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Abstract

Despite the advances in therapy, hepatitis B virus (HBV) and 
hepatitis C virus (HCV) still represent a significant global 
health burden, both as major causes of cirrhosis, hepatocel-
lular carcinoma, and death worldwide. HBV is capable of incor-
porating its covalently closed circular DNA into the host cell’s 
hepatocyte genome, making it rather difficult to eradicate 
its chronic stage. Successful viral clearance depends on the 
complex interactions between the virus and host’s innate and 
adaptive immune response. One encouraging fact on hepatitis 
B is the development and effective distribution of the HBV 
vaccine. This has significantly reduced the spread of this virus. 
HCV is a RNA virus with high mutagenic capacity, thus ena-
bling it to evade the immune system and have a high rate of 
chronic progression. High levels of HCV heterogeneity and its 
mutagenic capacity have made it difficult to create an effec-
tive vaccine. The recent advent of direct acting antivirals has 
ushered in a new era in hepatitis C therapy. Sustained virolog-
ic response is achieved with DAAs in 85–99% of cases. How-
ever, this still leads to a large population of treatment failures, 
so further advances in therapy are still needed. This article 
reviews the immunopathogenesis of HBV and HCV, their prop-
erties contributing to host immune system avoidance, chronic 
disease progression, vaccine efficacy and limitations, as well 
as treatment options and common pitfalls of said therapy.
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Introduction

Hepatitis B virus (HBV) and hepatitis C virus (HCV) infec-
tions remain major global health issues. Although the two 
viruses directly infect the liver, they have very different 
courses. Worldwide, there are an estimated more than 250 
million HBV carriers, of whom roughly 600,000 die annu-
ally from HBV-related liver disease.1,2 Acute HBV infection 
in adults is normally self-limited and subclinical, resulting 
in chronic infection in about 5%, as compared to neonatal 
HBV infection, where the acute infection results in chronic 
infection in 90% of cases. As a DNA virus, it is capable of in-
corporating its covalently closed circular DNA (cccDNA) into 
the host cell’s genome, making it rather difficult to eradicate 
once the infection progresses to the chronic stage.

HCV was first identified in 1989 as a major cause of non 
A or B viral hepatitis.3,4 Approximately 100 million people 
around the world have serologic evidence of HCV exposure 
and 71 million have chronic hepatitis C infection, according 
to a 2015 World Health Organization study.5 It is estimated 
that 60–80% of patients with acute HCV infection will de-
velop chronic infection, with about 20% of these chroni-
cally-infected HCV patients developing cirrhosis over a 25 
year period. Those with cirrhosis have a yearly incidence of 
HCC of about 4–5%.6,7 HCV is an inconstant RNA virus with 
high mutagenic capacity, and this leads to frequent genome 
mutations that enable it to evade the immune system and 
thereby have a high rate of chronic progression.8 Further-
more, due to this high level of HCV heterogeneity, it has 
been difficult to create an effective vaccine.

Understanding the immunopathogenesis of HBV and HCV 
is essential in determining disease progression, chronicity, 
and treatment. The purpose of this article was to review the 
factors associated with HBV and HCV immunopathogenesis, 
disease progression, and pitfalls of current treatment op-
tions (Table 1).

Hepatitis B

Background

HBV is an enveloped DNA virus from the Hepadnaviridae 
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family. The virus particle consists of an exterior envelope 
surrounding a viral capsid containing relaxed circular DNA 
(rcDNA). When the virus infects hepatocytes, it leaves a 
stable cccDNA template within the cell’s nucleus. This pro-
vides a stable, long-lasting template for viral replication 
and accounts for HBV’s viral persistence. HBV hepatocyte 

infection can be divided into the following steps: cell entry, 
capsid uncoating, DNA repair and transcription, RNA pack-
aging, reverse transcription, enveloping, and virus secretion 
(Fig. 1).

Viral entry into the hepatocyte is mediated by hepato-
cyte-binding specific envelope proteins. The HBV viral sur-

Fig. 1.  Hepatitis B viral life cycle. 

Table 1.  HBV and HCV immunopathogeneses

Hepatitis B Hepatitis C

Virus structure rcDNA ssRNA

Receptor entry Hepatocyte-specific NTCP receptor: 
Bile acid uptake from portal blood

Multi-step entry mechanism: LDL-R, SR-
BI, CD-81, CLDN1, OCLN, NPC1L

Chronic progression Adult infection: Clearance: 95%, 
Chronic progression: 5%
Neonatal vertical transmission: Clearance: 
10%, Chronic progression: 90%

All patients: Clearance: 60–80%, 
Chronic progression: 20–40%

Mechanisms of 
immune evasion

CD4+ cell inhibiting factors: IL-10, TNF-B
CD8+ cell inhibiting factors: 
PD-1, CD244, CTLA-4

CD4+ cell inhibiting factors (including Tregs): 
IL-10, TNF-B, Overall Reduced CD4+ response
CD8+ cell escape mutations: PD-1, CTLA-4

Approved therapies Interferon therapy: Standard 
INF-α, Pegylated-IFN-α
NAs
Treatment initiation decision: Presence 
of cirrhosis, ALT level, HBV DNA level

Interferon therapy: Pegylated-IFN-α + ribavirin
DAAs
Treatment selection varies by: Genotype, 
presence of cirrhosis, treatment history, 
human immunodeficiency virus co-
infection, renal impairment

Goals of therapy Attain disease suppression: Suppression 
of HBV DNA, Loss of HBeAg, Normalization 
of ALT, Decrease necroinflammatory 
activity, Decrease in fibrosis

Eradicate HCV RNA – attain SVR: Undetectable 
RNA level 12 wk after completion of therapy

Vaccines Approved and effective vaccines: Plasma-
derived vaccination, HBV three-series vaccine

No available effective vaccines
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face contains three proteins: L, M, and S. The virus binds 
and uses the hepatocyte-specific sodium taurocholate 
cotransport polypeptide (NTCP) receptor, which is involved 
in bile acid uptake from portal blood flow for hepatocyte 
cell entry. In a seminal article by Yan et al.,9,10 (2012), the 
pre-S1 domain of the HBV envelope L protein was described 
to bind to the hepatocyte-specific NTCP receptor, leading 
to cell binding and entry. The antigenic loop of HBV surface 
protein S between regions I and II interact with hepatocyte 
heparin sulfate proteoglycans and aid in HBV-NTCP receptor 
interaction and HBV infectivity (Fig. 2).11

Following binding and entry into the hepatocyte, the vi-
ral nucleocapsid containing rcDNA is released into the cy-
toplasm and transported to the cell’s nucleus, where the 
rcDNA is delivered. In the nucleus, the rcDNA is “repaired” 
by the host cell’s DNA repair mechanisms, closing or de-
relaxing the rcDNA to form cccDNA. This cccDNA remains 
permanently in the hepatocyte’s nucleus and acts as a tem-
plate for viral RNA transcription. The RNA transcripts are 
transported into the hepatocytes cytoplasm, where HBV re-
verse transcriptase uses the RNA as templates to produce 
viral rcDNA. The rcDNA is then either repackaged and en-
veloped for cellular export or recycled back to the nucleus, 
amplifying cccDNA concentration.12,13

Acute hepatitis b infection

Acute hepatitis B (AHB) infection occurs by the exchange of 
bodily fluids such as blood, semen, or vaginal fluid. About 
70% of adults who are acutely infected have a subclinical 
and anicteric phase, while the other 30% develop clinically 
significant symptoms and icteric hepatitis. Studies in chim-
panzees by Wieland et al.,14 (2004) and transgenic mice 
studies by Baron et al.,15 (2002) have demonstrated the im-
mune response during HBV infection. In an acute infection, 

HBV has a prolonged incubation period of 45–180 days. The 
initial immune response is mediated by the innate immune 
system. Typically, the innate immune response results in 
about a 90% reduction in serum HBV DNA. In the chim-
panzee and other model systems, it has been shown that 
natural killer (NK) cells and natural killer T (NKT) cells play 
an important role in the early viral control of acute HBV 
infection through interferon-gamma (IFN-γ) and tumor ne-
crosis factor-alpha (TNF-α) secretion. A surge of IFN-γ me-
diated by NK cells, NKT cells, and T cells has been found to 
coincide with a reduction in serum HBV DNA.14 Subsequent 
ex vivo studies have shown that IFN-γ and TNF-α stimula-
tion could destabilize cccDNA via activation of APOBEC3A 
and APOBEC3B.16 These studies also suggested that the in-
nate immune response is important for rapid viral clearance 
during AHB infection, although they cannot clear the virus 
alone.

The adaptive immune response during an acute infection 
function is crucial in three ways: 1) inhibition of HBV at-
tachment and entry, 2) eradication of infected hepatocytes, 
and 3) conference of viral immunity. B cell response and 
antibody production is focused on the various HBV proteins, 
including core protein, surface protein, e-antigen, and poly-
merase. The antibodies specific for the envelope (hepati-
tis B surface antibody, known as anti-HBs or HBsAb) and 
nucleocapsid antigen (hepatitis B core antibody, known as 
anti-HBc or HBcAb) are both clinically important and use-
ful to distinguish between different acute phases of HBV 
infection.17 The discovery of the NTCP and pre-S1on pro-
tein L and the antigenic loop on protein S contributing to 
hepatocyte infection has led to the understanding of how 
anti-HBs leads to disease resolution and virus control. An-
tibodies against these entry antigens effectively block HBV 
infection, contributing to disease resolution and long-term 
immunity.18,19

HBV-specific T lymphocytes are responsible for viral 

Fig. 2.  Hepatitis B DNA integration. 1) HBV pre-S1 domain of envelope L protein binds to the hepatocyte-specific NTCP receptor (involved in bile acid uptake from 
portal blood flow), leading to cell entry.9,10 The antigenic loop of HBV surface protein S between regions I and II interact with hepatocyte heparin sulfate proteoglycans 
and aid in HBV-NTCP receptor interaction.11 2) The viral nucleocapsid containing rcDNA is transported to the nucleus where it is “repaired” by the host cell’s DNA repair 
mechanisms closing or “derelaxing” the rcDNA to form cccDNA. The cccDNA remains permanently in the hepatocyte’s nucleus and acts as a template for viral mRNA and 
pgRNA.12,13 3) Viral mRNA and pgRNA are transported to the cytoplasm. Here, mRNA undergoes translation by host ribosomes to form viral proteins. The viral proteins 
and pgRNA are then assembled and encapsulated. pgRNA undergoes reverse transcription by newly transcribed HBV reverse transcriptase, producing a (−)DNA interme-
diate. pgRNA is then degraded and HBV reverse transcriptase completes transcription, producing an rcDNA containing nucleocapsid. 4) rcDNA containing nucleocapsids 
can either a) be enveloped and secreted as virions or b) cycle back to the nucleus to replenish the cccDNA pool.117 5) Transcription of pgRNA by HBV reverse transcriptase 
in a 3′ to 5′ direction resulting in a (−)DNA. pgRNA is then partially hydrolyzed by HBV reverse transcriptase, leaving an 18 nucleotide RNA primer for synthesis of (+)
DNA strand. In ∼90% of nucleocapsids, the RNA primer translocates to DR2 resulting in rcDNA as HBV reverse transcriptase synthesizes the (+)DNA resulting in an 
rcDNA containing nucleocapsid. In ∼10% of pgRNA containing nucleocapsids, priming for reverse transcription occurs at the DR1 region (instead of DR2 region) of the 
(−)DNA template with resulting in dslDNA. 6) Viral dslDNA can then be transported to the nucleus and can incorporate into host DNA at double-strand DNA breaks.27
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clearance as well as halting liver inflammation. HBV spe-
cific CD8+ T cells are found in the liver during acute HBV 
infection and cause lysis of HBV-infected hepatocytes. This 
is thought to be the mechanism of clearing cccDNA-con-
taining hepatocytes and effectively eliminating HBV infec-
tion.20 CD8+ T cells have also been shown to release INF-γ 
and TNF-α during acute HBV infection, stimulating the in-
nate immune response, a key mechanism in serum HBV 
DNA clearance.21 T cell response is modulated during an 
acute infection by both inhibitory and activating regulatory 
mechanisms, including expression of PD-1, IL-10, and CD4 
T regulatory cells (Tregs).22 Higher expression of T cell in-
hibitory mechanisms (i.e. PD-1, CD244, and CTLA-4) are 
seen in patients who develop chronic hepatitis B (CHB), in-
dicating that inhibition of the T cell response may contribute 
to development of CHB.23–25

CHB

CHB is characterized by both persistent liver inflammation 
and HBV infection. Liver inflammation leading to fibrosis and 
cirrhosis occurs due to chronic inflammation as the immune 
system destroys the cccDNA-containing hepatocytes but is 
unable to clear the HBV infection. Clinically, this is identi-
fied by the presence of hepatitis B surface antigen (HBsAg), 
elevated HBV DNA, with elevated alanine aminotransferase 
(ALT). CHB can be further subdivided into two types: HBV e-
antigen (HBeAg)-positive and HBeAg-negative. HBeAg is an 
immunologically distinct soluble antigen, located between 
the viral nucleocapsid and envelope processed from the 
pre-core protein. Loss of HBeAg is typically associated with 
remission of liver disease; however, in a subset of HBeAg-
negative patients, viral reactivation can occur. The phases 
of HBV infection are detailed below.

The course of HBV infection can be divided into four 
phases that are determined by the host-virus immune re-
sponse. The first phase is the immune tolerance phase, 
characterized by active replication of HBV without substan-
tial hepatic inflammation but with HBeAg positivity and 
normal ALT level. HBeAg accumulates in the serum as an 
immunologically distinct soluble antigen and is used as a 
marker of active viral replication. The function of HBeAg is 
not clearly understood and is dispensable for replication, as 
mutant viruses without HBeAg exist and are both infectious 
and pathogenic. The second phase is the immune clearance 
phase, characterized by elevated ALT levels and decreased 
HBV DNA load. The third phase is the inactive carrier state, 
known as the immune control phase, defined by low HBV 
replication in which HBeAg positive patients lose HBeAg and 
gain antibodies to HBeAg (HBeAb). This phase is character-
ized by disease remission. The fourth phase is viral relapse, 
known as the immune escape phase, and is associated with 
a relatively high rate of liver inflammation, fibrosis, hepa-
tocellular carcinoma (HCC) development, and mortality. In 
this phase, patients who were inactive carriers develop in-
creased viral replication of HBeAg-negative HBV and hepatic 
inflammation with elevated ALT. This phase transition may 
occur in 20–30% of patients in the inactive carrier phase. 
HBeAg-negative CHB is the main form of CHB worldwide 
and is associated with defective T cell function.26 It remains 
unclear what triggers the progression through the various 
phases of infection or the mechanism of defective T cell 
function during the immune escape.

Dysregulation of T cell immune response has been asso-
ciated with progression to CHB. CD4+ helper T cells perform 
antiviral functions and produce a variety of cytokines crucial 
for viral clearance and progression to fibrosis, specifically 
the ratio between Tregs and Th17 T-helper cell subtypes. 
These two subtypes remain antagonistic to each other, 

where Th17 cells mediate inflammatory response leading 
to liver damage and fibrosis while Tregs mediate immune 
tolerance and contribute to the chronicity of infection. Nan 
et al.,27 (2012) found elevated levels of both Tregs and Th17 
cells in peripheral blood in patients with HBV infection; how-
ever, Th17 cells were significantly higher in patients with 
AHB compared to patients with CHB, who showed a higher 
Treg/Th17 ratio. These findings suggest Treg/Th17 imbal-
ance is closely associated with progression of CHB. Further 
studies have shown higher interleukin (IL)-35, which stimu-
lates Treg production, in CHB patients, contributing to the 
dysregulation of the Treg/Th17 ratio and that higher Treg/
Th17 ratios are closely associated with cirrhosis.28,29 CD4+ 
helper T cells play an important role in stimulating and 
maintaining CD8+ T cell response, and insufficient CD4+ 
helper T cell response is strongly associated with impair-
ment of CD8+ T cell function and viral persistence.

Sterilizing cure is defined as the eradication of intrahepat-
ic HBV DNA (intranuclear cccDNA or integrated HBV DNA), 
loss of HBsAg, and undetectable serum HBV DNA. This was 
the goal of interferon (IFN)-based therapies. Once viral DNA 
is incorporated into the host genome or cccDNA in the host 
nucleus, it is a challenge to remove it and may require im-
mune modulation to destroy the infected hepatocyte due 
to the dysregulation of T cell immune response. Luneman 
et al.,30 (2014) discovered that CHB patients paradoxically 
produce CD56bright NK cells that inhibit cytokine produc-
tion and blunt the cytolytic activity of CD8+ T-cells. Studies 
have shown that interferon-alpha (IFN-α) treatment induces 
normal CD56bright NK cell activity, thereby increasing IFN-γ 
expression and cytotoxic function of CD8+ T cells with an 
associated decline viral load.31,32 In a study by Wursthorn 
et al.,33 (2006) IFN therapy can decrease intrahepatic HBV 
DNA in most patients and achieve undetectable levels on 
about 50% of patients based on real-time polymerase chain 
reaction (PCR) of post-treatment liver biopsies. Although 
IFN-α therapy may lead to seroconversion and viral clear-
ance, there is a poor response rate, with about a 30% HBeAg 
seroconversion and 3% HBsAg seroconversion.26 Due to the 
side effect profile, and the mediocre sterilizing cure rate, 
IFN-based therapies have fallen out of use. Functional cure, 
defined by seroclearance of HBsAg with persistence of HBV 
DNA only in the liver, is associated with improved clinical 
outcomes and is the current therapeutic target. Functional 
cure is the goal of nucleus(t)ide analogues (NAs) and is 
achieved by inhibiting viral replication. Due to the persis-
tence of cccDNA in hepatocytes, NAs must be administered 
long term, if not indefinitely. However, some studies have 
shown that NA treatment improves CD8+ T cell cytotoxic 
function and occasionally clearance of HBV DNA-containing 
hepatocytes is achieved.34,35 In a subset of patients, cure 
can occur after prolonged NA treatment.

HBV vaccines and limitations

HBV vaccination has been an effective measure to prevent 
HBV infection. Plasma-derived vaccinations were first de-
veloped then replaced by recombinant HBV vaccines in the 
1980’s, both with similar efficacy.36 These vaccines stimu-
late anti-HBs antibodies in noninfected individuals, with a 
95% effective rate of seroconversion. The reason for 5% 
non-response remains unclear; however, there are certain 
populations affected, including those with chronic disease, 
certain genetic mutations, and those on immunomodula-
tory medications at higher risk for non-response to vaccina-
tion.37 Chronic diseases include old age (>60 years-old), 
human immunodeficiency virus-coinfection, and chronic 
kidney disease. Genetic mutations associated with non-re-
sponse include homozygous mutations for human leukocyte 
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antigen (HLA) DRB1*0301, HLA-B8, SC01, DR-3, HLAB44, 
FC-31, and DR-7.38,39 Methods that induce seroconversion 
include administering a 4th dose of vaccine or a repeat ad-
ministration of the three-series vaccine at a higher dose. 
Other vaccine methods currently under investigation in-
clude intradermal administration of the vaccine, the use of 
adjuvants (including 3-deacylatedmonophosphoryl lipid A), 
use of triple S antigen recombinants, and a vaccine with the 
combination HBsAg and HBcAg.37

The implementation of a rigorous vaccination program 
worldwide has led to a decrease in incidence of hepatitis B 
infection. However, the widespread use of vaccines has led 
to the emergence of certain point escape mutations leading 
to vaccination failure. This phenomenon has been shown 
to cause hepatitis B infection in previously vaccinated pa-
tients. A prospective Chinese study showed 6/176 adults to 
be HBV DNA-positive by PCR at 1 year after receiving the 
HBV vaccine. Four out of these six cases had known HBV 
escape mutations.40 Despite awareness of this emerging is-
sue, there is no consensus currently on the need for vaccine 
redevelopment or need for therapy in individuals infected 
with these mutants.41

Experimental treatments in the pipeline

Currently, there are many classes of medications with vari-
ous targets under investigation for hepatitis B therapy. One 
class under investigation are entry inhibitors targeting NTCP 
and therefore protecting against de novo infection of hepat-
ocytes.42 Myrcludex-B has been shown safe and effective in 
HBV/hepatitis D virus coinfection and is in phase II trials for 
the treatment of chronic HBV.43 Another class undergoing 
active investigation includes small interfering RNAs, which 
target viral RNA and lead to their degradation preventing 
translation of viral proteins crucial for viral capsid formation 
and cccDNA formation.44 Multiple small interfering RNA can-
didates are currently in phase I/II trials.45 Capsid inhibitors 
are another class of drugs currently under investigation. 
The integrity of viral capsids, the protein surrounding the vi-
ral genome, are physically altered, causing both disruption 
of capsid integrity and preventing hepatocyte entry, thereby 
preventing cccDNA formation. This mechanism is distinct 
from entry inhibitors, as capsid inhibitors also exhibit anti-
viral properties.46 Another class of agents, HBsAg inhibitors, 
which are currently in phase II trials, work by inhibiting 
the processing of HBsAg and release from the infected cell. 
Interestingly, they also seem to trigger an antiviral immune 
response, as serum HBsAg titer falls and occasionally HB-
sAb seroconversion occurs after monotherapy use.47 This 
antiviral effect suggests that viral surface proteins in cir-
culation may contribute to impairment of the immune sys-
tem’s antiviral response.47 The role of HBsAg on antiviral 
suppression remains unclear and is an intriguing area of 
study in understanding the progression to chronic HBV and 
potential future immunomodulating therapies.

Investigational therapies using vaccines to stimulate cy-
totoxic T cell response have yielded unsatisfactory results. 
Fontaine et al.,48 (2015) performed a phase I/II trial using 
NAs alongside an HBV envelope expressing DNA vaccine. 
The trial showed no benefit in regard to risk of relapse of 
HBV treated patients, rate of virologic breakthrough, or res-
toration of anti-HBV immune response. Lok et al.,49 (2016) 
performed a phase II trial using T cell-based vaccine after 1 
year of therapy with NAs. The vaccine did not provide sig-
nificant reductions in HBsAg in virally suppressed patients 
with CHB. Currently, PD-1 inhibitors are being studied to 
explore if durable control of CHB can be achieved. Phase 1 
trials have shown that in virally suppressed HBeAg-nega-
tive patients, that nivolumab (PD-1 inhibitor) led to HBsAg 

decline in most patients and sustained HBsAg loss in one 
patient.50 Clinical trials are currently ongoing, studying vari-
ous vaccines and immunomodulatory to achieve sustained 
CHB control.51

Hepatitis C

Background

HCV was isolated in 1989 and is a member of the Flavi-
viridae family (which includes Dengue and Zika virus). HCV 
has infected nearly 3% of the world’s population. It is a 
major cause of liver disease and cancer, where about 30% 
of chronically infected individuals develop cirrhosis, and 
infected individuals are at a 17-fold increased risk of de-
veloping HCC. In the USA, HCV accounts for 50% of the 
cases of HCC.52 The virus consists of a single lipid bilayer 
envelope surrounding a viral nucleocapsid, containing mul-
tiple viral core proteins and single-stranded RNA (ssRNA) 
that encodes for a single large polyprotein transcript. The 
single transcript is further processed into three structural 
proteins (core, envelope-1, envelop-2) and seven proteins 
involved in viral replication. In chronic HCV infection, the 
actions of the virus along with host immune factors cause 
dysregulation of the immune system, leading to failure of 
the immune response to clear the HCV infection. The in-
ability of the immune system to clear the infection leads to 
persistent hepatic inflammation, itself leading to cirrhosis, 
liver failure, or the development of HCC. The virus’s high 
mutation rate due to the lack of proofreading capability by 
its RNA-dependent RNA polymerase leads to escape muta-
tions, allowing the virus to evade the immune system and 
contributes to treatment and vaccine failure.

This high mutation rate leads to a broad range of genetic 
variants categorized into seven main genotypes, each with 
multiple different subtypes. Each genotype has more than 
a 25–35% difference in their nucleotide sequence.53 Geno-
type subtypes differ in nucleotide sequence from each other 
by 15–25%.54 Further genetic variability can be found in 
each individual patient, where multiple viral quasispecies 
containing different mutations can co-exist. Prevalence of 
distribution of HCV genotypes varies geographically. Among 
all the genotypes, genotype 1 (i.e. HCV-1) is the most 
prevalent worldwide. In the USA, HCV-1a and HCV-1b sub-
types account for 60–70% of all patients. HCV-2 is the most 
prevalent in middle and west Africa, HCV-3 in east Asia and 
India, HCV-4 in Egypt and sub-Saharan Africa, HCV-5 in 
South Africa, HCV-6 in China and southwest Asia, and HCV-
7 in central Africa.53,55

HCV infection

HCV circulates in the blood, accessing basolateral hepat-
ocyte surface receptors. The HCV particle has a very low 
density that closely resembles very low density lipoprotein 
(VLDL) and low density lipoprotein (LDL) and uses apoli-
poprotein and serum lipid uptake mechanisms to enter the 
hepatocyte. HCV entry is complex and uses multiple cell en-
try factors that are spatially arranged and bind in a tempo-
rally ordered manner. Five cell surface proteins are essential 
for HCV particle binding and entry, namely CD81, scavenger 
receptor class B type I (SR-BI), claudin 1 (CLDN1), occludin 
(OCLN) and Niemann-Pick C1-like 1 cholesterol absorption 
receptor (NPC1L1). First, HCV attaches to the hepatocyte 
LDL-R via viral apolipoprotein E-like protein.56 Next, SR-BI 
surface protein binds to viral lipoproteins expressed by HCV 
surface E2 gene. SR-BI is involved in high density lipopro-
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tein (HDL) and VLDL binding and is highly expressed by 
hepatocytes, which may explain HCV hepatotropism. SR-
BI then serves to unmask virus particles and exposes the 
CD81 cell membrane protein which binds to HCV E2 surface 
protein.57 The CD81-HCV complex moves laterally across 
the cell membrane to tight junctions, where CLDN1 is lo-
cated, and activates CLDN1 mediated viral entry via clath-
rin-dependent endocytosis.58 OCLN and NPC1L1 are tight 
junction proteins that are involved with HCV entry, however 
their exact roles are unknown. Targeting NPC1L1 with anti-
bodies or its antagonist ezetimibe (already Food and Drug 
Administration-approved as a cholesterol lowering medica-
tion) has been shown to halt or delay cell entry of all seven 
HCV genotypes, providing an intriguing potential therapeu-
tic target.59

The HCV assembly and release processes is not yet fully 
understood; however, it seems to be closely related to lipid 
packaging and release.60 Once inside the cell, the virus par-
ticles are uncoated, the capsid is destroyed, and the viral 
positive sense single-stranded RNA (+ssRNA) is released 
into the cytoplasm.61 The viral RNA then takes over the 
hepatocytes ribosome on the rough endoplasmic reticulum 
to synthesize a single long polyprotein that is later proteo-
lytically processed by viral and cellular proteases into its 10 
proteins, which include 3 structural proteins (core, E1, E2) 
and 7 nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, 
NS5A, NS5B).61 Here in the cytoplasm, newly formed HCV 
RNA-dependent RNA polymerase transcribes the viral +ss-
RNA into an intermediate negative sense single stranded 
RNA (-ssRNA), which is then later transcribed into +ssRNA. 
The newly transcribed +ssRNA is then either packaged into 
new HCV virions or used for further HCV polyprotein trans-
lation by endoplasmic reticulum ribosomes. It is during this 
process, due to the high error rate and lack of proofread-
ing ability of the HCV RNA polymerase, that many muta-
tions are introduced and the many HCV quasispecies are 
formed.61 The error rate of HCV RNA-dependent RNA poly-
merase is estimated to be between one mutation per every 
103–106 nucleotides copied compared to one mutation per 
every 108–1011 nucleotides copied for DNA polymeras-
es.62–64 The virus proteins then arrange on the endoplasmic 
reticulum intracellular lipid membrane, where core proteins 
are shaped and bind to cytosolic lipid droplets (cLDs).65 The 
cLD-bound core proteins assemble into the core nucleocap-
sid via microtubules and dyneins, and +ssRNA are encap-
sulated. The HCV nucleocapsids, containing RNA and core 
proteins, then bud into the endoplasmic reticulum, where 
surface proteins are attached.

The detailed mechanism of HCV viral release is yet un-
known; however, hepatocyte exit seems to depend on 
the pathway for producing VLDLs and on the presence of 
apolipoprotein B and E. It is thought that the HCV particle 
complexes with apolipoprotein B and apolipoprotein E con-
taining VLDLs in order to exit the hepatocyte. A study by 
Huang et al.,66 (2007) showed that blocking VLDL secretion 
reduced HCV viral release from the hepatocytes in a growth 
media by 80%. Recently, another cellular pathway has been 
implicated in HCV release. The endosomal sorting complex 
required for transport (ESCRT) pathway has been implicat-
ed in HCV secretion out of the endoplasmic reticulum and 
cell. This pathway is normally used to bud vesicles out of 
the cell, and HCV may use the ESCRT system too, but little 
is known about this process.67

Innate immune response to hepatitis C infection

The innate immune response is important in HCV infection 
by both limiting viral dissemination through inducing infect-
ed hepatocyte apoptosis and stimulating the antigen specif-

ic adaptive immune response.68 During an acute HCV infec-
tion, viral RNA is detected within the hepatocyte cytoplasm. 
The presence of intracellular HCV RNA after the uncoating 
of HCV virion activates TLR3, RIG-I, and MDA5 of infected 
hepatocytes, which in turn release interferon 1 (IFN-I, a 
and b) and IFN-γ. Circulating HCV RNA is also detected by 
plasmacytoid dendritic cells (pDCs). The activated pDCs 
produce IFN-α. Both IFN-I (a and b) and IFN-γ released by 
infected hepatocytes and circulating pDCs act to directly in-
hibit HCV replication and activate NK cells.69 NK cells play a 
crucial role in the innate immune response to acute HCV in-
fection by cytolytic destruction of infected hepatocytes and 
cytokine release, which both directly inhibit HCV replication 
and stimulate the adaptive immune response. Activated 
NK cells directly induce infected hepatocyte perforin- and 
granzyme B-mediated apoptosis. The cytolytic action of NK 
cells through the perforin/granzyme mechanism causes col-
lateral damage to uninfected surrounding hepatocytes. NK 
cells also produce IFN-γ and TNF-α, which cause dendritic 
cell maturation, leading to IL-12 release which induces the 
adaptive immune response with the differentiation of CD4 
and CD8 T cells.70,71 Lastly, in vitro studies have shown that 
IFN produced by NK cells directly inhibits HCV replication.72

Adaptive immune response, its shortcomings, and 
progression to chronic hepatitis C

Generally, T cell response is the adaptive immune system’s 
main mechanism of viremia control. In HCV, specific CD8+ 
T cells destroy infected hepatocytes via HLA class I antigen 
presenting cells as well as by inducing cytokine secretion 
(TNF-α, IFN-γ).73 Helper CD4+ T cells support this function 
via IL-2 to stimulate CD8+ T cell and NK cell activation.74,75

Chronic HCV infection is defined as persistent viremia for 
more than 6 months.76 In chronic HCV, a continuous yet 
impaired activation of the adaptive immune system occurs. 
HCV has multiple mechanisms to defend against immune 
clearance, resulting in immune system evasion and chronic 
infection.

The first major mechanism of chronic infection is the loss 
of T cell function due to chronic T cell activation. Essentially, 
T cell function is inhibited and their cytotoxic capacity is 
lost. First described in persistently-infected mice with lym-
phocytic choriomeningitis virus (LCMV), high levels of per-
sistent viral antigen production results in chronic T cell acti-
vation, leading to sequential loss of T cell function.77 During 
chronic infection, HCV specific CD4+ helper T cells show 
a reduced production of IL-2, resulting in impaired CD8+ 
T cells activation.78 Additionally, HCV core antibody has 
been implicated in T cell suppression, as it binds to comple-
ment C1q inhibiting Lck/Akt activation of CD4+ and CD8+ 
T cells.79 PD-1-mediated CD8+ T cell suppression has also 
been implicated in inhibiting T cells. Studies have shown 
that isolating CD8+ T cells from chronically infected pa-
tients and exposing the cells to PD-1 blocking drugs in vitro 
can restore T cell function.80,81 Further studies have shown 
that CTLA4 (an inhibitory signal produced by Tregs) along 
with PD-1 may synergistically inhibit CD8+ T cell function.82

CD4+ T cell activity plays an important role in chronic 
HCV infection. It is widely known that a vigorous CD4+ T 
cell response during an acute HCV infection is correlated 
with viral clearance.83–85 Conversely, progression of acute 
HCV infection to chronic infection is strongly associated with 
the downfall of HCV specific CD4+ T cell response.74,83 Both 
the lack of robust CD4+ T cell response during acute infec-
tion and the decrease CD4+ T cell response after the acute 
phase of infection have both been observed and associated 
with the development of chronic progression.86 The mecha-
nism by which CD4+ T cell response dwindles during the 



Journal of Clinical and Translational Hepatology 2021 vol. 9  |  409–418 415

Saraceni C. et al: HBV and HCV immunopathogenesis

acute infection remains unclear. One mechanism proposed 
is HCV escape mutations occurring in patients with various 
HLA epitopes (including HLA-DRB1*15 epitope).86,87

Other Tregs, such as CD25+ T cells, play a role in sup-
pressing immune system activation.88–90 These cells work 
through various mechanisms to suppress the immune re-
sponse during chronic HCV infection, including CD8+ T cell 
inhibition and inhibition of cytokine release such as IL-10 
and transforming growth factor-beta (TGF-β) immunomod-
ulating cytokines.89,91,92 Tregs upregulated during chronic 
infection, decrease to the level of control individuals after 
spontaneous viral clearance and after treatment induced 
sustained virologic response (SVR).89,93 The mechanism of 
Treg upregulation occurring during HCV infection remains 
unclear; however, it has been proposed that HCV itself 
can induce Treg upregulation specifically by HCV core pro-
tein.93,94 Viral escape mutations are a major factor in the 
development of chronic HCV. HCV viral RNA is highly prone 
to mutations due to its RNA-dependent RNA polymerase 
and its lack of proofreading function. Multiple virus mutants 
can co-exist, eventually leading to the selection of CD8+ T 
cell escape variants. Up to 50–70% of patients with chronic 
HCV infections exhibit mutations at viral epitopes targeted 
by CD8+ T cells.95,96 Viral escape mutations emerge during 
the early acute infection and remain fixed in the quasispe-
cies for years, implicating themselves as a mechanism for 
immune system evasion and chronic progression.97 Howev-
er, many viral mutations have been shown to reduce fitness 
and viral replicative capacity.98,99 Thus, as a consequence of 
the viral mutant-impaired fitness, most viral escape muta-
tions will revert to wild-type long term and be the primary 
transmission agent to a new host.100 Some HLA alleles have 
been shown to be protective of the viral escape mutants 
and are associated with a decrease in chronicity. HLA-B27 
positivity is protective against chronic HCV progression; 
however, escape mutations can still occur. HLA-B27–bind-
ing anchor encodes a highly conserved region on viral RNA 
polymerase, where mutations at this epitope often lead to a 
non-functional RNA polymerase.101

IFN and DAA HCV therapy

IFN remains an important immunomodulator involved in 
host defense and treatment of chronic HCV. Upon viral entry 
into the host cell, HCV RNA is detected by TLR3 in the endo-
some and by RIG-I in the cytoplasm. Activation of these re-
ceptor pathways lead to interferon transcription. There are 
3 major types of interferon, Type I and III IFN are produced 
by the infected hepatocyte and Type II IFN are produced by 
NK-cells and natural killer T cells (NKT cells). IFN bind to 
specific transmembrane JAK–STAT receptor signaling path-
ways to regulate gene transcription in the nucleus induc-
ing an “antiviral state” in the cell activating both the innate 
and adaptive immune systems through various stimulatory 
pathways.102–104

Historically, pegylated-IFN and ribavirin have been the 
mainstay of treatment of chronic HCV. Today, DAAs re-
main the preferred treatment choice; however, IFN-based 
therapies remain a treatment option. With IFN use, HCV 
genotypes play an important role in treatment strategy and 
outcome. HCV genotypes 1 and 4 require longer treatment 
(48 weeks) and achieve a SVR of 50%. Meanwhile, HCV 
genotypes 2 and 3 require a shorter treatment time, with a 
higher SVR around 80%.105–107 The divergent response to 
IFN treatment has stimulated intense research, examining 
the mechanisms of non-response in an attempt to identify 
predictors of non-response that may guide therapy. The 
exact mechanism of IFN therapy failure remains unclear; 
however, it is thought that various viral mutations and host 

immune factors contribute to divergent responses to IFN. 
Various mechanisms of IFN treatment failure via inhibition 
of IFN signaling pathways have been shown.108–110 Besides 
HCV genotypes, multiple host factors have also been shown 
to affect IFN treatment response, including host sex, age, 
and race. Male sex, older age and African-American race are 
associated with inferior response to IFN therapy.111

The development of non-IFN-based therapy with DAAs 
have resulted in a much better safety profile and shorter 
duration of therapy, with a dramatic increase in virus cure 
rates, especially in difficult to treat HCV genotypes. The 
use of HCV screening in high risk populations (i.e. intrave-
nous drug users) and highly effective DAA treatments have 
also proven cost-effective in avoiding liver-related mortal-
ity and liver transplantations.112 There are three targets of 
DAA therapy, including NS3/4A protease inhibitors, NS5A 
polymerase inhibitors, NS5B polymerase inhibitors. DAA 
therapy is highly effective, with SVR rates >95% in geno-
type 1-infected patients without cirrhosis including those 
co-infected with human immunodeficiency virus, and about 
78–87% effective in decompensated cirrhotics with Child–
Turcotte–Pugh class C disease.113 Despite the high rate of 
DAA effectiveness in achieving SVR, the sheer magnitude 
of individuals infected with HCV leaves a significant cohort 
of patients who fail their initial therapy. Clinical trials of re-
treatment after failure of initial DAA therapy have shown 
high rates of SVR with DAA salvage therapy. Re-treatment 
regimens utilize strategies such as adding additional active 
agents (other DAA classes and/or ribavirin), using longer 
treatment courses, or both. Clinical trials such as POLA-
RIS-1, POLARIS-4, MAGELLAN-3 have shown a 90–98% ef-
fective re-treatment cure rate after initial DAA failure.114,115 
The mechanism of DAA resistance is thought to be due to 
various mutations seen in the different HCV genotypes and 
the DAA interaction sites that render the drugs ineffective. 
After DAA initiation, wild-type DAA-susceptible HCV species 
are eliminated, selecting for resistant variants. Some stud-
ies have shown that some of the acquired mutations in re-
sistant quasispecies may increase viral fitness, which may 
explain the rapid viral replication seen on treatment (known 
as breakthrough) or after treatment (known as relapse).116 
Genotype-specific DAA treatment regimens and the emer-
gence of drug-resistant variants remain a significant con-
cern. Genotype-specific DAA resistance is associated with 
polymorphisms present in the various HCV genotypes, such 
as the NS5A resistance-associated substitutions present in 
genotype 1, that lead to the decreased efficacy of ledipas-
vir/sofosbuvir regimens, or genotype 3 variations within 
the NS5A region, leading to reduced sensitivity to NAs. The 
emergence of genotype-specific DAA resistance has led to 
an increase in demand for pangenotypic therapies that have 
a higher barrier to drug resistance (such as sofosbuvir/
velpatasvir or glecaprevir/pibrentasvir) for treatment of all 
HCV genotypes, especially in resource-limited areas when 
genotype testing is unavailable.

Conclusions

Understanding the immune response to acute HBV infec-
tion and the immune system’s dysregulation that results in 
chronic HBV infection are important in developing preven-
tive and therapeutic strategies. Both adaptive and innate 
immune responses play major roles in the eradication of 
HBV infection with the dysregulation of T cell immune re-
sponse associated with progression to chronic HBV infec-
tion. Persistence of viral DNA in the form of cccDNA or in-
corporated into the host’s genome, along with the failure of 
the immune system to clear these infected cells, contributes 
to the persistence of HBV infection. The implementation of 
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a vaccination program worldwide has led to an overall de-
crease in incidence of HBV infection. IFN, with its poor rate 
of viral clearance and significant side effects, has fallen out 
of favor for therapy in hepatitis B. NAs are currently the 
treatment of choice and are aimed at suppressing viral rep-
lication by suppressing reverse transcriptase but are rarely 
curative. New strategies for targeting HBV production (RNA 
interference, HBsAg inhibitors, capsid inhibitors) and im-
mune response (PD-1 inhibitors, therapeutic vaccines) are 
currently under investigation as possible curative treatments.

Unlike HBV infection, effective curative regimens using 
DAAs have been developed and successfully implemented for 
HCV; however, no effective vaccinations exist yet. It is the 
sheer magnitude of infected individuals and the cost of treat-
ment that have proven to be significant barriers to disease 
elimination and persistence of HCV-related morbidity and 
mortality. It is the combination of HCV viral escape muta-
tions along with host immune factors that are major contribu-
tors in the development of chronic HCV. Although the exact 
mechanism remains unclear, persistent viral infection results 
in chronic suppressor T cell activation, which leads to a loss of 
T cell response. Ongoing research to develop a safe and effec-
tive vaccine will help decrease incidence and spread of HCV.
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