ_0005735, hsa_circ_0006990, 
hsa_circ_0018403 and hsa_circ_0100609 in HCC and par-
acancerous tissues. All genes were differentially expressed 
in tumor tissues compared to the corresponding expression 
noted in paracancerous tissues, suggesting their role in HCC 
development (Fig. 7).

Discussion

The present study analyzed circRNA-associated ceRNAs and 
revealed important biomarkers, which were associated with 
HCC prognosis. Hsa_circ_0004662, hsa_circ_0005735, hsa_
circ_0006990, hsa_circ_0018403 and hsa_circ_0100609 
were the key nodes in the ceRNA network.

A seven-gene prognostic model (PLOD2, TARS, RNF19B, 
CCT2, RAN, C5orf30 and MCM10) was built and found to 
correlate significantly with HCC prognosis. Multiple Cox re-
gression analyses demonstrated an association between the 
prognostic model and the risk group. The T-stage and risk 
groups were regarded as independent prognostic factors. In 
addition, the line chart model derived from T-stage and risk 
groups exhibited optimal predictive ability with regard to 
the prognosis of HCC.

Previous evidence has shown that the serum levels of car-
cinoembryonic antigen, alpha-fetoprotein, CA125, CA153, 
CA199, HSP90α and TK1 in patients with HCC were higher 
than those in the normal groups. The increase in serum car-
cinoembryonic antigen levels may be due to the occurrence 
of HCC, which causes a large number of carcinoembryonic 
antigen to be stored in the digestive tract and enter the blood 
circulation. The increase in alpha-fetoprotein levels may be 

Fig. 5.  Construction of the seven-gene risk signature of HCC. (A) Kaplan-Meier survival curve for low- and high-risk groups in TCGA. (B) Risk scoring distribution 
of low- and high-risk groups. (C) Box plots of expression differences of the seven-gene signature in low (green) and high (red) risk groups of TCGA-HCC patients. (D) 
Kaplan-Meier survival plots demonstrating the association between raised expressions of the seven-gene signature and poor HCC survival outcomes.
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due to hepatocyte carcinogenesis, which results in excess 
production of alpha-fetoprotein. The increase in CA125 levels 
may be caused by liver metastasis and ascites. The increase 
in CA153 levels may be associated with the down-regulation 
of E-cadherin and of the mitogen-activated protein kinase 
signaling pathway as well as the invasion and metastasis of 
HCC. The increase in CA199 levels may be associated with the 
degree of liver injury, whereas the increase in HSP90α levels 
may be due to its extracellular secretion and the formation of 
a complex with HSP70, which is associated with microvascu-
lar infiltration, intrahepatic metastasis and HCC progression. 
The expression of TK1 increases gradually with the prolif-
eration of cancer cells during the development of primary 
liver cancer. The diagnostic value of alpha-fetoprotein is con-

sidered the best, whereas that of CA199 is relatively poor, 
which may be due to the fact that CA199 has high specificity 
in the serum of liver cancer patients. Moreover, it exhibits a 
certain reference value for early diagnosis of primary liver 
cancer, whereas its lack of sensitivity and its application in 
the early diagnosis of HCC has some limitations. Although 
alpha-fetoprotein is the most widely used tumor biomarker 
for early detection of HCC, its sensitivity is limited. In addi-
tion, small liver tumors will cause the expression of alpha-
fetoprotein to be lower than the detection limit; meanwhile, 
when the tumor is larger, the expression of alpha-fetoprotein 
will be delayed or higher than the detection limit, resulting in 
alpha-fetoprotein-negative primary liver cancer. Therefore, a 
single tumor marker is usually insufficient to diagnose HCC, 

Fig. 6.  Construction and verification of nomogram for evaluating OS of HCC patients. (A) Nomogram model, including T-stage and risk group prediction ac-
cording to 3- and 5-year OS. Two components were present in this nomogram model: the T-stage and the risk group. Depending on the points and lines depicted, 
different parameters corresponded to different points. (B) The 3- and 5-year OS probability of certain patients can be derived based on the two-component total score 
of the aforementioned patients. OS, overall survival.
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whereas the combined detection of multiple tumor markers 
can significantly improve the diagnostic value.

In order to obtain more accurate results, differentially ex-
pressed mRNAs and circRNAs between paracancerous and 
cancerous tissues were first identified on three separate 
platforms, namely GSE125469, RNA sequencing and TCGA. 
Functional enrichment analyses demonstrated that GO-BP 
terms, such as regulation of RNA splicing, regulation of cell 
cycle arrest, maintenance of cell number and cellular ho-
meostasis, and specific KEGG-associated pathways, such as 
metabolic pathways, the cAMP signaling pathway, the MAPK 
signaling pathway and cancer-associated pathways, were 
significantly enriched by disordered genes. It is currently be-
lieved that the imbalance between cell numbers and regula-
tory pathways is crucial for the development of cancer.22,23 
Furthermore, previous studies have shown that the cell cycle 
and immune response play important roles in cancer devel-
opment.24,25 These findings have led to the conclusion that 
the dysfunctional nature of the identified genes is involved 
in the predicted GO-BP terms or pathways.

circRNAs have recently been highlighted as a key ele-
ment in several malignancies. circRNAs typically work by 
modulating the function of their target genes.26 In order 
to assess the role of differentially expressed circRNAs in 
HCC, a coexpression network was established with the 
functions of the top seven circRNAs predicted by the KEGG 
pathway enrichment analysis. Their GO-BP terms were cell 
adhesion, positive/negative regulation of gene expression 
and Golgi organization.26 Fu et al.27 identified that hsa_
circ_0005075, hsa_circ_0003570 and hsa_circ_0004018 
may be potential diagnostic indicators of HCC. Li et al.28 
reported the properties of hsa_circ_0006990 in sponging 
miR-101 in colorectal cancer.

Although previous studies have demonstrated the signifi-
cance of molecular biomarkers in cancer, the single use of 
specific biomarkers is often unable to predict the survival of 
cancer patients.29–31 Therefore, the seven-gene signature 
(PLOD2, TARS, RNF19B, CCT2, RAN, C5orf30 and MCM10) 
predicted in the present study is a potentially powerful prog-

nosticating model for HCC. The full name of PLOD2 is procol-
lagen-lysine, 2-oxoglutarate 5-dioxygenase 2 and has been 
proven to be associated with tumor size (p=0.022) and mac-
roscopic intrahepatic metastasis.32 Hsu et al.33 demonstrated 
that TARS is a candidate oncogene. Park et al.34 suggested 
that CCT2 inhibited tumor induction via Gli-1. The mutation 
of RAN is associated with the survival rate of the patients with 
HCC.35 C5orf30 was found to suppress CCNH, which is found 
in multiple cancer types.36 Yang et al.37 demonstrated that 
MCM10 promoted the invasion/migration potential of breast 
cancer cells via the Wnt/β-catenin signaling pathway, which 
was associated with poor breast cancer prognosis. However, 
no reports have been previously published on RNF19B. Based 
on this evidence, a risk model containing all this information 
may improve the prognosis of HCC.

Subsequent scrutinization of data revealed both risk and 
T-stage groups to be independent prognostic factors. A 
nomogram model (T-stage+risk group) based on both these 
groups was constructed and the data demonstrated satisfac-
tory ability to prognosticate HCC accurately. This nomogram 
may be used to guide clinical management of HCC patients.

Conclusions

The present study identified five circRNAs, namely hsa_
circ_0004662, hsa_circ_0005735, hsa_circ_0006990, hsa_
circ_0018403 and hsa_circ_0100609 that may play key 
roles in the progression of HCC. In addition, seven gene 
signatures were identified, which were associated with the 
aforementioned circRNAs, including PLOD2, TARS, RNF19B, 
CCT2, RAN, C5orf30 and MCM10, all of which were signifi-
cantly involved in the pathophysiology of HCC and may be 
used as a prognostic indices in HCC patients. Nevertheless, 
the clinical implementation of the nomogram combination 
model requires further refinement, along with the investiga-
tion of the exact molecular mechanisms of the five types of 
circRNAs identified.

Fig. 7.  Relative expression levels of crucial circRNAs detected by qRT-PCR. **p<0.01 and ***p<0.001. Detection of the expression levels of (A) hsa_
circ_0004662, (B) hsa_circ_0005735, (C) hsa_circ_0006990, (D) hsa_circ_0018403 and (E) hsa_circ_0100609.
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