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Abstract

A new definition of metabolic dysfunction-associated fatty 
liver disease (MAFLD) was proposed in 2020. The change 
from nonalcoholic fatty liver disease (NAFLD) to MAFLD 
highlights the metabolic abnormalities that accompany fatty 
liver. The diagnosis of MAFLD does not require exclusion of 
secondary causes of liver diseases and alcohol consump-
tion. Thus, MAFLD may coexist with other types of liver dis-
eases, such as viral hepatitis, a disease that remains the 
most common cause of liver disease-related death. With 
the increasing prevalence of MAFLD, patients with coinci-
dental MAFLD and viral hepatitis are frequently encountered 
in clinical practice. In this review, we mainly summarize the 
mutual relationship between hepatitis B/C and systematic 
metabolism dysfunction related to MAFLD. We discuss the 
impact of MAFLD on progression of viral hepatitis and the 
therapies. Some unaddressed clinical problems related to 
concomitant MAFLD and viral hepatitis are also identified.
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Introduction

The term nonalcoholic fatty liver disease (NAFLD) was first 
coined by Ludwig and colleagues in 1980 to describe fatty 
liver disease occurring in the absence of significant alcohol 
intake.1 Currently, NAFLD is arising as the most common 
chronic liver disease, due to the global obesity epidemic.2 
The diagnosis of NAFLD requires evidence of hepatic stea-

tosis and lack of secondary causes of hepatic fat accumula-
tion, such as significant alcohol consumption, hepatitis C 
(genotype 3), medications, or Wilson’s disease.3,4 Several 
studies have suggested that NAFLD is commonly associat-
ed with metabolic comorbidities, such as obesity, diabetes, 
and dyslipidemia.3,4 However, experts have raised concerns 
that the term “NAFLD” is not appropriate for describing 
fatty liver disease associated with metabolic dysfunction. 
In this context, an international panel of experts proposed 
a novel term—metabolic dysfunction-associated fatty liver 
disease (MAFLD),5,6 which highlights the features of meta-
bolic abnormalities with the acceptance that MAFLD may 
commonly coexist with other conditions, such as viral hep-
atitis. As such, some hepatologists argued that the change 
in terminology from NAFLD to MAFLD is rather premature.7 
Viral hepatitis and MAFLD are the two leading causes of 
chronic liver disease in China and these two conditions 
likely coexist in many patients. Patients with coincidental 
MAFLD and viral hepatitis likely have different pathophysi-
ological conditions and show different responses to therapy 
compared to patients with liver disease caused by a single 
etiology. Here, we mainly discuss the relationship between 
MAFLD and hepatitis. We also deliberate how to improve 
clinical practice for patients with coincidental MAFLD and 
viral hepatitis.

Hepatitis B and MAFLD

Hepatitis B virus (HBV) infection is a major cause of disease 
burden in most Asian nations, owing to its high prevalence 
and high probability of progression to cirrhosis and hepa-
tocellular carcinoma (HCC).8 With the growing prevalence 
of MAFLD, cases with concomitant hepatitis B and hepatic 
steatosis are increasingly encountered in clinical practice 
and several questions remain to be answered.

Negative effects of steatosis on HBV replication

Most HBV infections acquired at birth or perinatally become 
chronic. Virus-specific T cell responses, which play a ma-
jor role in HBV clearance, are deeply exhausted in chronic 
hepatitis B. Besides, the lack of protective T cell memory 
maturation, impaired natural killer (NK) cell function, and 
depressed cytokine production contribute to the tolerogenic 
environment in liver. The overall impairment of T cell re-
sponses is likely to be maintained by the persistent ex-
posure to high levels of HBV antigens.9,10 In addition, γδ 
T cells are involved in HBV-induced immunotolerance by 
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mediating CD8+ T cell exhaustion.11

Most studies have revealed a negative association be-
tween liver steatosis and chronic HBV infection.12–16 For 
example, a retrospective study by Peleg et al.15 found an 
inverse association between the severity of liver steatosis 
and HBV viral load in treatment-naïve chronic hepatitis B 
(CHB) patients. Some studies suggested that liver stea-
tosis affects the immune response during HBV infection. 
Mak et al.17 analyzed the effect of liver steatosis on HBV 
surface antigen (HBsAg) seroclearance in treatment-naïve 
CHB patients over a follow-up period of 3 years; on Cox 
regression analysis, hepatic steatosis was found to be as-
sociated with a 3-fold increase in the probability of HBsAg 
seroclearance in quiescent CHB. Lee et al.18 explored the 
factors associated with phase change in patients with CHB 
in the immune-tolerant phase. Notably, patients who un-
derwent phase change were more likely to have coexist-
ing fatty liver compared to patients who remained in the 
immune-tolerant phase.18 Further studies are required to 
clarify whether fatty liver is an important determinant of 
the immune response in CHB patients.

A wide body of published clinical data suggests an in-
verse association between liver steatosis and HBV repli-
cation;12–16 however, the underlying mechanisms are not 
clear. Some studies have postulated that fat deposition in 
HBV-infected hepatocytes may inhibit HBV replication.19 
Here, we propose some potential mechanisms regarding 
the impact of liver steatosis on HBV infection and replica-
tion (Fig. 1). First, fatty liver is associated with impaired 
function of peroxisome proliferator activated receptor 

γ-coactivator 1 alpha (PGC1α),20,21 which is known to ac-
tivate several transcription factors, such as Farnesoid X 
receptor (FXR), forkhead Box O1 (FOXO1), hepatocyte nu-
clear factor 4 alpha (HNF4α), and peroxisome proliferator 
activated receptor alpha (PPARα).22–25 Interestingly, these 
transcription factors not only control HBV replication but 
also regulate the expression of several genes related to fat 
metabolism in the liver.26 It is plausible that the transcrip-
tion of fat metabolism genes in fatty liver may interfere 
with HBV replication by competing for usage of the tran-
scription factors mentioned above. Second, nonalcoholic 
steatohepatitis (NASH) is accompanied by increased he-
patic infiltration of NK T cells, T cells,27 and γδ T cells;28 
thus, hepatic fat accumulation may create altered innate 
and adaptive immune microenvironments that are subopti-
mal for HBV replication.29 Finally, increased hepatocyte ap-
optosis induced by NASH may also reduce HBV replication. 
Despite the several proposed mechanisms, further studies 
are required to elucidate the precise mechanism by which 
liver steatosis affects HBV infection.30

Effects of HBV on systemic metabolism

Growing evidence has suggested that patients with HBV 
infection are at a decreased risk of developing NAFLD. For 
example, in the study by Wong et al.,13 HBV infection was 
associated with a lower prevalence of fatty liver, hypertri-
glyceridemia, and metabolic syndrome in the general Chi-

Fig. 1.  Potential mechanisms underlying the impact of liver steatosis on HBV infection and disease progression. Liver steatosis suppresses HBV replication 
via several pathways. Some transcription factors related to lipid metabolism promote HBV replication, such as PGC1α, FXR, FOXO1, HNF4α, and PPARα. Liver steatosis 
also leads to increased hepatocyte apoptosis. Hepatic infiltrating inflammatory cells, such as NK T cells, T cells, and γδ T cells create an altered immune microenviron-
ment that is suboptimal for HBV replication. On the other hand, increased production of various cytokines and chemokines results in progressive inflammation and 
activation of hepatic stellate cells (HSCs). The release of damage-associated molecular pattern molecules (DAMPs) also accelerates the inflammatory response. In 
addition, elevated intracellular levels of ROS may enhance HBV replication via the activation of p38. Figure created in BioRender.com. BA, bile acid; IFNγ, interferon-
gamma; TNF, tumor necrosis factor; IL, interleukin; TG, triglyceride; TGFβ, transforming growth factor beta; TNF, tumor necrosis factor.
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nese population in Hong Kong. Similarly, in a large cohort 
of Korean adults, HBsAg seropositivity was associated with 
a lower risk of developing NAFLD.16 Thomopoulos et al.31 
studied the prevalence of biopsy-proven liver steatosis in 
patients with CHB in Greece. Hepatic steatosis was ob-
served in 18% of CHB patients and 73.8% of them pre-
sented with grade 1 steatosis. These results suggested 
an inverse association between HBV infection and MAFLD 
prevalence.

Interestingly, HBV infection is associated with favora-
ble serum lipid profiles, including lower levels of triglycer-
ides, low-density lipoprotein cholesterol, and higher levels 
of high-density lipoprotein cholesterol;16 however, there is 
no conclusive evidence of the association of HBV infection 
with metabolic syndrome, insulin resistance, and the risk of 
arteriosclerosis.

The mechanisms underlying the effect of HBV infection 
on liver steatosis are not well characterized. Some stud-
ies have found that HBV-infected patients are associated 
with increased adiponectin,32,33 which may ameliorate 
hepatic steatosis.34 Besides, HBV infection may influence 
cholesterol metabolism by binding of the pre-S1 domain to 
the cellular receptor sodium-taurocholate cotransporting 
polypeptide, leading to increased conversion of intracellular 
cholesterol to bile acids and increased uptake of lipoprotein-
associated cholesterol.35 Additional studies are required to 
better understand the mechanisms involved in glucose and 
lipid metabolism in HBV-infected patients.

Synergistic effect of MAFLD and CHB on liver disease 
progression

Liver steatosis itself is a major risk factor for liver- and non-
liver-related morbidity and mortality.4 Although liver stea-
tosis is associated with lower HBV viral load15 and increased 
chances of HBsAg clearance,17 several studies have dem-
onstrated the synergistic role of fatty liver and CHB in pro-
moting liver disease progression.15,36 In a study by Peleg et 
al.,15 liver steatosis was associated with an increased risk of 
all-cause mortality and cancer development in CHB patients, 
regardless of HBV viral load. Other studies have shown that 
coincidental metabolic syndrome, which is one of the key 
diagnostic criteria for MAFLD, increases the risk of liver fi-
brosis progression17,37 and liver cirrhosis38 in CHB patients 
independent of the viral load and alanine aminotransferase 
level. Obesity also accelerates hepatitis B-related mortality 
and HCC.39 Therefore, patients with CHB should be closely 
monitored for coexisting fatty liver disease irrespective of 
viral load and HBV seromarkers, as coexisting fatty liver 
disease may aggravate liver fibrosis, and increase the risk 
of cirrhosis and HCC.

The mechanisms underlying the synergistic effect of fatty 
liver on CHB progression remain unclear. Here, we suggest 
several potential mechanisms regarding the impact of liver 
steatosis on CHB progression (Fig. 1). Increased hepatocyte 
damage in steatosis leads to the release of damage-associ-
ated molecular pattern molecules, which may enhance the 
inflammatory response.40 Increased infiltration of neutro-
phils, monocytes, and γδ T cells28 and other inflammatory 
cells in NASH accelerates liver inflammation and fibrosis via 
production of various cytokines and chemokines.40 In ad-
dition, elevated intracellular levels of reactive oxygen spe-
cies (ROS)41 induced by NASH may facilitate HBV replica-
tion. Recently, we have found that neutrophil-derived ROS 
can activate p38 mitogen-activated protein kinase (MAPK), 
which then promotes the progression of NAFLD.42 P38 MAPK 
is known to promote HBV replication;43,44 thus, neutrophil-
derived ROS may also facilitate HBV replication via the acti-
vation of p38 MAPK in NAFLD.

Therapeutic challenges in patients with MAFLD and 
CHB

There are many unanswered questions regarding the treat-
ment of patients with coincidental MAFLD and CHB. For 
example, it is not clear whether the absorption and bio-
availability of antiviral drugs are affected by hepatic fat ac-
cumulation and the commonly associated metabolic abnor-
malities, such as diabetes and hyperlipidemia. Patients with 
coincidental MAFLD and CHB may exhibit different respons-
es to antiviral therapies compared to patients with CHB 
alone. Reports regarding the influence of fatty liver on the 
antiviral therapies in CHB patients have been inconsistent.45 
Since HBV gene expression is closely regulated by nutri-
tional state via the metabolic regulators, further studies are 
required to explore the effectiveness of lifestyle interven-
tions, such as diet control, physical activity, and weight re-
duction, in patients with coincidental MAFLD and CHB. Apart 
from this, treatment of the metabolic abnormalities, such as 
diabetes, hypertension, and dyslipidemia, should be care-
fully managed and the impact of these treatments on HBV 
replication should be cautiously monitored. For example, 
PPARα has been shown to promote HBV replication;26 thus, 
PPARα agonists should be cautiously used in patients with 
coincidental MAFLD and CHB. Besides, antiviral drugs may 
influence metabolism. For example, tenofovir disoproxil fu-
marate, which is one of the first-line antiviral treatments for 
CHB, has been shown to decrease the serum lipid profile in 
CHB patients.46 Finally, the impact of metabolic treatment 
on progression of CHB remains to be further explored. No-
tably, statins, which are commonly administered to patients 
with hyperlipidemia, have been shown to decrease the risk 
of decompensation in HBV-related cirrhosis47 and HCC.48,49

Collectively, emerging evidence suggests a negative as-
sociation between MAFLD and CHB in terms of HBV sero-
markers and fatty liver onset; however, MAFLD and CHB 
synergistically exacerbate liver fibrosis and HCC progres-
sion. The mechanisms underlying the interplay between 
MAFLD and CHB are still poorly understood. Further clinical 
studies are required to better understand the clinical fea-
tures and provide more evidence for the management of 
patients with coincidental MAFLD and CHB.

Hepatitis C and MAFLD

It is well known that chronic HCV infection is associated 
with liver steatosis, especially in patients infected with HCV 
genotype 3. The reported prevalence of liver steatosis in 
patients with HCV infection varies between 40% and 80%; 
however, this prevalence decreases to approximately 40% 
when other factors that cause fatty liver, such as alcohol 
abuse, obesity, and diabetes, have been excluded.50 This 
suggests that both viral factors and host factors (such as 
metabolic disorders) contribute to liver steatosis in patients 
with HCV infection. Therefore, assessment of metabolic 
risk factors is required for hepatitis C patients, especially in 
those with concomitant fatty liver.

In the definition of NAFLD, HCV (genotype 3) is consid-
ered as a secondary cause of hepatic fat accumulation and 
is excluded from the criteria of NAFLD. However, in the new 
definition of MAFLD, patients who have HCV infection and 
also meet the criteria for the diagnosis of MAFLD are defined 
as having concomitant MAFLD with HCV infection. Renam-
ing of “NAFLD” to “MAFLD” divided hepatitis C into two cat-
egories, i.e. “hepatitis C with MAFLD” and “hepatitis C with-
out MAFLD”. This new classification will help distinguish the 
causes of liver steatosis and will lead to better management 
of hepatitis C patients. Notably, patients with concomitant 
MAFLD and HCV infection and patients with HCV-induced 
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liver steatosis both present with fatty liver. The differential 
diagnosis of the causes of fatty liver should mainly rely on 
the presence of metabolic risk factors, viral load and gen-
otype, and the responsiveness to antiviral therapy.51 The 
differences with respect to the clinical presentations of con-
comitant MAFLD and HCV infection and viral steatosis are 
summarized in Table 1.

Relationship between HCV infection and metabolism

Lipids are important for HCV replication and virion assem-
bly, and lipoproteins are required for HCV circulation in the 
blood.52 HCV infection alters lipid metabolism in many ways, 
including by impairing very low density lipoprotein (VLDL) 
secretion, increasing lipogenesis, and decreasing lipid oxi-
dation.53 HCV infection is associated with dyslipidemia, 
through lower levels of total cholesterol and triglycerides, 
and hypobetalipoproteinaemia.54 The multifaceted interac-
tion between HCV and lipid metabolism has been previously 
reviewed.50,53

Although there is a paucity of studies on the impact of 
MAFLD on HCV replication, several studies have suggested 
the complex effects of fatty acid metabolism on HCV repli-
cation. For example, fatty acids, especially polyunsaturated 
fatty acids, were shown to inhibit HCV replication.55,56 In 
a study by Yamane et al.,56 lipid peroxidation, which is a 
feature of NASH, was shown to restrict HCV replication in 
hepatocytes. On the contrary, Hofmann et al.57 demonstrat-
ed that knockdown of fatty acid elongases and desaturases, 
which are responsible for de novo fatty acid synthesis, can 
disrupt HCV replication in hepatocytes. These results sug-
gest the existence of a complex network that regulates HCV 
RNA replication in fatty liver.

Liver steatosis, which is frequently found in patients with 
chronic hepatitis C, accelerates fibrosis58 and HCC59 pro-
gression and is associated with poor response to interferon-
alpha (IFN-α)-based therapy.60 In patients with genotype 3 
infection, the severity of liver steatosis was shown to cor-
relate with the viral load and was ameliorated following suc-
cessful antiviral treatment.61 Besides, chronic HCV infection 
is associated with an increased risk of diabetes62 and higher 
levels of insulin resistance.63 Insulin resistance and elevated 
body mass index have been reported to impair sustained 
response to IFNα-based therapy.64 Although there is no con-
clusive evidence of the association between HCV and meta-
bolic syndrome,65 based on these published data, we predict 
that patients with concomitant MAFLD and hepatitis C are 
likely to have poor clinical outcomes, including accelerated 
liver fibrosis progression, and increased risk of HCC and ath-
erosclerosis compared to patients with hepatitis C alone.

Management of hepatitis C and MAFLD

Direct antiviral agents (DAAs), which show improved toler-
ability and high efficacy for HCV clearance, have now been 
recommended as the first-line treatment for hepatitis C.66,67 

In addition to the high efficacy for HCV eradication, DAA 
treatment also showed a beneficial impact on systemic me-
tabolism. In a study by Sun et al.,68 DAA therapy led to in-
creased triglyceride-to-cholesterol ratio in VLDL, indicating 
an improvement in HCV-related unfavorable plasma lipid 
parameters. Besides, successful treatment with DAAs is as-
sociated with improved glycemic control69 and a significant 
decrease in the risk of cardiovascular disease events.70 The 
changes in liver steatosis following DAA treatment have not 
been well studied.

Apart from DAA therapy, HCV patients with concomi-
tant MAFLD should be appropriately managed with lifestyle 
changes and specific drugs. Since DAAs present an impor-
tant potential for drug-drug interactions (DDIs), assess-
ment of DDIs prior to initiation of DAA therapy is important 
in patients with concomitant MAFLD. For example, statins 
and antihypertensive agents may potentially interact with 
DAAs.66,67 Thus, due caution should be exercised while 
selecting a suitable DAA. To date, the effects of diabetes, 
obesity, and metabolic syndrome on the antiviral efficacy of 
DAAs have not been carefully evaluated. It will be interest-
ing to compare the efficiency of DAA therapy in hepatitis C 
patients with or without MAFLD.

Acute viral hepatitis and MAFLD

The association of MAFLD and acute viral hepatitis (such as 
acute hepatitis A and acute hepatitis E) has not been re-
ported. However, published data from experimental animal 
models suggest that preexisting liver steatosis may lead to 
more severe liver damage. Secondary stimuli such as li-
popolysaccharide/alcohol71,72 can induce more severe liver 
injury in mice fed with high-fat diet compared with mice fed 
with chow diet. Besides, metabolic disorders such as dia-
betes and obesity may also accelerate liver injury. Zhang 
et al.73 found that diabetes is an independent risk factor 
for adverse outcomes, especially mortality, in patients with 
acute HEV infection. It will be interesting to explore the re-
lationship between MAFLD and acute hepatitis in the future.

Conclusions

The global burden of chronic liver disease has increased 
over the past decade.74 NAFLD is the most rapidly grow-
ing cause of cirrhosis and liver cancer worldwide, while vi-
ral hepatitis remains the most common contributor to liver 
disease-related mortality in China.75 A new definition of 
“MAFLD”, which emphasizes the metabolic disorders, will 
help update the clinical practices for liver diseases. There 
are a series of pertinent questions in the context of patients 
with concomitant MAFLD and viral hepatitis (Table 2), with 
some of them remaining unanswered. Management of pa-
tients with concomitant MAFLD and viral hepatitis requires 
close collaboration between hepatologists and endocrinolo-
gists. Further clinical trials are required to determine the 
optimal treatments for these patients.

Table 1.  MAFLD vs. HCV-induced fatty liver: Clinical differences

MAFLD with HCV infection HCV-induced fatty liver

Criteria for MAFLD* Yes No

Genotype-dependent No Yes

Viral load-related No Yes

Disappears after antiviral therapy No Yes

*Overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. HCV, hepatitis C virus; MAFLD, metabolic dysfunction-associated fatty liver disease.
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