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Abstract

Background and Aims: The survival rate of patients with 
hepatocellular carcinoma is variable. The abnormal expres-
sion of RNA-binding proteins (RBPs) is closely related to the 
occurrence and development of malignant tumors. The pri-
mary aim of this study was to identify RBPs related to the 
prognosis of liver cancer and to construct a prognostic model 
of liver cancer. Methods: We downloaded the hepatocellular 
carcinoma gene sequencing data from The Cancer Genome 
Atlas (cancergenome.nih.gov/) database, constructed a pro-
tein-protein interaction network, and used Cytoscape to real-
ize the visualization. From among 325 abnormally expressed 
genes for RBPs, 9 (XPO5, enhancer of zeste 2 polycomb re-
pressive complex 2 subunit [EZH2], CSTF2, BRCA1, RRP12, 
MRPL54, EIF2AK4, PPARGC1A, and SEPSECS) were selected 
for construction of the prognostic model. Then, we further 
verified the results through the Gene Expression Omnibus 
(www.ncbi.nlm.nih.gov/geo/) database and in vitro experi-
ments. Results: A prognostic model was constructed, which 
determined that the survival time of patients in the high-risk 
group was significantly shorter than that of the low-risk group 
(p<0.01). Univariate and multivariate Cox regression analysis 
suggested that the risk score was an independent prognostic 
factor (p<0.01). We also constructed a nomogram based on 
the risk score, survival time, and survival status. At the same 
time, we verified the high expression and cancer-promoting 
effects of EZH2 in tumors. Conclusions: Survival, receiver 
operating characteristic curve and independent prognostic 
analyses demonstrated that we constructed a good prognos-
tic model, which might be useful for estimating the survival of 
patients with hepatocellular carcinoma.
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Introduction

Worldwide, liver cancer is the fourth leading cause of can-
cer-related deaths and has the sixth highest incidence.1 
It is estimated that 840,000 new cases of liver cancer are 
diagnosed and at least 780,000 people die of liver cancer 
every year, with China accounting for 47% of the total num-
ber of liver cancer cases as well as the related mortality.2,3 
Hepatocellular carcinoma (HCC) is the predominant type of 
primary liver cancer, accounting for approximately 90% of 
all liver cancer cases.4 Although great progress has been 
made in the diagnosis and treatment of liver cancer, the 
5-year survival rate of patients with advanced liver cancer 
is still less than 20%.5 In China, liver cancer ranks third in 
cancer-related mortality due to the large number of liver 
cancer patients, delayed diagnosis, and limited treatment 
options.6 Therefore, it is important to study the molecular 
mechanism of tumorigenesis and development, to find new 
targets of drug therapy, to identify new tumor markers, and 
to achieve an earlier diagnosis of liver cancer.

RNA-binding proteins (RBPs) are a group of proteins as-
sociated with RNA regulation and metabolism. Their main 
role is to mediate the maturation, transport, localization 
and translation of RNA, and their abnormal expression can 
cause a variety of diseases. At present, there are approxi-
mately 1,542 known human RBPs, accounting for approxi-
mately 7.5% of all protein-coding genes. It is now clear that 
RBPs are dysregulated in different types of cancer, affect-
ing the expression and function of oncoproteins and tumor 
suppressors. For example, IGF-II mRNA-binding proteins 
(IMPs) are involved in the progression of tumors and the 
establishment and maintenance of tumor cell hierarchies.7 
Therefore, studying the complex interaction network be-
tween RBPs and their cancer-related RNA targets will help 
in understanding the molecular mechanisms of RBPs in can-
cer progression, and may also enable the discovery of new 
cancer treatment targets. Although RBPs are known to be 
involved in the occurrence and development of a variety of 
tumors, we still know very little about the molecular mecha-
nism of RBPs in tumor progression.

Because there are few studies on the role of RBPs in the 
occurrence and development of liver cancer, we designed 
this study to screen-out RBPs related to the prognosis of pa-
tients. We aimed to construct a predictive model that would 
be able to provide some help to clinical work and direction 
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for future research, including of molecular mechanisms and 
the identification of molecular targets for treatment.

Methods

Clinical data and RNA sequencing data of the patients

We downloaded the RNA high-throughput sequencing data 
from The Cancer Genome Atlas (cancergenome.nih.gov/; 
TCGA) database, including 374 tumor tissue samples and 50 
normal liver tissue samples (www.cancer.gov/about-nci/or-
ganization/ccg/research/structural-genomics/tcga). We also 
downloaded the clinical data of 377 HCC patients from the 
TCGA. After excluding six patients with incomplete data, a 
total of three hundred and seventy-one patients were finally 
included in the study, with each having data on follow-up 
time, survival status, disease stage, etc. The RNA high-
throughput sequencing data included the expression data 
of 60,483 genes, and we extracted the expression levels of 
1,473 RBPs from such. As this research did not involve hu-
man participants, no research ethics review was necessary.

Identification of the differentially-expressed RBPs 
(DERs) in HCC patients

We used R software to analyze expression of the extracted 
1,473 RBPs. A total of 325 RBPs showed expression differ-
ences between the tumor tissues and normal tissues, in-
cluding 203 up-regulated and 122 down-regulated DERs. 
The threshold for the DERs was set as |log fold-change 
(FC)|>1 and false discovery rate (FDR) <0.05.

Enrichment analysis and protein-protein interaction 
(PPI) network of the DERs

We divided the DERs into an up-regulated group and a 
down-regulated group, and then performed gene ontology 
(GO) function analysis on the two groups of RBPs for three 
GO domains: molecular functions (MF), biological processes 
(BP) and cellular components (CC). Next, we performed 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis on the two groups of patients. We 
used the clusterProfiler package in R software for the GO 
function enrichment analysis and the KEGG pathway en-
richment analysis. Then, we uploaded these DERs to the 
online tool STRING (https://string-db.org) to construct the 
PPI network. We deleted the disconnected nodes, and the 
remaining RBPs were used for the next analysis. To further 
study the role of the DERs in HCC, we used Cytoscape soft-
ware to create a PPI network that incorporated the nodes 
from the STRING database. At the same time, we also used 
the MCODE tool in the Cytoscape software to create a PPI 
subnet. Then, enrichment analysis and coexpression analy-
sis were performed on the sub-network.

Screening of prognostic RBPs, construction and test-
ing of the prognostic models

We used univariate Cox regression analysis to screen out 29 
RBPs related to the patients’ outcomes, from among all of 
the DERs. The threshold of the Cox regression analysis was 
set to 0.001. All HCC patients were divided into a training 
group and a test group. Then, in the training group, a mul-
tivariate Cox regression analysis was performed to screen 

out nine RBPs. A prognostic model was constructed based 
on the relationship between the expression levels of these 
nine RBPs and the patients’ outcomes in the training group. 
The risk score of the HCC patients in the test group was cal-
culated according to the prognostic model, and the patients 
in the test group were divided into high-risk and low-risk 
groups according to the risk scores. Then, we used survival 
curves, receiver operating characteristic (ROC) curves, risk 
curves and independent prognostic analysis to test the pre-
dictive power of the prognostic model. In addition, we still 
used the data GSE76427 in the Gene Expression Omnibus 
(GEO) database to verify our model externally.

Construction of the nomogram

The coefficients obtained by the Cox regression model were 
used to construct the nomogram of overall survival. To con-
struct the nomogram, we first determined a scale axis of 
0–100 to represent the score (in order to make the ex-
pression of the RBPs correspond to the scores on the scale 
axis) and we calculated the score of each RBP. We added 
the scores of each RBP to obtain the total score. Based on 
the correspondence between the total score axis and the 
survival rate, the 1-, 2-, 3- and 5-year survival rates of the 
patients could be predicted.

Cell culture, RNA isolation and quantitative real-time 
PCR (qRT-PCR) analysis

Because the risk ratio of enhancer of zeste 2 polycomb re-
pressive complex 2 subunit (EZH2) is greater and the co-
efficient in the risk score calculation formula is greater, we 
choose EZH2 for further verification. A total of 20 HCC patient 
samples and paired non-tumor liver tissue samples were col-
lected from the patients hospitalized at the Zhongnan Hos-
pital, Wuhan University (Hubei Province, China). All patients 
provided written informed consent to the use of tissues for 
scientific research in the Department of Hepatobiliary and 
Pancreatic Surgery. All cell lines were purchased from the 
Chinese Type Culture Collection. All the cell lines were main-
tained in Dulbecco’s modified Eagle’s medium/high glucose 
(GE, USA) containing 10% fetal bovine serum (Gibco, USA). 
RNA was extracted using TRIzol reagent (TaKaRa, Japan) ac-
cording to the manufacturer instructions. cDNAs were gener-
ated by the reverse transcription synthesis kit (TaKaRa) and 
the SYBR Green PCR Kit (TaKaRa) was used for qRT-PCR anal-
ysis. The primers used for EZH2 were 5′-GAGTTGGTGAATGC-
CCTTGGT-3′ and 5′-CATCTCGGTGATCCTCCAGATC-3′.

Gene knock-down

For generation of EZH2 knock-down cells, small interfer-
ing (si)RNA transfections were performed using the siRNA 
transfection reagent. The following siRNA sequences were 
used: EZH2-siRNA, CGGCUUCCCAAUAACAGUATT, UACUGU-
UAUUGGGAAGCCGTT.

Cell proliferation, migration, invasion, apoptosis, and 
cell cycle analyses

A CCK8 Kit (Dojindo, China) was used to measure cell vi-
ability. Transwell assay was used to assess cell migration. 
Cell migration was assessed by in vitro scratch wound as-
say. A BioCoat Matrigel Invasion Chamber (BD Biosciences, 
USA) was used to assess cell invasion; the number of cells 
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migrating and invading was counted in three random areas. 
Apoptosis was assayed using the Annexin V-FITC Apoptosis 
Detection Kit (Invitrogen, USA), according to the manufac-
turer’s instructions, and the percentage of apoptotic cells 
was verified by flow cytometry (Beckman-Coulter, USA). To 
detect the cell cycle, 48 hours after transfection, the cells 
were stained with PI (propidium iodide) and assessed.

Statistical analysis

The datasets generated and analyzed during the current study 
are available in TCGA (https://cancergenome.nih.gov/) and 
GEO (www.ncbi.nlm.nih.gov/geo). Difference analysis and 
regression analysis of the data were processed in the R3.6.3 
software (https://www.r-project.org). Statistical analysis of 
clinical data was performed using SPSS v.23.0 (IBM Corp., 
USA). Variables were compared by t-test or chi-square test.

Results

DERs in HCC patients

A flowchart showing the steps of data processing and inte-
grative data analysis is provided in Figure 1A. The original 
data downloaded from TCGA included the RNA sequencing 
data of 50 normal tissues and 374 liver cancer tissue sam-
ples. The sequencing data itself comprised 60,483 sets of 
RNA expression data, including that of 1,473 RBPs. After 
data processing, it was found that 325 RBPs had expression 
differences (Fig. 1B), including 203 up-regulated and 122 
down-regulated RBPs (Fig. 1C). The results of the DERs are 
presented in the form of heat maps and volcano maps.

GO functional and KEGG pathway enrichment analysis

The GO function enrichment analysis was performed on the 
obtained up-regulated RBPs and down-regulated RBPs. The 
GO terms included BP, MF, and CC. For BP, the up-regulated 
RBPs were mainly enriched in non-coding RNA metabolic pro-
cess, RNA splicing, and non-coding RNA processing. For CC, 
the up-regulated RBPs were mainly enriched in spliceosomal 
complex, cytoplasmic ribonucleoprotein granules, and ribonu-
cleoprotein granules. For MF, the RBPs were mainly enriched 
in catalytic activity and acting on RNA (Fig. 1D). Down-regu-
lated RBPs were mainly enriched in regulation of translation, 
regulation of cellular amide metabolic processes, cytoplasmic 
ribonucleoprotein granules, ribonucleoprotein granules, and 
catalytic activity (Fig. 1E). KEGG pathway enrichment analy-
sis of up-regulated RBPs showed that they were mainly en-
riched in spliceosome, RNA transport, and mRNA surveillance 
pathways (Fig. 1F). Down-regulated RBPs were enriched in 
herpes simplex virus 1 infection, influenza A, and RNA deg-
radation (Fig. 1G). The results of the enrichment analysis are 
also displayed in the form of tables (Table 1 and Table 2). The 
results in the chart are sorted by p-values, and the top 15 
results of the GO enrichment analysis are shown.

PPI network and the coexpression network of RBPs

To study the interactions among the 325 RBPs, we used 
STRING to construct a PPI network. The connections be-
tween the molecules represent the possible interactions be-
tween two protein molecules, and the different colors of the 
lines represent different levels of evidence. After deleting 
21 disconnected RBPs, there were a total of 304 nodes and 

2,794 connections in the PPI diagram (Fig. 2A). Then, we 
used Cytoscape software to create a coexpression network 
of interactions among all nodes in the PPI. Among them, the 
block of proliferation 1 (i.e. BOP1) had the most interactive 
RBPs, and it had confirmed or potential interactions with 50 
RBPs (Fig. 2B). We applied the MCODE tool in Cytoscape to 
construct a sub-network of the coexpression network (Fig. 
2D–H), and then we selected the first five sub-networks ac-
cording to their association score to identify the first impor-
tant module, including 115 nodes and 1,295 edges (Fig. 2C).

Screening of prognosis-related RBPs and construc-
tion of a risk scoring model

A total of 305 RBPs were included in the PPI network. To 
screen-out the RBPs related to prognosis, we used univari-
ate Cox regression analysis to screen-out a total of 29 RBPs, 
and we calculated their hazard ratios (Fig. 3A). Among 
them, 19 RBPs had a hazard ratio greater than 1, which 
means they had a negative impact on patient prognosis, 
and 10 RBPs had a positive impact on the prognosis. We 
then divided the patients into a training group and a test 
group at a ratio of 7:3, and we performed multivariate Cox 
regression analysis on the expression of the selected RBPs 
of patients in the training group (Fig. 3B). Then, we built 
a prediction model based on the relationship between the 
expression of RBPs in the training group of patients and the 
patient’s survival and survival status. The formula for calcu-
lating the patient risk score was as follows:

Risk score= (–0.4520×ExpXPO5) + (0.7493×ExpEZH2) 
+ (0.3913×ExpCSTF2) + (–0.6586×ExpBRCA1) 
+ (0.4145×ExpRRP12) + (–0.3734×ExpMRPL54) 
+ (–0.4652× ExpEIF2AK4) + (–0.2380×ExpP-

PARGC1A) + (0.3293×ExpSEPSECS)
To test the effectiveness of the predictive model, we used 

the survival curve method to evaluate the prognostic model. 
In the training group, patients with high-risk scores had a 
worse prognosis than patients with low-risk scores (p<0.01; 
Fig. 3C). In the test group, patients were divided into a high-
scoring group and a low-scoring group according to the risk 
score model, and the survival rates of the two groups were 
also significantly different (p<0.01; Fig. 3D). In addition, we 
adopted the ROC test method and calculated the area under 
the ROC curve (AUC). The AUC of the training group was 
0.735 and the AUC of the test group was 0.740, indicating 
that the risk scoring model we constructed has good diag-
nostic performance (Fig. 3F, G). Patients in the GEO cohort 
were also divided into high-risk groups and low-risk groups 
based on this model. There were also significant differences 
in survival rates between the two groups (p<0.05), and the 
AUC of the GEO cohort was 0.740 (Fig. 3E, H). This shows 
that the risk scoring formula we established can accurately 
divide patients into a high-risk group with a poor prognosis 
and a low-risk group with a good prognosis.

Independent prognostic analysis of the risk score

To evaluate whether the risk score is an independent prog-
nosis-related factor, we conducted an independent prognos-
tic analysis of risk scores for patients in the training group 
and test group. The prognostic analysis used univariate and 
multivariate Cox regressions. The univariate prognostic analy-
sis of the training group showed that the clinical stage and 
risk score of the disease were independent factors affecting 
the prognosis (p<0.001; Fig. 3I). The multivariate prognos-
tic analysis showed that the risk score (p<0.001) and clinical 
stage (p<0.05) were independent factors affecting the prog-

https://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org
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Fig. 1.  Flow chart of heat map, volcano plot, GO enrichment analysis and KEGG pathway enrichment of DERs. (A) Flow chart. (B) Heat map of DERs. (C) 
Volcano plot of DERs. (D) GO enrichment analysis of up-regulated RBPs. (E) GO enrichment analysis of down-regulated RBPs. (F) KEGG pathway enrichment of up-
regulated RBPs. (G) KEGG pathway enrichment of down-regulated RBPs.
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nosis, and the risk score had a higher hazard ratio (Fig. 3J). 
In the test group of patients, both univariate and multivariate 
prognostic analysis showed that the risk score was an inde-
pendent factor affecting the prognosis (p<0.01). This showed 
that the risk scoring model we built has good predictive ability.

Validation of the predictive performance of the risk 
scoring model

The expression levels of the nine RBPs in the training group 
and the test group were significantly different between the 
high-risk group and the low-risk group (Fig. 4A, B). Fig. 

4C and D show the distribution of the patients’ risk scores. 
Fig. 4E and F show the relationship between the patient’s 
survival status, survival time, and risk score. The red dots 
represent high-risk patients, and the green dots represent 
low-risk patients. It can be seen that the higher the risk 
score, the higher the proportion of patients whose follow-up 
outcome is death and the shorter the follow-up time.

Clinical features of the high-risk group and low-risk 
group

We obtained the clinical characteristics of the two groups of 

Table 1.  GO functional enrichment analyses

ID Description GO term p q

Up-regulated RBPs

  GO:0034660 ncRNA metabolic process BP 3.17E-43 4.16E-40

  GO:0034470 ncRNA processing BP 7.52E-38 4.93E-35

  GO:0008380 RNA splicing BP 2.34E-37 1.02E-34

  GO:0140098 catalytic activity, acting on RNA MF 3.85E-29 6.17E-27

  GO:0000377 RNA splicing, via transesterification reactions 
with bulged adenosine as nucleophile

BP 2.08E-28 5.45E-26

  GO:0000398 mRNA splicing, via spliceosome BP 2.08E-28 5.45E-26

  GO:0000375 RNA splicing, via transesterification reactions BP 2.81E-28 6.14E-26

  GO:0022613 ribonucleoprotein complex biogenesis BP 4.21E-27 7.87E-25

  GO:0031123 RNA 3′-end processing BP 2.65E-22 4.34E-20

  GO:0005681 spliceosomal complex CC 2.01E-21 2.70E-19

  GO:0006399 tRNA metabolic process BP 2.53E-21 3.68E-19

  GO:0006401 RNA catabolic process BP 3.97E-21 5.21E-19

  GO:0008033 tRNA processing BP 4.46E-21 5.31E-19

  GO:0006402 mRNA catabolic process BP 3.91E-18 4.27E-16

  GO:1903311 regulation of mRNA metabolic process BP 1.97E-17 1.99E-15

Down-regulated RBPs

  GO:0006417 regulation of translation BP 3.73E-24 5.23E-21

  GO:0140098 catalytic activity, acting on RNA MF 2.76E-22 4.31E-20

  GO:0034248 regulation of cellular amide metabolic process BP 1.08E-22 7.55E-20

  GO:0003727 single-stranded RNA binding MF 8.03E-20 6.26E-18

  GO:0003725 double-stranded RNA binding MF 2.21E-18 1.15E-16

  GO:0090501 RNA phosphodiester bond hydrolysis BP 8.66E-16 4.04E-13

  GO:0004540 ribonuclease activity MF 3.98E-14 1.41E-12

  GO:0003730 mRNA 3′-UTR binding MF 4.52E-14 1.41E-12

  GO:0034660 ncRNA metabolic process BP 5.83E-15 1.79E-12

  GO:0017148 negative regulation of translation BP 6.39E-15 1.79E-12

  GO:0034249 negative regulation of cellular amide metabolic process BP 2.34E-14 5.47E-12

  GO:0051607 defense response to virus BP 5.50E-14 1.01E-11

  GO:1903311 regulation of mRNA metabolic process BP 5.75E-14 1.01E-11

  GO:0006401 RNA catabolic process BP 2.03E-13 2.98E-11

  GO:0090305 nucleic acid phosphodiester bond hydrolysis BP 2.13E-13 2.98E-11

nc, non-coding.
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patients, and performed a statistical analysis of the surgical 
methods, alpha-fetoprotein values, degree of liver cirrhosis, 
and other adjuvant treatments. The above-mentioned and 
other features of the two groups of patients found no sig-
nificant difference, indicating risk score is an independent 
predictor of prognosis (Table 3).

Nomogram construction

To better establish the relationship among RBPs’ expression, 
risk score and patient survival, we developed a nomogram. 
According to the nomogram, the expression levels of 9 RBPs 
can be converted into corresponding scores, and then the 
scores can be added to obtain the total risk score of the pa-
tient. The risk score corresponds to the estimated survival 
rate, including 1-, 2-, 3- and 5-year survival rates. According 
to the nomogram, the prognostic model can be applied in the 
clinic, and the long-term survival rate of a single patient can 
be predicted based on the expression of RBPs (Fig. 4G).

Expression of RBPs in HCC tissue

To further determine the expression of RBPs in liver can-
cer tissues for constructing this prognostic model, we used 
the immunohistochemical staining results in the database 
to show that BRCA1, CSTF2, EZH2 and XPO5 are highly ex-
pressed in liver cancer tissues. EIF2AK4 and MRPL54 are 
expressed at low levels in liver cancer tissues (Fig. 4H).

Verification of expression of EZH2 in tissues

The primers for EZH2 mRNA were designed, and the expres-
sion of 20 pairs of HCC and adjacent tissues was further 
verified by qRT-PCR. EZH2 showed a significant increase in 

liver cancer (Fig. 5A). In addition to the mRNA level, at the 
protein level, we also verified the high expression of EZH2 
in tumors by western blotting (Fig. 5D). In addition, we also 
tested the data of EZH2 expression in normal liver cell lines 
and various HCC cell lines (Fig. 5B). Among them, the Hep3B 
cell line showed the highest expression of EZH2. We chose 
the Hep3B cell line for subsequent in vitro experiments.

Effect of EZH2 on the malignant behaviors of liver 
cancer cells

After transfection with siRNA, the mRNA and protein levels of 
EZH2 decreased significantly (Fig. 5C, E). We used the scratch 
test and the Transwell assay to determine whether reducing 
EZH2 affects the invasion and migration of HCC cells. Com-
pared with the control group (siRNA-control), the migration 
ability of the HCC cells at the edge of the scratch in the siRNA-
EZH2 group was significantly reduced (p<0.05; Fig. 5F). In 
addition, the number of HCC cells in the si-EZH2 group that 
passed through the Transwell chamber was decreased sig-
nificantly (p<0.05; Fig. 5G). CCK8 experiment demonstrated 
that knock-down of EZH2 reduced the proliferation ability of 
cells (Fig. 5H). However, flow cytometry did not find a signifi-
cant effect of EZH2 on cell apoptosis and cell cycle (Fig. 5I, J).

Discussion

RBPs are involved in almost all steps of RNA post-transcrip-
tion regulation, regulating RNA splicing, polyadenylation, 
stability, localization, translation, and degradation.8,9 Studies 
have shown that the abnormal expression of certain RBPs 
is related to the HCC transcriptome and tumorigenicity and 
is related to the poor prognosis of liver cancer patients.10,11 
However, due to the large number of RBPs, their diverse func-
tions and complex mechanisms, there are still many RBPs 

Table 2.  KEGG enrichment analysis

ID Description p q

Up-regulated RBPs

  hsa03040 spliceosome 1.24E-13 4.85E-12

  hsa03015 mRNA surveillance pathway 3.33E-13 6.49E-12

  hsa03013 RNA transport 2.86E-12 3.71E-11

  hsa03018 RNA degradation 1.08E-07 1.05E-06

  hsa03008 ribosome biogenesis in eukaryotes 2.18E-06 1.70E-05

  hsa03010 ribosome 5.08E-06 3.30E-05

  hsa03440 homologous recombination 0.008791 0.048915

Down-regulated RBPs

  hsa03018 RNA degradation 1.62E-05 0.000718

  hsa03008 ribosome biogenesis in eukaryotes 0.000117 0.002460

  hsa05164 influenza A 0.000167 0.002460

  hsa05160 hepatitis C 0.000703 0.007773

  hsa04622 RIG-I-like receptor signaling pathway 0.001372 0.012129

  hsa05162 measles 0.002696 0.019863

  hsa03015 mRNA surveillance pathway 0.003590 0.022672

  hsa05168 herpes simplex virus 1 infection 0.006320 0.034924

  hsa03013 RNA transport 0.008050 0.039545
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Fig. 2.  Interaction network of DERs. (A) PPI network. (B) Network visualized using Cytoscape. (C) Network of important modules. (D-H) Important subnetworks. The 
light blue and purple lines, respectively, indicate known interactions from curated databases and experimentally determinations. Green, red and dark blue represent predicted 
interactions, including gene neighborhood, gene fusions and gene co-occurrences in Fig. 2A. Red circles: up-regulated RBPs; Green circles: down-regulated RBPs in Fig. 2B-H.
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Fig. 3.  Results of the Cox regression analysis, survival and ROC curves. (A) Univariate Cox regression analysis of DERs. (B) Multivariate Cox regression of DERs. 
(C) Survival curve of the training group. (D) Survival curve of the test group. (E) Survival curve of the GEO group. (F) ROC curve of the training group. (G) ROC curve 
of the test group. (H) ROC curve of the GEO group. (I) Univariate Cox regression analysis in the training group. (J) Univariate Cox regression analysis in the test group. 
(K) Multivariate Cox regression analysis in the training group. (L) Multivariate Cox regression analysis in the test group. Red and blue areas: 95% confidence interval.



Journal of Clinical and Translational Hepatology 2021 vol. 9  |  635–646 643

Zhang H. et al: RNA binding protein-associated model

whose mechanism of action has not been studied in depth.
To promote in-depth research of RBPs in HCC, we de-

signed this study to screen-out the key RBPs that play a role 
in HCC. At the same time, we also developed a prognostic 
model of HCC patients based on the expression of RBPs.

To further study the interactions among the RBPs, we 
created a PPI network based on previous research, co-ex-
pression relationships, bioinformatics predictions, and gene-
adjacent relationships. To study the relationships among the 
RBPs more intuitively, Cytoscape software was used to real-
ize the visualization of the PPI network. In the graph creat-
ed, we can see that some RBPs have a correlation with many 
RBPs, so we think these RBPs should have more biological 
functions and greater research value. In the network, BOP1 
interacts with 50 RBPs. According to the results of enrich-
ment analysis, it can be inferred that the research directions 
of RBPs mainly include ribonucleoprotein complex biogene-
sis, RNA splicing, non-coding RNA metabolic process, mRNA 
surveillance pathway, RNA transport, and others.

There are many studies on the mechanism of EZH2 in liver 
cancer. EZH2 is related to the prognosis of patients and can 
promote HCC progression by regulating the miR-22/galec-
tin-9 axis or the expression of PD-L1 in hepatocellular carci-
noma.12 PPARGC1A can interact with MiR-93-5p to promote 
the proliferation of liver cancer cells, and it can also interact 
with MiR-30b-5p to regulate the lipid metabolism of liver can-
cer cells.13,14 In addition, other mechanisms of PPARGC1A 
are also worthy of further study. There are few studies on 
EIF2AK4 and MRPL54 in HCC, but because these two RBPs 
are related to the prognosis of liver cancer in the results of 
the univariate and multivariate Cox regression analyses, 

they have great research value. EIF2AK4 and MRPL54 can be 
studied in terms of binding to RNA to affect the metabolism 
of RNA or to affect the variable shearing of RNA.

The nomogram makes the prognostic model used to pre-
dict the survival rate of patients at 1, 2, 3, and 5 years more 
intuitive and more convenient for clinical application. The cost 
of obtaining the expression level of nine RBPs is relatively low, 
and the survival rate calculated based on their expression level 
can help with clinical decision-making and selecting treatment 
options. For example, studies have shown that transarterial 
chemoembolization therapy for patients with poorly differenti-
ated liver cancer and venous tumor thrombi after liver cancer 
resection can help prolong the survival of patients. However, 
for patients with early liver cancer and moderately differenti-
ated liver cancer, whether to give interventional therapy is still 
controversial. According to our research, the treatment plan 
can be determined based on the risk score. If the risk score 
is high, it indicates a poor prognosis. It is thus recommended 
to give postoperative interventional chemotherapy, targeted 
therapy, and other treatment options.

In addition to the above-mentioned advantages, there 
are some shortcomings of this study. First, due to the need 
to construct the formula, not all RBPs included in the for-
mula are prognosis-related RBPs in the multivariate Cox re-
gression analysis, and some of the prognosis-related RBPs 
were not included in the prediction model. Second, in this 
study, the interaction and coexpression relationships among 
the RBPs were analyzed by an interaction network, but 
there is a lack of further research on the functions of these 
RBPs. In future research, the interactions among RBPs and 
mRNA or non-coding RNA need to be further studied, which 

Fig. 4.  Heat map and distribution of risk scores and survival status: nomogram and immunohistochemistry results. (A) Heat map of RBPs in the training 
group. (B) Heat map of RBPs in the test group. (C) Distribution of risk scores in the training group. (D) Distribution of risk scores in the test group. (E) Distribution 
of survival status of patients in the training group. (F) Distribution of survival status of patients in the test group. (G) Nomogram for predicting 1-, 2-, 3- and 5-year 
overall survival of patients with HCC. (H) Immunohistochemistry results.
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can guide the functional research of these RBPs more effec-
tively. Third, all data used in this research originated from 

public databases. In future studies, it will be more credible 
to collect single-center or multi-center clinical samples to 

Table 3.  Clinical features of the high-risk group and low-risk group

Feature Variables High-risk group Low-risk group t/χ2 p

Sex

Male 135 124 0.040 0.442

Female 53 58

Stage

i 76 95 -0.052 0.321

ii 50 35

iii 50 35

iv 1 4

Unknown 11 13

AFP 11,005.88±40,623.11 16,927.47±172,443.99 -0.391 0.696

Fibrosis

None 22 32 -0.074 0.155

Portal fibrosis 18 13

Fibrous septa 12 16

Nodular formation 5 4

Established cirrhosis 33 36

Unknown 98 81

Hepatitis

HBV 94 89 -0.031 0.550

HCV 14 18

HBV+HCV 34 44

No hepatitis 46 31

Radiation

Without 115 124 -0.074 0.157

With 2 2

Unknown 71 56

Surgical method

Lobectomy 77 64 0.042 0.421

Single segmentectomy 42 45

Multiple segmentectomy 43 44

Extended Lobectomy 10 15

Other 16 14

Ablation

Without 114 118 3.696 0.158

With 4 9

Unknown 70 55

Vascular invasion

Without 109 110 2.079 0.354

With 50 53

Unknown 29 19

AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCV, hepatitis C virus.
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Fig. 5.  Expression of EZH2 and its cancer-promoting effect. (A and D) EZH2 in tumor and paracarcinoma tissue for HCC patients. (B) EZH2 in different cell lines. (C 
and E) Regulatory effect of si-EZH2 transfection on the level of EZH2 in HCC cell lines. (F-H) Knock-down of EZH2 significantly inhibited invasion (F and G) and migration (H) 
of HCC cells. (H) Effect of EZH2 silencing on viability of HCC cell lines. (I) Knock-down of EZH2 had no effect on apoptosis of HCC cells. (J) Effects of EZH2 on the cell cycle.
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test the predictive performance of the predictive model.
In short, we screened-out RBPs that are abnormally ex-

pressed in liver cancer and performed enrichment analysis 
and constructed a coexpression network. Some RBPs that 
play a role in the progression of liver cancer were identified, 
and some RBPs that need further research were highlighted. 
A prognostic model of liver cancer constructed based on the 
abnormal expression of RBPs has not been reported before. 
Our analysis results can provide certain guidance for study-
ing the roles of RBPs in liver cancer. However, its actual 
predictive performance still needs to be verified with large 
clinical samples in the future. The constructed prediction 
model can be applied to clinical prognostication, and can 
also provide guidance for clinical work, drug treatment tar-
get selection and molecular marker research of liver cancer.
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