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Abstract

Background and Aims: Change of gut microbiota com-
position is associated with the outcome of hepatitis B virus 
(HBV) infection, yet the related mechanisms are not fully 
characterized. The objective of this study was to investigate 
the immune mechanism associated with HBV persistence 
induced by gut microbiota dysbiosis. Methods: C57BL/6 
mice were sterilized for gut-microbiota by using an antibi-
otic (ABX) mixture protocol, and were monitored for their 
serum endotoxin (lipopolysaccharide [LPS]) levels. An HBV-
replicating mouse model was established by performing 
HBV-expressing plasmid pAAV/HBV1.2 hydrodynamic injec-
tion (HDI) with or without LPS, and was monitored for se-
rum hepatitis B surface antigen, hepatitis B e antigen, HBV 
DNA, and cytokine levels. Kupffer cells (KCs) were purified 
from antibiotic-treated mice and HBV-replicating mice and 
analyzed for IL-10 production and T cell suppression ability. 
Results: ABX treatment resulted in increased serum LPS 
levels in mice. The KCs separated from both ABX-treated 
and LPS-treated HBV-replicating mice showed significantly 
increased IL-10 production and enhanced ability to suppress 
IFN-γ production of TCR-activated T cells than the KCs sep-
arated from their counterpart controls. HDI of pAAV/HBV1.2 
in combination with LPS in mice led to a delayed HBV clear-
ance and early elevation of serum IL-10 levels compared to 
pAAV/HBV1.2 HDI alone. Moreover, IL-10 function blockade 
or KC depletion led to accelerated HBV clearance in LPS-
treated HBV-replicating mice. Conclusions: Our results 
suggest that dysbiosis of the gut microbiota in mice leads 
to endotoxemia, which induces KC IL-10 production and 
strengthens KC-mediated T cell suppression, and thus fa-

cilitates HBV persistence.
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Introduction

Hepatitis B virus (HBV) chronically infects 250 million peo-
ple worldwide and continues to be a global public health 
burden. Chronic HBV infection may lead to hepatic cirrhosis 
and hepatocellular carcinoma, resulting in nearly 1 million 
deaths annually.1 Studies in recent years have significantly 
improved our knowledge on understanding the mechanisms 
of HBV persistence. It has been shown that HBV uses mul-
tiple mechanisms to dampen host adaptive immunity, es-
pecially the anti-HBV T cell responses, to facilitate its per-
sistence.2,3

In recent years, increased evidence has suggested that 
the gut microbiota, which affects local and systemic immune 
responses,4,5 plays an important role in determining the 
outcome of HBV infection. On the one hand, compositional 
and functional changes in the gut microbiota have been ob-
served in HBV-replicating mouse models6 and chronically 
HBV-infected patients,7 and is believed to be associated 
with disease progression.8 On the other hand, changes in 
gut microbiota composition may influence the outcome of 
HBV infection. In the HBV hydrodynamic injection (HDI) 
mouse model, depletion of gut microbiota by antibiotics pri-
or to HBV challenge results in HBV persistence and impaired 
anti-HBV adaptive immunity.9 Moreover, using fecal micro-
biota transplantation to reconstitute the gut microbiota was 
shown to facilitate hepatitis B e antigen (HBeAg) clearance 
in chronic hepatitis B (CHB) patients.10 These results indi-
cated stabilized gut microbiota play an important role in 
regulating the host immune response for HBV clearance. 
However, the detailed mechanism by which the intrahepatic 
anti-HBV immunity is regulated by the gut microbiota re-
mains largely unknown.

In this study, we used an antibiotic (ABX) mixture treat-
ment mouse model and the HBV HDI mouse model to ex-
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amine the possible mechanism of regulating liver immunity 
by the gut microbiota during HBV infection.

Methods

Mice

Six to eight week-old wild-type male C57BL/6 mice were 
purchased from Hunan Slack King Laboratory Animal Co., 
Ltd. (Changsha, China). All animals were bred and kept in 
the Animal Care Center of Tongji Medical College (Wuhan, 
China) under specific pathogen-free conditions. All animal 
experiments were reviewed and approved by the Institu-
tional Animal Care and Use Committee at Tongji Medical Col-
lege, Huazhong University of Science and Technology, China 
(IACUC number: 612) and were conducted in accordance 
with the Guide for the Care and Use of Laboratory Animals.

HDI in mice and production of LPS mice and 
HBV+LPS mice

HDI was performed by using HBV plasmids pAAV/HBV1.2 
to establish HBV replication in mice, as described previous-
ly.11 In brief, mice were injected with 20 µg pAAV/HBV1.2 
through the tail vein within an 8-s time window, in a vol-
ume of normal saline equivalent to 0.1 mL/g of the mouse 
body weight. Lipopolysaccharide (LPS) mice were subjected 
to HDI with 1 µg LPS (InvivoGen, San Diego, CA, USA). 
HBV+LPS mice were subjected to HDI with 20 µg pAAV/
HBV1.2, in combination with 1 µg LPS.

Production of ABX mice

ABX mice were treated with antibiotics (ampicillin, neomy-
cin, metronidazole, and vancomycin) in drinking water, ac-
cording to an antibiotic mixture protocol for gut-steriliza-
tion.9

Cell isolation

Isolation of murine Kupffer cells (KCs) was performed, as 
described previously.12 KCs were isolated from nonparenchy-
mal liver cells by using CD11b+ microbeads (Miltenyi, Ber-
gisch Gladbach, Germany), according to the manufacturer’s 
instructions. Preparation of single-cell suspensions of murine 
splenocytes was performed as described previously.13

Detection of IL-10 and IFN-γ levels in the serum and 
supernatants

IL-10 levels in the serum and in the cell-free supernatants 
were determined by the corresponding cytokine ELISA kits 
(eBioscience, San Diego, CA, USA), according to the corre-
sponding manufacturer’s instructions. Red blood cell (RBC)-
depleted splenocytes were cultured at 1×106 cells per well 
with or without KCs in a total volume of 200 µL at a ratio of 
2:1 (splenocytes: KCs). Splenocytes were stimulated with 
anti-CD3 (1 µg/mL) and anti-CD28 (1 µg/mL) (BD Biosci-
ence, Franklin Lakes, NJ, USA). Interferon (IFN)-γ levels 
in the cell-free supernatants were determined by the cor-
responding cytokine enzyme-linked immunosorbent assay 
(ELISA) kits (eBioscience), according to the corresponding 
manufacturer’s instructions.

Detection of serum cytokines and LPS

Serum IL-10, IL-6, IL-12, TNF-α, MCP-1, and IFN-γ levels 
were determined by Cytometric Bead Array Mouse Inflam-
mation Kit (BD Biosciences), according to the manufac-
turer’s instructions. Serum LPS levels were determined by 
End-point Chromogenic TAL Endotoxin Testing Assay (Bi-
oendo Technology, Xiamen, China), according to the manu-
facturer’s instructions.

Detection of serological HBV antigens and DNA

Serum was collected from the retro-orbital sinus of the 
mouse at the indicated time points. Serum hepatitis B sur-
face antigen (HBsAg) and HBeAg levels were measured by 
the corresponding ELISA kits (Kehua, Shanghai, China), 
according to the manufacturer’s instructions. Serum HBV 
DNA copies were measured by a diagnostic kit for HBV DNA 
(Sansure, Changsha, China) using quantitative real-time 
PCR, according to the manufacturer’s instructions.

Flow cytometry

For surface staining, KCs were stained with CD80 (eBio-
science), CD86 (BioLegend, San Diego, CA, USA), and PD-
L1(eBioscience) antibodies for 15 m at 4°C in darkness. 
Freshly isolated cells were used for all assays, and approxi-
mately 20,000–40,000 T cells were acquired for each sam-
ple using a FACS Canto II flow cytometer (BD Biosciences). 
Data analysis was performed using FlowJo software V10.0.7 
(Tree Star, Ashland, OR, USA). Cell debris and dead cells 
were excluded from the analysis based on scatter signals 
and Fixable Viability Dye eFluor 506.

IL-10 blockade and KC depletion

Purified rat anti-mouse IL-10 receptor (IL-10R) monoclonal 
antibodies (Clone 1B1.3a) were purchased from Bio X Cell 
(Lebanon, NH, USA). For IL-10 blockade, mice were intra-
peritoneally injected with 250 µg anti-mouse IL-10 receptor 
antibody at 1, 24 and 96 h before HBV and LPS HDI. For KC 
depletion, mice were injected via the tail vein with 200 µL 
of clodronate-liposome (5 mg/mL) or a phosphate-buffered 
saline (PBS)-liposome (LIPOSOMA BV, Netherlands) sus-
pension at 24 h before HBV and LPS HDI.

Statistical analysis

Nonparametric t-test was used when comparing two groups. 
One-way analysis of variance was used with a Tukey post 
hoc test (GraphPad Prism software; GraphPad, San Diego, 
CA, USA) when more than two groups were compared. Sta-
tistical significance was considered when the p value was 
less than 0.05.

Results

Gut microbiota sterilization by antibiotics results 
in increased serum LPS levels and enhanced IL-10 
production and T cell suppression of KC

LPS is the main component of the outer membrane of Gram-
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negative bacteria and is an endotoxin mainly released by 
Enterobacteriaceae. Therefore, we first investigated the in-
fluence of gut microbiota sterilization on serum LPS concen-
tration. Adult C57BL/6 mice were gut-sterilized using a well-
established antibiotic (ABX) mixture protocol9 and serum 
LPS levels were monitored by ELISA every other day for a 
week from the ABX treatment. The ABX treatment resulted 
in statistically significant increases in serum LPS concentra-
tions up to 70% on 3 days and 5 days post-treatment in 
mice compared to untreated controls (Fig. 1A).

KCs are the largest population of tissue-resident mac-
rophages, and LPS stimulation induces their activation and 
secretion of immunosuppressive mediators, such as IL-10.14 
We next examined how gut microbiota sterilization influences 
the IL-10 production and suppressive function of KCs for T 
cell activation. KCs were purified from the liver of mice 30 
days post-continuous ABX treatment, and were examined for 
IL-10 secretion by ELISA. KCs of ABX-treated mice showed 
significantly increased IL-10 production compared to those of 
control mice (Fig. 1B). KCs were also cocultured with anti-
CD3/anti-CD28-activated T cells and the IFN-γ production by 
T cells was measured after 24, 48 and 72 h by ELISA. Consist-

ent with our previous report,15 KCs separated from untreated 
control mice strongly suppressed the IFN-γ production of TCR-
activated T cells. Compared to control KCs, KCs from ABX 
mice showed a significantly enhanced ability in suppressing 
the IFN-γ production of TCR-activated T cells (Fig. 1C). Taken 
together, these results showed that gut microbiota steriliza-
tion by antibiotics resulted in increased serum LPS levels and 
enhanced IL-10 production and T cell suppression of KCs.

LPS stimulation induces strengthened suppressive 
phenotype and T cell suppression of KC in HBV-repli-
cating mice

Next, we investigated the impact of LPS stimulation on KC 
phenotype and function in the context of intrahepatic HBV 
replication. C57BL/6 mice were subject to HDI with normal 
saline (NS), LPS, HBV-replicating plasmid pAAV/HBV1.2 in 
combination with LPS (HBV+ LPS) or not (HBV), and KCs 
were purified from the liver of those mice 3 h after HDI. 
Flow cytometry analysis demonstrated that KCs separated 
from LPS mice showed significantly decreased CD80 and 

Fig. 1.  Gut microbiota sterilization by antibiotics results in increased serum LPS levels and enhanced IL-10 production and T cell suppression of KCs. 
(A) C57BL/6 mice were treated with antibiotics (ABX; ampicillin, neomycin, metronidazole, and vancomycin) in drinking water (ABX, n=15; Untreated, n=5) and the 
kinetics of serum LPS were monitored by ELISA. (B) KCs were purified from the liver of mice 30 days post-ABX treatment and cultured in vitro. After a whole night, the 
amount of IL-10 in the culture supernatant was determined by ELISA. (C) KCs were co-cultured with anti-CD3/anti-CD28 (1 µg/mL)-stimulated splenocytes from naïve 
mice at a ratio of 1:2 (KCs:splenocytes [SPLs]). After 24, 48 and 72 h, the amount of IFN-γ in the culture supernatant was determined by ELISA. Anti-CD3/anti-CD28-
stimulated SPLs were used as a positive control (PC) and unstimulated SPLs were used as a negative control (NC). Unpaired t-test was applied. *p<0.05, **p<0.01, 
***p<0.001. ELISA, enzyme-linked immunosorbent assay; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; KCs, Kupffer cells.
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CD86 expressions and increased PD-L1 expression com-
pared to those of NS HDI mice (Fig. 2A). Consistently, the 
expression of CD80 and CD86 on KCs was significantly 
decreased and the PD-L1 expression was significantly in-
creased in HBV+LPS mice compared with those of HBV mice 
(Fig. 2A). Moreover, KCs of HBV+LPS mice secreted a sig-
nificantly increased amount of IL-10 than HBV mice (Fig. 
2B). Consistently, KCs of HBV+LPS mice showed a signifi-
cantly enhanced ability in suppressing the IFN-γ production 

of TCR-activated T cells than KCs from HBV mice (Fig. 2C).
The direct effect of LPS stimulation on inducing KC IL-10 

production was also examined in vitro. KCs were purified 
from the liver of untreated mice and stimulated by LPS in vit-
ro for 24 h and monitored for IL-10 production up to 7 days. 
As shown in Figure 2D, significant up-regulation of IL-10 pro-
duction by LPS-stimulated KCs was observed in the first day 
when LPS was presented in the medium. However, no IL-10 
production by LPS-stimulated KCs was detected from days 2 

Fig. 2.  LPS stimulation induces strengthened suppressive phenotype, enhanced IL-10 production and T cell suppression of KCs in HBV-replicating 
mice. C57BL/6 mice were subject to HDI with the NS, LPS, pAAV/HBV1.2 plasmid in combination with LPS (HBV+LPS) or not (HBV). After 3 h, KCs were purified from 
the liver of those mice. (A) CD80, CD86, and PD-L1 expression on KCs were analyzed by flow cytometry. (B) KCs were purified and cultured in vitro. After a whole night, 
the amount of IL-10 in the culture supernatant was determined by specific ELISA. (C) KCs were co-cultured with anti-CD3/anti-CD28 (1 µg/mL)-stimulated SPLs at a 
ratio of 1:2 (KCs:SPLs). After 48 h, the amount of IFN-γ in the culture supernatant was determined by specific ELISA. Anti-CD3/anti-CD28-stimulated SPLs were used 
as a PC and unstimulated SPLs were used as an NC. (D) KCs were stimulated by 1 µg/mL LPS for 24 h (day 1), washed, and cultured for another 6 d without stimula-
tion. Culture medium was changed every 24 h. IL-10 secretion by KCs was determined by ELISA. Unpaired t-test was used. *p<0.05, **p<0.01, ***p<0.001. ELISA, 
enzyme-linked immunosorbent assay; HBV, hepatitis B virus; HDI, hydrodynamic injection; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; KCs, Kupffer cells; 
PC, positive control; SPLs, splenocytes.
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to 7 in the supernatant when LPS was washed away. These 
results suggested that in the context of intrahepatic HBV rep-
lication, LPS stimulation could induce strengthened suppres-
sive phenotype and T cell suppression of KCs in mice.

LPS stimulation induces potent proinflammatory 
cytokine production in HBV-replicating mouse and 
results in delayed HBV clearance

We further detected proinflammatory cytokine levels in the 

sera of HBV and HBV+LPS mice at 3 and 6 h post-HDI. The 
concentrations of IL-10, IL-6, TNF-α, MCP-1, IFN-γ, and IL-
12 were maintained at low levels in the sera of HBV mice 
at the detected early time points post-HDI (Fig. 3A–F). In a 
sharp contrast, HBV+LPS mice showed significant increases 
in serum IL-10, IL-6, TNF-α, and MCP-1 levels at both 3 and 
6 h post-HDI (Fig. 3A–D). In general, the serum IFN-γ and 
IL-12 levels were comparable between the two groups, and 
there was only a slight increase of IFN-γ levels in HBV+LPS 
mice observed at 6 h post-HDI (Fig. 3E–F).

Next, the impact of LPS stimulation on HBV clearance 
was examined by monitoring serum HBsAg and HBV DNA. 

Fig. 3.  LPS stimulation induces potent proinflammatory cytokine production in HBV-replicating mice. C57BL/6 mice were subject to HDI with the pAAV/
HBV1.2 plasmid in combination with LPS (HBV+LPS) or not (HBV). The kinetics of (A) serum IL-10 (B) serum IL-6 (C) serum TNF-α (D) serum MCP-1 (E) serum IFN-γ 
(F) serum IL-12p70 were monitored by cytometric bead array. Unpaired t-test was used. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. HBV, hepatitis B virus; HDI, 
hydrodynamic injection; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; MCP, monocyte chemoattractant protein; TNF, tumor necrosis factor.
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As shown in Figure 4A, HBV+LPS mice showed higher se-
rum HBsAg levels than HBV mice starting at 21 days post-
HDI (dpi). At 42 days post-injection (dpi), serum HBsAg 
remained positive in 50% of HBV+LPS mice, but in only 
10% of HBV mice (Fig. 4B). Moreover, HBV+LPS mice also 
showed higher serum HBV DNA levels than HBV mice. LPS 
treatment resulted in a 13.56-fold increase in serum HBV 
DNA levels at 35 dpi (Fig. 4C). Taken together, these results 
suggested that LPS stimulation in HBV-replicating mice in-
duced potent proinflammatory cytokine production and re-
sulted in a delay of HBV clearance.

IL-10 functional blockade and KC depletion results in 
accelerated HBV clearance in LPS treated HBV-repli-
cating mice

We then examined whether the LPS-induced delay of HBV 
clearance in mice is mediated by IL-10 production and KCs. 
First, mice were treated with IL-10 receptor (IL-10R) block-
ing antibody (anti-IL-10R) prior to HBV and LPS HDI. As 
shown in Figure 5A, HBsAg clearance was significantly ac-
celerated in anti-IL-10R-treated mice compared to untreated 
control mice. All anti-IL-10R-treated mice became serum 
HBsAg-negative at 4 dpi, whereas all control mice remained 
serum HBsAg-positive at least at 26 dpi (Fig. 5A). Next, mice 
were injected with clodronate-liposome to deplete KCs16,17 
prior to HBV and LPS HDI. KC depletion resulted in signifi-

cant decreases in serum IL-10 levels at both 3 and 6 h post-
HBV HDI in clodronate-liposome treated mice compared to 
PBS-liposome treated mice (Fig. 5B), suggesting KCs were 
the main source of IL-10 production in LPS-treated HBV-
replicating mice. Moreover, KC depletion also resulted in ac-
celerated HBsAg clearance in mice, as 80% of PBS-liposome 
treated control mice remained serum HBsAg-positive, but 
only 20% of clodronate-liposome treated mice were so at 26 
dpi (Fig. 5C). These results suggested that LPS-induced HBV 
persistence in mice is mediated by IL-10 and KCs.

Discussion

In a previous study, Chou et al.9 observed that adult C3H/
HeN mice rapidly cleared HBV, while their young counter-
parts showed HBV persistence in the pAAV/HBV1.2 HDI 
mouse model. Sterilization of gut microbiota using antibiot-
ics prevented adult mice from rapid HBV clearance.

In contrast, depleting KCs or abolishing the Toll-like re-
ceptor (TLR)4 signaling pathway in young mice prior to HBV 
HDI resulted in rapid viral clearance. The authors thus sug-
gested that the gut microbiota sterilization-induced HBV im-
mune tolerance in mice was highly probably mediated by 
KCs via the activation of TLR4 by its ligand LPS. Based on 
these observations and speculations, in the current study 
we further demonstrated that sterilizing gut microbiota 
by antibiotics results in an increase of serum LPS level in 

Fig. 4.  LPS stimulation results in delayed HBV clearance in HBV-replicating mice. C57BL/6 mice were subject to HDI with the pAAV/HBV1.2 plasmid in combi-
nation with LPS (HBV+LPS) or not (HBV). (A) The kinetics of serum HBsAg levels were monitored by ELISA. (B) The percentages of HBsAg-positive mice were analyzed. 
(C) The kinetics of serum HBV DNA copies were monitored by real-time PCR. ELISA, enzyme-linked immunosorbent assay; HBsAg, hepatitis B surface antigen; HBV, 
hepatitis B virus; HDI, hydrodynamic injection; LPS, lipopolysaccharide.
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mice. Consistently, KCs from both gut-sterilized mice and 
LPS-treated HBV-replicating mice produce a significantly 
increased amount of IL-10 and show enhanced ability in 
suppressing T cell activation. This LPS-induced functional 
change of KCs results in delayed HBV clearance in mice.

The liver is not in direct contact with gut microbiota. How-
ever, it constantly encounters bacterial components, such as 
LPS generated from Enterobacteriaceae, translocated from 
the gut into the portal vein. It has been shown that LPS 
can disrupt expression of the tight junction protein OZ-1 in 
the intestinal tract, which increases the permeability of the 
intestinal mucosa.18 This in turn allows more LPS to enter 

the blood flow through the portal venous system and leads 
to low-grade endotoxemia.19 Therefore, in cases such as 
gut microbiota sterilization or dysbiosis, increased LPS re-
lease into the intestinal tract may result in increased intra-
hepatic LPS stimulation. Moreover, it has also been shown 
recently by Guo et al.20 that ABX treatment in mice results 
in translocation of live commensal gut bacteria and their 
components, including LPS into the liver. Therefore, gut mi-
crobiota sterilized mice may have an increased intrahepatic 
LPS stimulation, with even the serum LPS concentrations in 
these mice returning to physiological levels. LPS is mainly 
sensed by TLR4, which is constitutively expressed on the 

Fig. 5.  IL-10 functional blockade and KC depletion results in accelerated HBV clearance in LPS-treated HBV-replicating mice. (A) C57BL/6 mice were 
subject to HDI with the pAAV/HBV1.2 plasmid in combination with LPS, either intraperitoneally injected with anti-mouse IL-10 receptor (Anti-IL-10R) or not (Control). 
(B) C57BL/6 mice were subject to HDI with the pAAV/HBV1.2 plasmid in combination with LPS, either intravenously injected with clodronate-liposome (KC-depletion) 
or PBS-liposome (Liposome-control). The kinetics of serum IL-10 were monitored by ELISA. (C) The kinetics of serum HBsAg levels were monitored by ELISA (left). The 
percentages of HBsAg-positive mice were analyzed (right). ELISA, enzyme-linked immunosorbent assay; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; 
HDI, hydrodynamic injection; IL, interleukin; LPS, lipopolysaccharide; KC, Kupffer cell; PBS, phosphate-buffered saline.
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surface of macrophages.21–23

KCs are the largest population of liver-resident mac-
rophages, and activation of the TLR4 signaling pathway by 
LPS induces the production of proinflammatory cytokines, 
including IL-10, by KCs.14,24–26 IL-10 is a cytokine with plei-
otropic functions, and in many cases, it has been consid-
ered as an immunosuppressive cytokine that can attenuate 
inflammatory responses and suppress T cell activation and 
proliferation via the IL-10/IL-10R pathway.27 During HBV in-
fection, elevated serum IL-10 level has been observed in 
both the acute phase28 and chronic phase.29 It is believed 
that KCs are one of the main sources of IL-10 production 
during CHB, and this KC-derived IL-10 plays an important 
role in maintaining liver immune tolerance and partici-
pates in HBV persistence.30 We have recently reported that 
the HBV particle directly stimulates KCs to produce IL-10 
via activation of the TLR2 signaling pathway.15 This effect 
strengthens liver tolerance by promoting KC-mediated CD8 
T cell suppression.15 In line with these findings, blocking the 
function of IL10 or depleting KCs in HBV-carrier mice leads 
to rapid HBV elimination and improved anti-HBV CD8 T cell 
responses.31,32

In the current study, we further demonstrate that gut mi-
crobiota dysbiosis may also trigger IL-10 production by KCs 
in the context of HBV infection, which plays a key role in 
mediating HBV persistence. Our finding has implications for 
the understanding of mechanisms of regulating intrahepatic 
immune response by the gut microbiota and their relation-
ship with HBV infection.
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