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Abstract

Background and Aims: The overall survival (OS) of hepa-
tocellular carcinoma (HCC) remains dismal. Bioinformatic 
analysis of transcriptome data could identify patients with 
poor OS and may facilitate clinical decision. This study 
aimed to develop a prognostic gene model for HCC. Meth-
ods: GSE14520 was retrieved as a training set to identify 
differential expressed genes (DEGs) between tumor and 
adjacent liver tissues in HCC patients with different OS. A 
DEG-based prognostic model was then constructed and the 
TCGA-LIHC and ICGC-LIRI datasets were used to validate 
the model. The area under the receiver operating charac-
teristic curve (AUC) and hazard ratio (HR) of the model for 
OS were calculated. A model-based nomogram was estab-
lished and verified. Results: In the training set, differen-
tial expression analysis identified 80 genes dysregulated in 
oxidation-reduction and metabolism regulation. After uni-
variate Cox and LASSO regression, eight genes (LPCAT1, 
DHRS1, SORBS2, ALDH5A1, SULT1C2, SPP1, HEY1 and 
GOLM1) were selected to build the prognostic model. The 
AUC for 1-, 3- and 5-year OS were 0.779, 0.736, 0.754 
in training set and 0.693, 0.689, 0.693 in the TCGA-LIHC 
validation set, respectively. The AUC for 1- and 3-year OS 

were 0.767 and 0.705 in the ICGC-LIRI validation set. Mul-
tivariate analysis confirmed the model was an independent 
prognostic factor (training set: HR=4.422, p<0.001; TCGA-
LIHC validation set: HR=2.561, p<0.001; ICGC-LIRI valida-
tion set: HR=3.931, p<0.001). Furthermore, a nomogram 
combining the model and AJCC stage was established and 
validated, showing increased OS predictive efficacy com-
pared with the prognostic model (p=0.035) or AJCC stage 
(p<0.001). Conclusions: Our eight-gene prognostic model 
and the related nomogram represent as reliable prognostic 
tools for OS prediction in HCC patients.

Citation of this article: Guo DZ, Huang A, Wang YP, Cao Y, 
Fan J, Yang XR, et al. Development of an eight-gene prognos-
tic model for overall survival prediction in patients with hepa-
tocellular carcinoma. J Clin Transl Hepatol 2021;9(6):898–
908. doi: 10.14218/JCTH.2020.00152.

Introduction

Hepatocellular carcinoma (HCC) is the sixth most frequent 
malignancy and the second leading cause of cancer-related 
mortality worldwide.1 Globally, it was estimated that there 
were more than 840,000 new cases of HCC and nearly 
780,000 deaths per year.2 Despite the great progress in 
early diagnosis and early treatment, the overall survival 
(OS) remains unfavorable and approximately 70% of HCC 
patients would have tumor relapse within 5 years after cu-
rative resection or ablation.3 Classification of HCC to guide 
prognostic stratification, clinical management and im-
prove OS is thus of importance. However, currently avail-
able classification systems, such as Barcelona Clinic Liver 
Cancer (BCLC) and American Joint Committee on Cancer 
(AJCC) staging systems, focus on pretreatment classifica-
tion rather than prognostication.4 Therefore, it’s necessary 
to develop a novel model for the prognosis prediction of 
HCC.

The advance of genome-sequencing technologies has 
resulted in large-scale tumor genome profiling and tran-
scriptome analysis. Of note, mRNA profiling of tumors could 
identify potential biomarkers and gene signatures at the 
mRNA level have great potential in prognosis prediction. 
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Currently, bioinformatics analysis of mRNA expression from 
publicly accessible databases has established gene signa-
tures to predict the OS of HCC patients.5–11 However, these 
studies had all unexceptionally employed differential analy-
sis by comparing the mRNA expression between tumor tis-
sues and non-tumor tissue, without considering the poten-
tial predictive value of differential expression genes (DEGs) 
between patients with different prognosis.

In this present study, we, for the first time, used a novel 
method to develop a prognostic model. We performed dif-
ferential expression analysis not only on the mRNA expres-
sion of tumor and adjacent liver tissues but also on the tu-
mor tissues between HCC patients with different prognosis. 
Then, the overlapped DEGs were retrieved to investigate 
survival-related biomarkers in the training set. An eight-
gene risk model was then established and validated to be an 
independent index for OS. Moreover, we went a step further 
to construct a nomogram which had combined this eight-
gene model with AJCC cancer staging system. This study 
has taken DEGs between different tissues and different pa-
tients into consideration simultaneously and developed a 
reliable and robust prognostic model.

Methods

Data collection

The GSE14520 dataset12 (doi:10.1158/0008-5472) of 
the Gene Expression Omnibus database (GEO), The Can-
cer Genome Atlas-Liver Hepatocellular Carcinoma dataset 
(TCGA-LIHC, doi:10.1038/ng.2764)13 and The Internation-
al Cancer Genome Consortium-Liver Cancer-RIKEN data-
set (ICGC-LIRI, doi: 10.1038/nature08987)14 were used 
as data source. The data of 225 HCC patients (containing 
225 tumor and 220 adjacent normal liver tissues) in the 
GSE14520 dataset was used as the training set, while the 
355 HCC cases with prognosis information in the TCGA-LI-
HC dataset (containing 355 tumor and 50 adjacent normal 
liver tissues) and 243 HCC cases with prognosis informa-
tion in the ICGC-LIRI dataset (containing 243 tumor and 
202 adjacent normal liver tissues) were used to verify the 
predictive performance of the risk model and nomogram 
as external validation sets. The messenger RNA (mRNA) 
expression profiles of tumor tissues and the clinicopatho-
logical information of HCC patients from each dataset were 
obtained accordingly. The research was conducted in ac-
cordance with the Declaration of Helsinki (as revised in 
2013). Approval from the ethics committee and patient 
consents were exempted since all data were derived from 
public databases. We strictly complied with the GEO, TCGA 
and ICGC publication guidelines and data access policies, 
and presented this article in accordance with the MDAR 
reporting checklist. The baseline characteristics of three 
datasets are shown in Table 1.

Gene differential expression analysis and gene set 
enrichment analysis

Genes with a very low expression level of “0” were preclud-
ed from bioinformatical analysis. The DEGs in the training 
set were investigated using the “limma” package.15 DEGs 
between tumor and adjacent liver tissues were investigated 
and genes with an adjusted p-value <0.05 and log2 fold-
change (logFC) >1 or <−1 were considered as up- and 
down-regulated respectively. Differential analysis was also 
applied between patients with different prognosis and those 
with an adjusted p-value <0.05 and logFC >0.5 or <−0.5 

were identified as DEGs. Two groups of DEGs were con-
sequently combined and those overlapped were retrieved 
for subsequent analysis. Gene ontology (GO) enrichment 
analyses and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis were performed by DAVID and 
visualized using the R packages “GOplot”, with the inten-
tion to reveal the possible biological functions and pathways 
which might affect the prognosis of HCC. Adjusted p-value 
<0.05 was considered statistically significant.

Construction and validation of the prognostic model

Univariate Cox regression was performed for DEGs to iden-
tify the prognosis-related genes and those with p<0.001 
were applied to least absolute shrinkage and selection op-
erator (LASSO) regression analysis. After that, a prognostic 
model was established based on the genes derived from 
LASSO regression16 and the risk score was calculated using 
the formula:

(βmRNA1 * expressionmRNA1) + (βmRNA2 * expressionmRNA2) 
+ …… + (βmRNAn* expressionmRNAn).

In the formula, the value of β was the regression coef-
ficient derived from LASSO regression and the expression 
meant expression level of mRNA. The time-dependent pre-
dictive value of the prognostic model was evaluated using 
time-dependent receiver operating characteristic (ROC) 
curve via the R package “timeROC”. The “survminer” pack-
age was applied to identify an optimal cut-off value of risk 
score and according to which patients were divided into 
high-risk and low-risk groups. Then, Kaplan-Meier analysis 
combined with log-rank test was used to compare the prog-
nostic difference between the high-risk and low-risk groups 
using the “survival” package. Univariate and multivariate 
Cox regression analysis was applied to identify independent 
prognostic factors.

To validate the prognostic performance of the gene mod-
el, 355 HCC patients from TCGA-LIHC and 243 HCC patients 
from ICGC-LIRI were analyzed as external validation sets. 
The time-dependent ROC analysis, Kaplan-Meier analysis, 
subgroup analysis and multivariate Cox regression analysis 
were performed in two validation sets identically with that 
in training set.

Development and validation of the prognostic model-
based nomogram

The nomogram was built using all independent prognos-
tic factors identified by multivariate Cox regression in the 
training set. The concordance index (C-index) and calibra-
tion curve was applied to determine the discrimination and 
calibration of the nomogram respectively (by a bootstrap 
method with 1,000 resamples). The AJCC stage model, 
prognostic signature and the nomogram model were com-
pared via time-dependent ROC curve and C-index. The 
prognostic model-based nomogram was also validated us-
ing time-dependent ROC curve, C-index and calibration 
curve in two validation sets.

Statistical analysis

Statistical analyses were performed using R software ver-
sion 3.6.3 (R Foundation for Statistical Computing, Vienna, 
Austria, RRID:SCR_001905). Pearson χ2 test or Fisher’s 
exact test were applied to analyze qualitative variables as 
appropriate. If not specified above, p<0.05 was considered 
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statistically significant.

Ethics

The authors are accountable for all aspects of the work in 
ensuring that questions related to the accuracy or integrity 

of any part of the work are appropriately investigated and 
resolved. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). An approval by 
the ethics committee and patient consent were not required 
since all data were derived from public database. We strictly 
complied with the publication guidelines and data access 
policies of the TCGA, GEO and ICGC databases.

Table 1.  Baseline characteristics of patients in the training and two validation datasets

Level
Training dataset Validation datasets

GSE14520, n=203 TCGA-LIHC, n=355 ICGC-LIRI, n=243

Sex Male 175 (86.2) 240 (67.6) 182 (74.9)

Female 28 (13.8) 115 (32.4) 61 (25.1)

Age in years ≤50 100 (49.3) 73 (20.6) 17 (7.0)

>50 103 (50.7) 282 (79.4) 226 (93.0)

HBV infection No 6 (3.0) 22 (6.2) /

Yes 195 (96.0) 134 (37.7) /

Unknown 2 (1.0) 199 (56.1) /

HCV infection No / 57 (16.1) /

Yes / 99 (27.9) /

Unknown / 199 (56.1) /

Alcohol consumption No / 232 (65.4) /

Yes / 113 (31.8) /

Unknown / 10 (2.8) /

Cirrhosis No 16 (7.9) / /

Yes 187 (92.1) / /

Child-Pugh stage A / 211 (59.4) /

B/C / 22 (6.2) /

Unknown / 122 (34.4) /

AFP in ng/mL ≤300 108 (53.2) 206 (58.0) /

>300 92 (45.3) 63 (17.7) /

Unknown 3 (1.5) 86 (24.2) /

Tumor size in cm ≤5 134 (66.0) / /

>5 69 (34.0) / /

Tumor number Solitary 163 (80.3) / /

Multiple 40 (19.7) / /

Edmondson grade I/II / 227 (63.9) 158 (65.0)

III/IV / 128 (36.1) 65 (26.7)

Unknown / 0 20 (8.2)

Vascular invasion No / 199 (56.1) /

Yes / 102 (28.7) /

Unknown / 54 (15.2) /

AJCC stage I/II 161 (79.3) 263 (74.1) 146 (60.1)

III/IV 42 (20.7) 92 (25.9) 97 (39.9)

BCLC stage A 157 (77.3) / /

B/C 46 (22.7) / /

HBV, hepatitis B virus; HCV, hepatitis C virus.
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Results

DEG investigation and gene set enrichment analysis

The work flow of this study is illustrated in Supplementa-
ry Figure 1. First, mRNA expression profiles of tumor and 
non-tumor specimens were compared and 902 DEGs were 
identified, including 332 un-regulated DEGs and 570 down-
regulated DEGs. Then, patients in GSE14520 dataset were 
classified into two groups according to OS: 136 patients 
with OS longer than three years were in the long-term sur-
vival group, while the other 67 patients died within three 
years were in the short-term survival group. mRNA expres-
sion profiles of tumor specimens were compared between 
the two groups and 126 DEGs were identified, including 47 
un-regulated DEGs and 79 down-regulated DEGs. These 
DEGs were further overlapped with the DEGs between tu-
mor and non-tumor specimens, and 80 DEGs were finally 
screened, including 19 up-regulated and 61 down-regulated 
genes respectively (Fig. 1A–C).

To elucidate the potential mechanism underlying the 
overlapping DEGs and prognosis, GO enrichment analysis 
was performed respectively through the online DAVID tool. 
In terms of biological processes, the overlapping DEGs were 
significantly enriched in oxidation-reduction process, ster-
oid metabolic process and metabolic process (Fig. 1D). En-
richment analyses of cellular compartment and molecular 
functions are also shown in Figure 1D. Furthermore, we also 
applied KEGG pathway analysis and identified that these 
DEGs were mainly enriched in metabolic pathways, retinol 
metabolism and drug metabolism - cytochrome P450, which 
was concordant with the GO enrichment analysis (Fig. 1E).

Construction of the prognostic model

Univariate Cox regression was first performed for the 80 
DEGs to identify genes of significant correlation with OS, 
and 49 genes with p<0.001 were selected into LASSO re-
gression for further shrinkage. Upon the partial likelihood 
deviance reaching minimum in the LASSO regression, eight 
genes (LPCAT1, DHRS1, SORBS2, ALDH5A1, SULT1C2, 
SPP1, HEY1 and GOLM1) were identified and selected to 
construct the prognostic model (Supplementary Fig. 2). The 
formula for calculating the risk score was:

0.0326*expressionLPCAT1−0.0483*expressionDHRS1−
0.1464*expressionSORBS2−0.0005*expressionALDH5A1
+0.0043*expressionSULT1C2+0.0064*expressionSPP1+

0.0403*expressionHEY1+0.0407*expressionGOLM1.

The optimal cut-off value for the risk score of the prog-
nostic model was −0.6 and patients were classified into 
low- and high-risk groups accordingly (Fig. 2A, B). The Ka-
plan-Meier analysis demonstrated that high-risk group had 
a significant poorer OS compared with low-risk group (haz-
ard ratio [HR]: 5.445, 95% confidence interval [CI]: 3.410–
8.694, P<0.0001; Fig. 2A). Furthermore, we assessed the 
prognostic efficiency of the eight-gene model by operating 
a ROC curve and the AUCs for 1-, 3- and 5-year OS were 
0.779, 0.736, 0.754, respectively (Fig. 2C). In univariate 
and multivariate Cox regression analysis, the AJCC stage 
and our model were both independent prognostic factors 
(Table 2).

Validation of the prognostic model

The predictive performance of the eight-gene prognostic 

model was then verified in the TCGA-LIHC validation set. 
Patients were grouped as low- and high-risk as well (Fig. 
3A,B), at an optimal cut-off of −1.02. The OS was signifi-
cantly shorter in the high-risk group than in the low-risk 
group (HR: 2.666, 95% CI: 1.862–3.818, p<0.0001; Fig. 
3A). The AUCs for 1-, 3- and 5-year OS were 0.693, 0.689 
and 0.693, respectively (Fig. 3C). In the Cox regression 
analysis, the eight-gene prognostic model was an independ-
ent factor for OS (Table 2). Besides, to assess the repeat-
ability and reliability of the model, we further evaluated its 
performance in the ICGC-LIRI validation set. The optimal 
cut-off was -1.32 and the high-risk group showed signifi-
cantly shorter OS than the low-risk group (HR: 5.889, 95% 
CI: 2.874–12.060, p<0.0001; Fig. 4A, B). The AUCs for 1- 
and 3-year OS were 0.767 and 0.705 (Fig. 4C). Considering 
the follow-up time of most patients in ICGC-LIRI did not 
reach 5 years, the AUC for 5-year OS was not assessed. 
Consistently, the model was also an independent factor for 
OS in ICGC-LIRI dataset (Table 2).

Additionally, we compared this prognostic model with 
those previously reported ones and found it had displayed 
comparable, or even better in certain condition, AUCs for 
OS prediction. Most importantly, this prognostic model 
demonstrated better reliability since its performance was 
satisfactory and consistent in two external validation sets 
(Table 3).

The prognostic gene model-related clinicopathologi-
cal features

To further clarify the association between this model and 
prognosis, we applied correlation analysis between surviv-
al risk and clinicopathological features in the training and 
two validation sets. We found patients with high risk score 
generally had advanced tumor phenotype; in the training 
set, patients in the high-risk group were associated with 
higher alpha-fetoprotein (AFP) level, larger tumor size and 
advanced BCLC and AJCC stage (Supplementary Fig. 3A). 
Similarly, in the TCGA-LIHC validation set, patients with 
high-risk score were identified to be significantly associated 
with higher AFP level, advanced Edmondson grade, vascu-
lar invasion and advanced AJCC stage (Supplementary Fig. 
3B). In the ICGC-LIRI validation set, high risk score was 
also correlated with advanced Edmondson grade and AJCC 
stage (Supplementary Fig. 3C).

Moreover, we found the eight-gene model could well dif-
ferentiate patients into different prognostic groups for both 
AJCC stage I/II and AJCC stage III/IV patients, indicating 
that the signature could even distinguish the ones with poor 
survival among the early-stage patients (Supplementary 
Fig. 4A–F).

Development and validation of the prognostic model-
based nomogram

Since the eight-gene risk score prognostic model and AJCC 
stage were found to be independent prognostic factors in 
the training set, we then tried to build a prognostic nomo-
gram model combining the eight-gene risk score and AJCC 
stage (Fig. 5A). The calibration curves for 1-, 3- and 5-year 
OS are illustrated in Fig. 5B. The C-index was 0.740, 0.713 
and 0.626 for the nomogram model, eight-gene risk score 
and AJCC stage, respectively. Correspondingly, the nomo-
gram model demonstrated the largest AUC for OS compared 
with the prognostic model (3-year AUC: 0.774 vs. 0.736, 
p=0.035) and AJCC stage in training set (0.774 vs. 0.658; 
p<0.001) (Fig. 5E).

The nomogram was further tested in the TCGA-LIHC and 



Journal of Clinical and Translational Hepatology 2021 vol. 9  |  898–908902

Guo D.Z. et al: Eight-gene prognostic model for OS of HCC

Fig. 1.  Differential expression analysis and enrichment analysis identified genes associated with prognosis. (A) Venn plot of DEGs between tumor and 
adjacent liver tissues and between long-term (survived more than 3 years) and short-term (died within 3 years) survival patients. (B) Heatmap of overlapped genes 
in two group of DEGs. (C) Volcano plot showing the overlapped DEGs. (D, E) GO analysis (D) and KEGG pathway analysis (E) revealed the most significantly enriched 
biological functions or pathways of overlapped DEGs.
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ICGC-LIRI validation sets. The calibration curves for 1-, 
3- and 5-year OS are illustrated in Figure 5C and 5D. In 
the TCGA-LIHC dataset, the C-index was 0.677, 0.654 and 
0.598 for the nomogram model, signature and AJCC stage, 
respectively; meanwhile, the C-index in the ICGC-LIRI data-
set was 0.723, 0.688 and 0.645, respectively. The AUCs 
of the nomogram were also the largest compared with the 
prognostic model (3-year AUC: 0.727 vs. 0.689, p=0.112) 
and AJCC stage (0.727 vs. 0.640, p=0.005) in the TCGA-
LIHC dataset (Fig. 5F). Consistently, in the ICGC-LIRI data-
set, the nomogram showed the best predictive performance 
compared with the prognostic model (0.715 vs. 0.705, 
p=0.821) and AJCC stage (0.715 vs. 0.602, p=0.008) (Fig. 
5G). Taken together, the nomogram which was built from 
the eight-gene risk score prognostic model and AJCC stage 
showed improved sensitivity and specificity for prognosis 
prediction compared with the eight-gene prognostic model 
or the AJCC stage alone.

Availability of data and materials

The data we used in this study are available in the TCGA 
repository (http://cancergenome.nih.gov/), GEO (https://

www.ncbi.nlm.nih.gov/) and ICGC Data Portal (https://dcc.
icgc.org/).

Discussion

Despite the progression of early diagnosis and the advent 
of novel treatment modalities, the OS of HCC patients still 
remains poor and much effort has been made to gener-
ate a prognosis predicting model to identify patients with 
high risk of poor survival. Recently, with the development 
of genomic sequencing technology, the aberrant mRNA ex-
pression-based gene signature has attracted much atten-
tion and showed potential in prognostication.5–11 Although 
several gene models had been established, they were de-
veloped unequivocally using the DEGs between tumor and 
non-tumor tissues, which might overlook the predictive sig-
nificance of the DEGs between patients with different prog-
noses. Thus, a novel prognostication model using both the 
mRNA profiling of tumor and adjacent liver tissues and tu-
mor tissues between HCC patients with different prognosis 
might be more comprehensive.

In the present study, we have adopted a strategy dif-
ferent from conventional bioinformatics analysis process; 

Fig. 2.  Kaplan-Meier curve, risk score analysis and time-dependent ROC analysis for the eight-gene model in the GSE14520 dataset. (A) Kaplan-Meier 
curve for the eight-gene model in the GSE14520 dataset. (B) Risk score distribution and heatmap of the eight genes in model in the GSE14520 dataset. (C) Time-
dependent ROC analysis of the eight-gene model for 1-, 3- and 5-year OS in the GSE14520 dataset.

http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/
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instead of restriction to the DEGs between tumor and ad-
jacent liver tissues, we integrated the differences of mRNA 
expression between tumor and adjacent liver tissues and 
between the tumors of HCC patients with long and short OS. 
The DEGs were first mined in the training set of GSE14520 
and narrowed down, using univariate Cox regression analy-
sis and LASSO regression, until eight genes were identified 
to construct the prognostic model. This eight-gene prog-
nostic model worked well in two validation sets, including 
TCGA-LIHC and ICGC-LIRI datasets, and multivariate Cox 
regression analysis demonstrated that this model was an 
independent prognostic factor superior to clinicopathologi-
cal factors. Moreover, subgroup analysis found that in ear-
ly-stage patients, who were generally eligible for curative 
therapy and thus might obtain a better survival, this eight-
gene prognostic model could also identify patients at high 
risk for poorer survival. Thus, the prognostic model in this 
study has important clinical significance.

Most of the genes in our model had been reported to 
be involved in the development and progression of HCC. 
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) can 
catalyze lysophosphatidylcholine into phosphatidylcho-
line, modulate phospholipid composition to create favora-
ble conditions for HCC cells, and promote cell proliferation, 
migration and invasion.17 As a member of the short-chain 
dehydrogenase/reductase superfamily, dehydrogenase/re-
ductase member 1 (DHRS1) interacts with the membrane 
of the endoplasmic reticulum and catalyzes the reductive 
conversion of some steroids in vitro, as well as of other en-
dogenous substances and xenobiotics.18 It was identified 
that decreased DHRS1 expression may be involved in the 
carcinogenesis of IDH1-mutated melanoma.19 Sorbin and 
SH3 domain-containing 2 (SORBS2) is critical for regulat-
ing cell adhesion and actin/cytoskeletal organization.20,21 
SORBS2 was down-regulated in HCC tissues and down-

regulation of SORBS2 significantly correlated with poor sur-
vival of HCC patients.22 Aldehyde dehydrogenase 5 family 
member A1 (ALDH5A1) belongs to the superfamily of al-
dehyde dehydrogenases (ALDHs), which is essential for the 
synthesis of various molecules such as retinoic acid, bine, 
and g-aminobutyric acid (GABA).23 Expression of ALDH5A1 
was down-regulated in certain type of tumors, such as ovar-
ian cancer.24 Down-regulation of ALDH5A1 could reprogram 
GABA metabolism and lead to stem-like cell differentiation 
in the tumor.25 SULT1C2 is a member of the 1C family of hu-
man cytosolic sulfotransferases (SULT1Cs), which catalyzes 
the conjugation of myriad drugs, environmental chemicals, 
hormones and sterols.26 SULT1Cs are most noted for their 
ability to bioactivate potent procarcinogens, such as N-hy-
droxy-2-acetylaminofluorene, and it has been reported that 
SULT1C2 expression was up-regulated in malignant breast 
tissue.27 Secreted phosphoprotein-1 (SPP1), also called os-
teopontin, is a secreted arginine-glycine-aspartate-contain-
ing phosphoprotein, which has been demonstrated as being 
overexpressed and serving as an prognostic biomarker in 
many cancers, including lung adenocarcinoma,28 upper tract 
urothelial carcinomas29 and HCC.30 Recently, SPP1 has been 
found to be involved in tumor immunosuppression and to 
influence the tumor microenvironment.31 Golgi membrane 
protein 1 (GOLM1), a type II cis-Golgi-localized transmem-
brane protein, is associated with tumor progression,32 me-
tastasis33 and immunosuppression.34 Increased expression 
level of GOLM1 has been reported in several types of cancer, 
such as HCC,33 lung adenocarcinoma35 and prostate can-
cer.36 Hes-related family bHLH transcription factor with YRPW 
motif 1 (HEY 1) is a transcriptional repressor in the NOTCH 
pathway, which is consistently induced by hypoxia.37,38 El-
evated expression of HEY1 was identified in HCC tissues and 
correlated with unfavorable outcomes.38 In general, most of 
genes play an important role in metabolism, which coincides 

Table 2.  Univariate and multivariate Cox regression analysis for overall survival in the GSE14520 dataset, TCGA-LIHC dataset and ICGC-LIHC dataset

Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

GSE14520

  Sex (male: female) 0.571 (0.276–1.182) 0.131 / /

  Age in years (≤50: >50) 1.009 (0.660–1.545) 0.966 / /

  Tumor size in cm (≤5: >5) 2.073 (1.350–3.184) 0.001 1.068 (0.642–1.778) 0.801

  Tumor number (solitary: multiple) 1.634 (1.012–2.638) 0.045 0.789 (0.443–1.406) 0.421

  Cirrhosis (no: yes) 4.589 (1.128–18.664) 0.033 2.743 (0.665–11.314) 0.163

  AJCC stage (I/II: III/IV) 3.849 (2.460–6.024) <0.001 2.936 (1.587–5.432) 0.001

  Risk score (low: high) 4.422 (2.826–6.919) <0.001 3.429 (2.157–5.452) <0.001

TCGA-LIHC

  Sex (male: female) 0.823 (0.576–1.175) 0.284 / /

  Age in years (≤50: >50) 1.086 (0.705–1.673) 0.708 / /

  Edmondson grade (I/II: III/IV) 1.056 (0.737–1.513) 0.765 / /

  AJCC stage (I/II: III/IV) 2.477 (1.743–3.521) <0.001 2.14 (1.497–3.060) <0.001

  Risk score (low/ high) 2.561 (1.793–3.656) <0.001 2.277 (1.585–3.272) <0.001

ICGC-LIRI

  Sex (male: female) 2.013 (1.084–3.738) 0.027 2.21 (1.155–4.227) 0.017

  Age in years (≤50: >50) 3.141 (0.432–22.817) 0.258 / /

  AJCC stage (I/II: III/IV) 2.119 (1.169–3.842) 0.013 2.059 (1.095–3.869) 0.025

  Risk score (low/ high) 3.931 (2.167–7.132) <0.001 3.27 (1.777–6.017) <0.001
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with the GO and KEGG enrichment analyses; poor survival 
HCCs are associated with dysregulated metabolism.

We have built a nomogram that combined the prognos-
tic model and AJCC cancer staging system. This nomogram 
showed better efficacy in predicting OS than the prognostic 
model or AJCC staging system alone. This indicated that 
when used alone, a pure bioinformatics analysis model or 
clinical staging system could only reflect biological or clini-
cal features of a certain disease and thus might not predict 
clinical prognosis well. We herein provided a new insight for 
future bioinformatics study that the incorporation of clinico-
pathological parameters into a mathematical model might 
improve prediction outcome.

To our knowledge, this is the first prognostic model that 
was constructed by integrating the DEGs between tumors 
and adjacent liver tissues with those between patients with 
short and long survival. Compared with previously reported 
ones, the prognosis prediction performance of this model 
was comparable or even better in certain conditions, espe-
cially when there were multiple validation sets. Although 
the underlying mechanism is not clear, we proposed that 
some survival-associated DEGs might not be differentially 
expressed between tumors and adjacent liver tissues. For-
mer lines of research which focused solely on DEGs between 
tumors and adjacent liver tissues might thus neglect other 

potential prognostic factors.
There are several limitations in the present study. First, 

compared with that of the training set, AUCs of the prog-
nostic model in two validation datasets have slightly de-
creased. One possible explanation might be the difference 
of patient ethnicities and underlying etiology. Most pa-
tients in the TCGA-LIHC dataset were Asian or White and 
the major causes of HCC were hepatitis C virus infection 
and alcohol consumption, while the majority of patients in 
GSE14520 came from China and the predominant etiology 
of HCC was hepatitis B virus infection. In addition, most 
patients in the ICGC-LIRI dataset were from Japan but the 
ethnicity and etiology were unclarified. Secondly, external 
tests in other datasets or clinical cohorts are necessary to 
further verify the prognostic value of the eight-gene model. 
Thirdly, the mechanical investigation of the enrolled genes 
in the model was largely descriptive and future research is 
needed to clarify the functions of certain genes that have 
not been widely investigated in cancers, such as SULT1C2.

Conclusions

In conclusion, this study provided, for the first time, an 

Fig. 3.  Kaplan-Meier curve, risk score analysis and time-dependent ROC analysis for the eight-gene model in the TCGA-LIHC dataset. (A) Kaplan-Meier 
curve for the eight-gene model in the TCGA-LIHC dataset. (B) Risk score distribution and heatmap of the eight genes in model in the TCGA-LIHC dataset. (C) Time-
dependent ROC analysis of the eight-gene model for 1-, 3- and 5-year OS in the TCGA-LIHC dataset.
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Fig. 4.  Kaplan-Meier curve, risk score analysis and time-dependent ROC analysis for the eight-gene model in the ICGC-LIRI dataset. (A) Kaplan-Meier 
curve for the eight-gene model in the ICGC-LIRI dataset. (B) Risk score distribution and heatmap of the eight genes in model in the ICGC-LIRI dataset. (C) Time-
dependent ROC analysis of the eight-gene model for 1- and 3-year OS in the ICGC-LIRI dataset.

Table 3.  Comparison with previously reported prognostic models

Ref. Model Train-
ing set

AUC (1-, 3-, 
5-year OS)

Validation 
set one

AUC (1-, 3-, 
5-year OS)

Validation 
set two

AUC (1-, 3-, 
5-year OS)

Our model 8-gene GSE14520  
(n=203)

0.78, 0.74, 
0.75

TCGA  
(n=355)

0.69, 0.69, 0.69 ICGC  
(n=243)

0.77, 
0.71, −

Long et al. 20189 4-gene TCGA  
(n=365)

0.77, 
0.70,0.70

GSE54236  
(n=78)

0.78, 0.59, − / /

Qiao et al. 201910 8-gene TCGA  
(n=332)

−, 0.78, 0.77 GSE14520  
(n=221)

−, 0.71, 0.69 / /

Liu et al. 20196 6-gene TCGA  
(n=172)

0.83, 0.85, 
0.77

TCGA  
(n=171)

0.71, 0.59, 0.60 GSE14520  
(n=215)

0.68, 0.64, 
0.63

Yan et al. 201911 4-gene TCGA  
(n=236)

0.72, 
0.71,0.61

TCGA  
(n=118)

0.71, 0.57, 0.55 GSE76427  
(n=115)

0.63, 0.66, 
0.72

Li et al. 20205 6-gene TCGA  
(n=365)

0.76, 0.68, 
0.69

ICGC  
(n=243)

0.68, 0.7, 0.68 / /

Zhang et al. 20207 14-gene TCGA  
(n=312)

0.71, 0.74, 
0.64

GSE14520  
(n=225)

0.64, 0.59, 0.65 GSE76427  
(n=114)

0.60, 0.61, 
0.60

Liu et al. 20208 4-gene TCGA  
(n=343)

0.70, 0.71, 
0.68

GSE14520  
(n=215)

0.72, 0.70, 0.68 / /
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eight-gene model to predict OS for HCC by comprehen-
sively comparing the transcriptome profiling of tumor and 
adjacent liver tissues and tumor tissues from patients with 
different OS. The enrolled genes in the model suggested 
that metabolism played important role in the development 
and progression of HCC. Future work of these hub genes 
may facilitate our gaining a greater understanding of and 
treatment for HCC. Moreover, bioinformatics modeling, if 
combined with clinicopathological features, could produce 
improved prediction performance.
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