
Copyright: © 2021 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License  
(CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided.  

“This article has been published in Journal of Clinical and Translational Hepatology at https://doi.org/10.14218/JCTH.2020.00132 and can also be viewed 
 on the Journal’s website at http://www.jcthnet.com ”.

Original Article

Journal of Clinical and Translational Hepatology 2021 vol. 9(3)  |  301–314 
DOI: 10.14218/JCTH.2020.00132

Integrative Characterization of Immune-relevant Genes in 
Hepatocellular Carcinoma
Wei-Feng Hong1#, Yu-Jun Gu2#, Na Wang3#, Jie Xia3, Heng-Yu Zhou3,4, Ke Zhan5, Ming-Xiang Cheng6  
and Ying Cai3,7*

1Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guang-
dong, China; 2Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 
Guangdong, China; 3Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral 
Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 
China; 4College of Nursing, Chongqing Medical University, Chongqing, China; 5Department of Gastroenterology, The Second 
Affiliated Hospital, Chongqing Medical University, Chongqing, China; 6Department of Hepatobiliary Surgery, The Second 
Affiliated Hospital, Chongqing Medical University, Chongqing, China; 7Department of Intensive Care Medicine, The Second 
Affiliated Hospital, Chongqing Medical University, Chongqing, China

Received: 27 November 2020  |  Revised: 18 February 2021  |  Accepted: 21 February 2021  |  Published: 8 March 2021

Abstract

Background and Aims: Tumor microenvironment plays an 
essential role in cancer development and progression. Can-
cer immunotherapy has become a promising approach for 
the treatment of hepatocellular carcinoma (HCC). We aimed 
to analyze the HCC immune microenvironment character-
istics to identify immune-related genetic changes. Meth-
ods: Key immune-relevant genes (KIRGs) were obtained 
through integrating the differentially expressed genes of 
The Cancer Genome Atlas, immune genes from the Immu-
nology Database and Analysis Portal, and immune differen-
tially expressed genes determined by single-sample gene 
set enrichment analysis scores. Cox regression analysis 
was performed to mine therapeutic target genes. A regu-
latory network based on KIRGs, transcription factors, and 
immune-related long non-coding RNAs (IRLncRNAs) was 
also generated. The outcomes of risk score model were 
validated in a testing cohort and in clinical samples using 
tissue immunohistochemistry staining. Correlation analysis 

between risk score and immune checkpoint genes and im-
mune cell infiltration were investigated. Results: In total, 
we identified 21 KIRGs, including programmed cell death-1 
(PD-1) and cytotoxic T-lymphocyte associated protein 4 
(CTLA4), and found IKBKE, IL2RG, EDNRA, and IGHA1 may 
be equally important to PD-1 or CTLA4. Meanwhile, KIRGs, 
various transcription factors, and IRLncRNAs were integrat-
ed to reveal that the NRF1-AC127024.5-IKBKE axis might 
be involved in tumor immunity regulation. Furthermore, the 
immune-related risk score model was established accord-
ing to KIRGs and key IRLncRNAs, and verified more obvi-
ous discriminating power in the testing cohort. Correlation 
analysis indicated TNFSF4 , LGALS9 , KIAA1429 , IDO2, and 
CD276 were closely related to the risk score, and CD4 T 
cells, macrophages, and neutrophils were the primary im-
mune infiltration cell types. Conclusions: Our results high-
light the importance of immune genes in the HCC micro-
environment and further unravel the underlying molecular 
mechanisms in the development of HCC.
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Introduction

Liver cancer is the most common malignancy and the fourth 
leading cause of cancer-related mortality worldwide.1 Hepa-
tocellular carcinoma (HCC), a predominant type of primary 
liver cancer, has become a major public health problem. 
Although surgical resection is a potentially curative modal-
ity for a minority of early-stage HCC patients,2 as many as 
70% of these patients will experience disease recurrence 
within 5 years.3 Due to the occult onset of HCC, most ad-
vanced patients are not eligible for the timely administra-
tion of effective treatment.4 Sorafenib, as a multi-kinase 
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inhibitor, has been approved by the Food and Drug Adminis-
tration and recommended as the first-line treatment in this 
population based on the “SHARP” trial, with median overall 
survival of 6.5 months.2,5,6 Then, the “REFLECT” trial dem-
onstrated that lenvatinib was non-inferior to sorafenib for 
overall survival in untreated advanced HCC patients.7 It 
only showed some clinical benefits for secondary endpoints 
in progression-free survival, time to progression, and objec-
tive response rate. The current status of HCC recurrence 
and metastasis are not optimistic; therefore, novel and ef-
fective treatment options are desperately in need of further 
exploration to decrease recurrence rates.

Increasing evidence has shown that the tumor microen-
vironment plays an essential role in cancer development 
and progression. With improved understanding of biological 
interactions within the tumor microenvironment, immune 
system and tumor cells, cancer immunotherapy has ap-
peared to provide tremendous promise as a cancer treat-
ment modality in recent years. Typically, in the liver, large 
quantities of innate and adaptive immune cells play a critical 
role in immune surveillance to detect and eliminate patho-
gens and participate in immune response and regulation of 
host defenses.8 However, the inflammatory state, due to 
risk factors that contribute to HCC, such as chronic infection 
with hepatitis B virus or hepatitis C virus, will change the 
tumor microenvironment and facilitate evasion of immune 
surveillance, leading to tumor tolerance and promoting the 
development of HCC.8 Hence, targeted immunotherapy is 
actively researched with the goal of inhibiting aberrant on-
cogenic pathways and improving prognosis.

At present, immune checkpoint inhibitors are consid-
ered one of the immunotherapies for rapid development to 
promote immune reconstitution and restore immune cell 
function.9 Programmed cell death-1 (PD-1) and cytotoxic 
T-lymphocyte associated protein 4 (CTLA4) blockage thera-
pies have become promising approaches for the treatment 
of HCC.10–13 Unfortunately, in some studies, overall survival 
and improved recurrence-free survival did not achieve the 
pre-defined statistical significance criteria.14 It has been 
suggested that the HCC microenvironment can form a po-
tent immune tolerance system, which greatly hinders the 
efficacy of immune checkpoint therapy. Therefore, remod-
eling the immune tolerant microenvironment of HCC could 
be of great significance for HCC immunotherapy.

Given the complexity of immunotherapy and tumor het-
erogeneity, extensive genomic analysis could provide clini-
cal options, including personalized therapies for patients 
with cancer. We systematically integrated genomic profiling 
to illustrate the global portrait of the HCC immune micro-
environment characteristics to further identify the immune-
related genetic changes. In addition, immune-related mod-
els and networks were also established to shed light on the 
potential mechanism of immune therapeutic targets.

Methods

Datasets acquisition and pre-processing

Fragments per kilobase million upper quartile RNA-Seq 
gene expression profile of liver hepatocellular carcinoma 
(LIHC) were downloaded from The Cancer Genome Atlas 
(TCGA) (https://portal.gdc.cancer.gov/), including 50 nor-
mal tissue and 374 primary tumor samples.15 A list of 1,811 
immune genes (IGs), including 17 immune categories ac-
cording to different molecular function, were obtained from 
the Immunology Database and Analysis Portal (ImmPort) 
(https://www.immport.org/home)16 after eliminating re-
iterated genes. One of the major collections (C7: immu-
nologic signatures) in the molecular signatures database 

(MSigDB) of Gene Set Enrichment Analysis (GSEA) (https://
www.gsea-msigdb.org/gsea/index.jsp)17 is a collection of 
4,872 annotated gene sets that represent cell types, states, 
and perturbations within the immune system.18 The immu-
nologic gene sets and 28 immune signaling pathways were 
also collected and processed for subsequent analyses. The 
data of tumor immune infiltration in TCGA-LIHC was down-
loaded from the tumor immune estimation resource (known 
as TIMER) (https://cistrome.shinyapps.io/timer/).19

Screening immune-relevant genes (IRGs)

To evaluate the enrichment scores of every sample on 
each immune-related term in RNA-Seq data of TCGA-LIHC, 
single-sample gene set enrichment analysis (ssGSEA) was 
used to generate ssGSEA-score20 implemented in the R 
package “GSVA” and “GSEABase”. Each score was corrected 
between 0 and 1. Patients were divided into a high-immune 
score (Immunity_H) and a low-immune score (Immunity_L) 
group using unsupervised hierarchical clustering of R pack-
age “sparcl”.

Differentially expressed gene (DEG) analysis was per-
formed via the R package “Limma” based on the empiri-
cal Bayes method.21 Immune differentially expressed genes 
(IDEGs) were determined by Immunity_H to Immunity_L ra-
tio, with cutoff criteria of absolute log2 fold-change (|log(2)
FC|) >1.0 and false discovery rate <0.05. Significant DEGs 
of RNA-Seq data from TCGA-LIHC project were also identi-
fied by the same approach. Then, overlapping DEGs, IDEGs, 
and IGs were assessed and provided 77 interacting genes 
as the IRGs in the present study.

Construction of weighted gene co-expression net-
works and identification of key IRGs

Based on the expression of 77 IRGs with complete clinical 
data in tumor tissues from TCGA-LIHC project, weighted 
gene co-expression networks analysis (WGCNA) was car-
ried out to create expression modules and analyze the cor-
relation of each module with immune traits (ImmuneGroup, 
StromalScore, ImmuneScore, ESTIMATEScore, and Tumor-
Purity) using the R package WGCNA by hierarchical cluster-
ing of adjacency-based dissimilarity.22 Module eigengenes 
were defined as the first principle component of each gene 
module and regarded as representative of genes in each 
module. Gene significance was calculated to measure the 
Pearson correlation between gene expression and sample 
traits and to identify the significance of each module. We 
selected higher gene significance and defined survival-re-
lated modules according to p≤0.001 for further analysis. A 
scale-free topology fit index (scale-free R2) >0.95 was im-
plemented to verify the soft threshold power and maintain 
optimal mean connectivity. A dynamic hybrid cut method, 
using a bottom-up algorithm, was applied to identify crucial 
modules, with cut height-off of 0.25. At last, key immune-
relevant genes (KIRGs) in crucial modules were selected by 
those with module membership >0.5. General characteris-
tics of KIRGs were analyzed using GSCALite (http://bioinfo.
life.hust.edu.cn/web/GSCALite/).23

Construction of co-expression network based on 
KIRGs

To analyze the function of KIRGs, the relationship between 
transcription factors and KIRGs was explored. The transcrip-
tion factors set was extracted from the Cistrome Project 
(http://www.cistrome.org/)24 and subjected to expression 
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differential analysis by the R package “Limma”, with cut-off 
value of |logFC| >1.0 and adjusted p-value of <0.05. The 
significant correlations between the differentially expressed 
transcription factors (DETFs) and KIRGs (DETFs-KIRGs) 
were calculated by Pearson’s test, with p-value of <0.0001 
and correlation coefficient of >0.30, which was visualized 
by Cytoscape software (3.7.1) in the appropriate type of 
correlation network.

Meanwhile, considering immune-related long non-coding 
RNAs (IRLncRNAs) involved in the mRNA transcript process 
of KIRGs, the network of IRLncRNAs-KIRGs was established 
using the co-expression analysis approach as described 
above. The profile of long non-coding RNAs was taken from 
the annotation data of TCGA-LIHC. Subsequently, the net-
work of DETFs and IRLncRNAs (DETFs-IRLncRNAs) was also 
generated (correlation coefficient >0.30 and p<0.0001). Fi-
nally, the DETFs-IRLncRNA-KIRGs regulatory network was 
integrated for the pairs of the above three networks’ data.

Risk score model construction and verification

TCGA-LIHC patients were randomly divided at the ratio of 
1:1 into two cohorts (training cohort and testing cohort). 
To avoid overfitting, least absolute shrinkage and selection 
operator (Lasso) Cox regression was applied to eliminate 
genes generated from univariate Cox analysis of all genes 
of IRLncRNAs-KIRGs. Then, we performed multivariate Cox 
regression to construct a risk score model, and the perfor-
mance was evaluated in the testing cohort. Kaplan-Meier 
survival analysis and time-dependent receiver operating 
characteristic (commonly known as ROC) analysis were 
used to compare the survival states and evaluate the ac-
curacy of the risk score model.

Enrichment analysis and protein-protein interaction

To determine the function and potential regulatory path-
ways of identified genes, GSEA was explored for biological 
functions and pathways using the R package “clusterpro-
files” and “GSVA”, with adjusted p-value of <0.05 and q-
value of <0.05, as each was regarded as statistically sig-
nificant. Gene Ontology analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis were performed by the web tool “Matascape” (http://
metascape.org/).25 The search tool for the retrieval of in-
teracting genes/proteins database (commonly known as 
STRING) was utilized to assess protein-protein interactions, 
with information minimum required interaction score: me-
dium confidence (0.40) (www.string-db.org/).26

Experimental section

Paired tumor and peritumor tissues were obtained from pa-
tients diagnosed with HCC and who had undergone surgery 
at the Department of Hepatological Surgery of the Second Af-
filiated Hospital of Chongqing Medical University (Chongqing, 
China). All experiments were performed in accordance with 
the Declaration of Helsinki of the World Medical Association 
and were approved by the ethics committee of the Second 
Affiliated Hospital of Chongqing Medical University (No. 2020-
004). All participants provided written informed consent.

Tissue proteins were lysed using radio immunoprecipita-
tion assay lysis buffer (CWBIO, Beijing, China) with pro-
tease inhibitor cocktail (CWBIO). Protein concentration was 
measured with a bicinchoninic acid assay (CWBIO). The 
same amount of total proteins was subjected to SDS-PAGE, 
followed by a standard western blotting procedure with the 

primary antibodies and secondary antibodies (Supplemen-
tary Table 1), and detection using an enhanced chemilumi-
nescence system (Advansta, Menlo Park, CA, USA).

Tissue paraffin sections were prepared for immunohisto-
chemistry staining, according to standard procedures. The 
slides were visualized using 3,3′-diaminobenzidine sub-
strate kit (Abcam, Cambridge, UK) and counterstained with 
hematoxylin (Solarbio, Beijing, China). Stained slides were 
scanned by the Motic Easyscanner (Motic, Hong Kong, Chi-
na) and the images were captured with Motic DS Assistant 
Lite (Motic VM V1 Viewer 2.0).

Tissue total RNA was extracted using TRIzol reagent (In-
vitrogen, Carlsbad, CA, USA), following the manufacturer’s 
instructions. The cDNA library was constructed by reverse 
transcription using a commercial reverse-transcription kit 
(Takara, Shiga, Japan) according to the manufacturer’s pro-
tocol. The cDNA was amplified using SYBR Green Master 
Mix (Bimake, Houston, TX, USA) and normalized by GAPDH. 
Quantitative polymerase chain reaction primers (Supple-
mentary Table 2) were synthesized by Invitrogen.

Statistical analysis

All statistical analyses were performed in R version 3.6.0 
and GraphPad Prism software 8.0, and p-values <0.05 were 
considered significant. Continuous variables, such as differ-
ence analysis, were performed by t-test or Wilcoxon’s test, 
according to the normality of data distribution. Correlation 
analysis of categorical variables was carried out with the 
chi-squared test. Correlations between continuous variables 
were estimated using the Pearson correlation, while Spear-
man’s correlation was used to assess the association be-
tween non-normally distributed data.

Results

Initial screening IRGs

To screen significant immune biomarkers, we incorporated 
important databases in the initial workflow (Fig. 1A). A to-
tal of 7,667 DEGs were identified from TCGA-LIHC data-
set (Supplementary Fig. 1A, B). To understand each tumor 
sample’s immune status, the corresponding enrichment 
scores on every immune-related term were calculated 
based on the ssGSEA method. By unsupervised hierarchi-
cal clustering, patients were clustered into the Immunity_H 
group (n=170) and the Immunity_L group (n=204) (Sup-
plementary Fig. 1C). Stromal cells and immune cells were 
the non-tumor components of the immune microenviron-
ment which reflected tumor immune infiltration and tumor 
purity. The stromal scores and immune scores were calcu-
lated and combined to estimate scores in order to display 
tumor purity by the ESTIMATE algorithm (Fig. 2A; Supple-
mentary Table 3). Upon comparison with the Immunity_L 
group, stromal scores, immune scores, and ESTIMATE 
scores were significantly higher in the Immunity_H group, 
while the lower level of tumor purity represented the low 
activity of tumor cells (p<0.001) (Fig. 2B–E). Then, enrich-
ment analysis of biological functions and pathways in the 
two groups was performed using GSEA. The Immunity_H 
group was identified when the enrichment score was >0, 
and found to be mainly enriched in complement activation 
(classical pathway), humoral immune response mediated 
by circulating immunoglobulin and MHC class II protein 
complex in the aspect of biological function (Fig. 2F). Al-
lograft rejection, intestinal immune network for IgA produc-
tion, and primary immunodeficiency embodied the pathway 
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enrichment results (Fig. 2G). Next, the bubble chart showed 
the top 10 biological functions in the Immunity_H group and 
the Immunity_L group (Fig. 2H). Enrichment analysis of the 
pathway only focused on the Immunity_H group (Supple-
mentary Table 4). Meanwhile, 1,950 IDEGs were obtained 
by differential analysis for the Immunity_H and Immunity_L 
groups (Supplementary Fig. 1D, E). Finally, 77 IRGs were 
screened out by overlapping the DEGs, IDEGs, and IGs in 
this present study. Gene Ontology analysis and KEGG path-
way enrichment analysis results were statistically confirmed 
via Metascape (Supplementary Fig. 1F, G).

Identification of the modules associated with im-
mune traits by construction of WGCNA

WGCNA was applied to find important modules most associ-
ated with immune traits based on 77 IRGs. A total of seven 
modules were identified by setting soft threshold power and 
cut height-off value. IRGs in the gray module were identi-
fied as non-clustering genes (Fig. 3A, B). In the heatmap of 
module-trait relationships, the blue module (12 IRGs) and 
brown module (9 IRGs) manifested significant correlation of 
immune traits, especially by ImmuneScore (correlation co-
efficient of 0.73, p=4e−64) and StromalScore (correlation 
coefficient of 0.65, p=7e−47), respectively. Genes in these 
two modules with module membership of >0.5 were defined 
as KIRGs (Fig. 3C).

Functional analysis of the KIRGs signature

We analyzed the fundamental functional of the KIRGs (Fig. 

1B). Differential analysis of KIRGs’ expressions was per-
formed, with 11 genes (APOBEC3H, CD3D, CTLA4, CXCR3, 
EDNRA, inhibitor of nuclear factor kappa-B kinase subunit 
epsilon (IKBKE), IL2RG, LTA, LTBP2, PDCD1, and SYTL1) 
showing high expression and 9 genes (CD244, COLEC10, 
CXCL12, FOS, GDF2, IGHA1, IGHA2, MARCO, NGFR, and 
THBS1) showing low expression in tumor tissue (p<0.05) 
(Fig. 4A). Correlation analysis of 21 KIRGs showed that 
CXCR3 was highly associated with CD3D and LTA (correla-
tion coefficient of >0.80, p<0.05) (Fig. 4B). To display in-
teractive relationships among proteins of KIRGs, a protein-
protein interaction network was constructed by the STRING 
database. LTA, CTLA4, FOS, and CXCL12 had the most in-
teractive lines (n>10) in the bar graph, which totaled 60 
lines (Fig. 4C, D). High node degrees could indicate an es-
sential role in tumor immune processes.

Gene Ontology analysis and KEGG pathway enrichment 
analysis were performed using the R package “clusterpro-
files”. To demonstrate more information from the results, 
the top 20 Gene Ontology terms were enriched as a Gene 
Ontology heatmap, mainly in “leukocyte migration” and 
“humoral immune response” (Fig. 4E). We also found that 
the three terms of “response to oxygen levels”, “response 
to hypoxia” and “response to decreased oxygen levels” en-
riched from the same genes (Fig. 4E). In the KEGG circle 
map, KIRGs were enriched in some common and critical 
pathways referring to tumorigenesis and progression, such 
as “T cell receptor signaling pathway”, “Cytokine-cytokine 
receptor interaction” and “PI3K-Akt signaling pathway” and 
so on (Fig. 4F).

To further verify whether KIRGs were closely related to 
immune function, 29 terms from the ImmPort database 
served as the candidate profile and a gene set includ-
ing 21 KIRGs was found to be enriched in eight immune 

Fig. 1.  Flow chart of immune-relevant gene screening, function analysis, and mechanism analysis. (A) Screening for KIRGs incorporated from TCGA and 
ImmPort. (B) Schematic diagram for function analysis of KIRGs. (C) Flow chart for underlying mechanism analysis of KIRGs combined with transcription factors and 
LncRNAs.
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Fig. 2.  Microenvironment signatures of TCGA-LIHC cohort and enrichment analysis. (A) Heatmaps showed expression profiles for microenvironment signa-
tures of stromal scores, immune scores, ESTIMATE scores, and tumor purity with unsupervised hierarchical clustering analyses. (B–E) Stromal scores, immune scores, 
ESTIMATE scores and tumor purity in the Immunity_H group and the Immunity_L group. (***p<0.001) (F–G) Enrichment analysis of biological functions and pathways 
in the Immunity_H group (top 5). (H) Bubble chart of top 10 biological functions in the Immunity_H and Immunity_L groups. (I) Heatmap of Gene Ontology and KEGG 
enrichment analysis for IRGs via Metascape.
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terms, namely Check-point, Th1 cells, Tfh, T cell coinhibi-
tion, plasmacytoid dendritic cells, CCR, TIL, and regula-
tory T cells, based on the ssGSEA-score of the R package 
“GSVA” (Supplementary Fig. 2A–C). Next, we extracted 
all the genes of some critical immune terms from TCGA-

LIHC project and differential analysis of expression was 
implemented between the Immunity_H group and the 
Immunity_L group (Supplementary Fig. 3A–E). Besides, 
due to multiple filters, IKBKE, IL2RG, EDNRA, and IGHA1 
were screened out more significantly with p<0.2 using 

Fig. 3.  Construction of WGCNA co-expression modules and identification of modules associated with immune traits. (A) Analyses of the scale-free topol-
ogy fit index of the soft threshold power (left panel) and the mean connectivity of soft threshold power (right panel). (B) A cluster dendrogram of 77 IRGs with various 
modules constructed by hierarchical clustering of adjacency-based dissimilarity; different colors represent different modules. (C) Heatmap of relationships between 
module eigengenes and immune trait.
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univariate Cox regression and multivariate Cox regression 
of 21 KIRGs (Fig. 5A, B). We examined protein expression 
of these four markers in clinical HCC and corresponding 
peritumor tissues. Western blotting indicated that IKBKE, 
IL2RG, and EDNRA were highly expressed in most HCC 
tissue specimens, while IGHA1 had low expression in tu-
mors (Fig. 5C). Immunohistochemical assay showed IK-
BKE and IL2RG were significantly higher in representative 

HCC tissue (Fig. 5D).

Analysis of KIRGs in a web-based platform of GS-
CALite

To understand gene set mutations, we observed single nu-
cleotide variation frequency and analyzed the variant types. 

Fig. 4.  Functional analysis of the KIRGs signature. (A) Differential analysis of KIRGs expression in normal and HCC tissues. (***p<0.001, **p<0.01, *p<0.05). 
(B) Correlation analysis of 21 KIRGs. (C) A protein-protein interaction network of 21 KIRGs was constructed via STRING. (D) The number of gene connections in the 
protein-protein interaction network. (E) Gene Ontology heatmap of KIRGs. (F) KEGG circle map of KIRGs.
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Of the 21 KIRGs, the vast majority of variants occurred 
as single nucleotide polymorphisms and missense muta-

tions in the included samples (Supplementary Fig. 4A, B). 
The top 10 frequently mutated genes were GDF2, LTBP2, 

Fig. 5.  Cox regression of 21 KIRGs and construction of regulatory networks. (A) Univariate Cox regression. (B) Multivariate Cox regression. (C) Western blot 
of protein expression in HCC and paired peritumor tissues from 18 patients. (D) Immunohistochemical staining of the representative KIRGs IKBKE and IL2RG in HCC 
and paired peritumor tissues. (E) Construction of DETFs-KIRGs networks. (F) Construction of DETFs-IRLncRNAs-KIRGs regulatory networks.
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THBS1, CXCR3, EDNRA, MARCO, NGFR, CD244, FOS and 
APOBEC3H, with 91.18% alteration in at least one sam-
ple (Supplementary Fig. 4C, E). GDF2, LTBP2, and THBS1 
alterations were observed in 15% of tumors; NGFR had 
multiple alterations of missense mutation, splice site, and 
frame shift deletion (Supplementary Fig. 4E). C > T and 
C > A accounted for most of the single nucleotide muta-
tion types (Supplementary Fig. 4D). Meanwhile, we noted 
that somatic copy number alterations occurred more often 
in heterozygous copy number variations than in homozy-
gous ones (Supplementary Fig. 4F). IKBKE, COLEG10, and 
CD244 manifested mainly in the statistical processing of 
heterozygous amplifications (Supplementary Fig. 4F).

Further, differential methylation between tumor and 
paired normal tissues were found, along with that of other 
tumor types (Supplementary Fig. 4G). PDCD1, CTLA4, and 
MARCO indicated high levels of methylation in HCC tissues, 
while CXCL12 and EDNRA showed a high level in paired nor-
mal tissues. We also observed the relationships between 
methylation levels and corresponding gene expression, 
which displayed that PDCD1 methylation had a positive cor-
relation with expression, whereas IKBKE and EDNRA meth-
ylation showed negative relationships in most tumors (Sup-
plementary Fig. 4H).

We also investigated the difference of gene expression 
between pathway activity groups (activation and inhibition). 
These KIRGs were also involved in apoptosis, cell cycle, 
DNA damage response, epithelial to mesenchymal transi-
tion, and the RAS/MAPK biological process (Supplementary 
Fig. 4I). PDLD1, CTLA4, IKBKE, and IL2RG could promote 
apoptosis and activate DNA damage response and epithelial 
to mesenchymal transition (Supplementary Fig. 4J). Even-
tually, drug sensitivity analysis was performed for 21 KIRGs 
of HCC lines in the Genomics of Drug Sensitivity in Can-
cer27 and Cancer Therapeutics Response Portal28 databases 
by Spearman correlation analysis with small molecule/drug 
sensitivity (Supplementary Fig. 5 and 6).

Construction of the DFTFs-IRLncRNA-KIRGs network

Subsequently, in order to observe transcription factors in-
volved in the regulation of KIRGs, the correlations of KIRGs 
to DETFs were generated according to co-expression analy-
sis and visualized as a regulatory network (Fig. 1C). A to-
tal of 162 positive correlation pairs of DETFs-KIRGs were 
found; among these, the pairs of FOS-ERG1 (correlation 
coefficient of 0.63, p=5.2E−43), CIITA-CTLA4 (correlation 
coefficient of 0.62, p=6.3E−43) and CXCR3-CIITA (corre-
lation coefficient of 0.62, p=9.1E−43) showed very high 
correlation (Fig. 5E). Similarly, the IRLncRNAs-KIRGs net-
work and DETFs-IRLncRNAs network were also constructed. 
Eventually, combining the three networks, the DETFs-IRL-
ncRNAs-KIRGs regulatory network was built, comprised of 
103 DETFs, 175 LncRNAs, and 15 KIRGs, to elucidate un-
derlying regulatory mechanisms (Fig. 5F). Most of the pairs 
represented positive correlations within the network.

IKBKE, having a prominent role among the KIRGs, was re-
lated to numerous IRLncRNAs, most obviously AC127024.5. 
Interestingly, in the network, NRF1 was regarded as the 
most relevant transcription factor to AC127024.5 (correla-
tion coefficient of 0.63, p=4.94E-43), which indicated that 
the NRF1-AC127024.5-IKBKE axis might be involved in 
regulating many biological processes. We also explored the 
NRF1-AC127024.5-IKBKE axis for immune cell infiltration in 
TCGA-LIHC patients from the TIMER database, and found 
an involvement in the vast majority of immune cell infiltra-
tion processes, especially those related to B cells, CD4 T 
cells, neutrophils and macrophages (p<0.01) (Supplemen-
tary Fig. 7).

Furthermore, univariate and Lasso Cox regressions were 
implemented to optimize the parameters for screening risk 
genes among the KIRGs and IRLncRNAs (Fig. 6A, B). In total, 
IL2RG and eight key IRLncRNAs (LINC01871, AC145207.5, 
LINC00294, LINC01138, AL031985.3, AC083799.1, SNHG1, 
and SNHG3) were obtained by multivariate Cox regression 
in the training cohort. The risk score model was constructed 
and verified the performance in the testing cohort. Patients 
in each cohort were divided into a low risk group and a 
high risk group, according to the median risk score of the 
training cohort. Survival status, risk scores, and expression 
patterns of each patient were reflected in Fig. 6C and 6D.

Kaplan-Meier curve analysis showed that the low risk 
group had a significantly better prognosis than that of the 
high risk group in the training cohort (p=4.70E−06) and 
the testing cohort (p=4.70E−05), respectively (Fig. 6E, G). 
Time-dependent ROC curve analysis of the risk score model 
in the training and testing cohorts all determined good pre-
dictive accuracy with area under the curve values of 0.826 
and 0.724 for 1-year survival, and 0.822 and 0.736 for 
3-year survival, respectively (Fig. 6F, H). Therefore, it ap-
peared that the risk score model successfully stratified HCC 
from TCGA.

In addition, we found that the risk score model was as-
sociated with clinicopathological parameters, such as tu-
mor-stage, clinical stage, and survival state by chi-squared 
test (p<0.01) (Fig. 7A). Further analysis of univariate and 
multivariate Cox regression revealed that risk score could 
be an independent prognostic indicator for HCC patients 
(p<0.001) (Fig. 7B, C). Representative markers (IL2RG, 
SNHG1, SNHG3, and LINC01138) showed obvious high ex-
pression in HCC samples at the mRNA level (Fig. 7D). Mean-
while, the forecast performance of the risk score model was 
superior to those models based on tumor-stage, node-
stage, metastasis-stage, grade, American Joint Committee 
on Cancer stage, KIRGs and key IRLncRNAs (Supplemen-
tary Fig. 8A–G). The multiplex model seemed a dependable 
indicator for predicting the prognosis of HCC patients.

We analyzed the expression of each immune checkpoint 
gene of ImmPort for correlation with the integration of risk 
score resulting from the two cohorts. Pearman’s correlation 
indicated TNFSF4, LGALS9, KIAA1429, IDO2, and CD276 
were closely related to risk score (p<0.05), shown as a cir-
cle map (Fig. 8A). Ultimately, we investigated the measure-
ment of the integrated risk score for immune cell infiltration 
in TCGA-LIHC patients from the TIMER database and ob-
served that effects of risk score appeared to be concentrat-
ed among the CD4 T cells, macrophages, and neutrophils 
(p<0.05), while the B cells, CD8 T cells and dendritic cells 
did not show significant correlation (Fig. 8B–G).

Discussion

Rapidly emerged immunotherapy has demonstrated in-
creasing promise in the application of treatment for human 
cancers. On account of tumor complexity and heterogene-
ity, only a minority of patients could have benefitted from 
immunotherapy. Interestingly, the tumor immune micro-
environment is closely related to patients’ responsiveness 
after receiving the therapy of immune-checkpoint block-
ade.29 Thus, understanding the tumor immune microenvi-
ronment’s diversity will likely uncover novel biomarkers and 
provide effective therapeutic targets.

According to the natural and fundamental immunological 
properties of the liver and the current dilemma of immuno-
therapy for HCC, in this study, we systematically identified 
21 KIRGs that potentially participate in HCC pathogenesis 
and progression. To obtain more robust and reliable IGs, 
our results were analyzed by more comprehensive and 
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Fig. 6.  Construction of risk score model based on DETFs-IRLncRNAs-KIRGs network. (A–B) KIRGs and IRLncRNAs were narrowed down by the Lasso algo-
rithm. (C) Survival status scatter plots, risk score distribution, and expression patterns in the training cohort. (D) Survival status scatter plots, risk score distribution, 
and expression patterns in the testing cohort. (****p<0.001). (E) Kaplan-Meier curve analysis of the high risk and low risk groups in the training cohort. (F) Time-
dependent ROC curve analysis of the risk score model in the training cohort. (G) Kaplan-Meier curve analysis of the high risk and low risk groups in the testing cohort. 
(H) Time-dependent ROC curve analysis of the risk score model in the testing cohort.
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Fig. 7.  Relationship between risk score model and clinicopathological parameters. (A) Expression profiles of risk genes and association with clinicopathological 
characteristics. (B–C) Univariate and multivariate Cox regression analyses of risk score and clinicopathological characteristics. (D) Representative key IRLcRNAs were 
detected by real-time polymerase chain reaction of HCC and paired peritumor tissues from 18 patients. Abbreviations: M, metastasis; N, node; T, tumor.
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strict screening methods on the basis of DEGs and IDEGs 
in TCGA database, and IGs retrieved from ImmPort. In its 
methodology, ssGSEA is a widely accepted algorithm to 
analyze statistical enrichment.30 The ESTIMATE algorithm 
was used to calculate the stromal score, immune score and 
estimate score in the immune microenvironment for further 
immune assessment.31 The Lasso algorithm, as one of the 
regression regularization methods, applies a Lasso Cox re-
gression model and ensures optimal risk model, even when 
variables in the dataset have high dimensions and multicol-
linearity.32,33

As is known, binding of ligand and inhibitory receptors 
on immune cells will weaken the T cell mediated immune 
response. Antibodies against immune checkpoint proteins, 
such as CTLA4 or PD-1 (also called PDCD1), the first gen-
eration of antibody-based immunotherapy, has been imple-
mented for the treatment of HCC patients. In considera-
tion of partial immune response to these inhibitors, early 

results of a recent study based on the CheckMate-040 trial 
(nivolumab plus ipilimumab) were obtained for patients of 
advanced HCC who previously received sorafenib, and dem-
onstrated an objective response rate of 33% (95% confi-
dence interval of 20–48) in these patients. The Food and 
Drug Administration has accelerated the approval of this 
combination therapy strategy.34 Similar treatment regimens 
emerged for melanoma,35 non-small-cell lung cancer,36 and 
renal cell carcinoma.37 Evidently, our results showed reli-
ability and high practical utility from a clinical perspective.

Meanwhile, it is also imperative to develop novel immune 
therapeutic approaches. In the present study, we found 
IKBKE, IL2RG, EDNRA, and IGHA1 to be statistically more 
significant with p<0.2 than PDCD1 (p>0.2) among the 21 
KIRGs by univariate Cox regression and multivariate Cox 
regression. Due to multi-step screening, we boldly defined 
the critical value as 0.2. IKBKE, a member of the nonclas-
sical IKK family, is considered to be a potential target for 

Fig. 8.  Correlation analysis between risk score and immune checkpoint gene and immune cell infiltration. (A) Circle map of the relationships between 
immune checkpoint genes and integration of risk score. (B–G) Risk score for immune cell infiltration of CD4 T cells, macrophages, CD8 T cells, B cells, dendritic cells, 
and neutrophils.
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cancer therapy.38 Typically, IKBKE was classified as an on-
cogenic effector during KRAS-induced pancreatic transfor-
mation and activated AKT signaling to promote tumorigen-
esis.39 IKBKE-associated cytokine signaling was also shown 
to promote tumorigenicity of immune-driven triple-negative 
breast cancers.40 IKBKE regulates androgen receptor levels 
via Hippo pathway inhibition in advanced prostate cancer.41 
However, the specific functions of these four factors in HCC 
still lack a deep understanding.

To investigate the regulatory mechanism of KIRGs, tran-
scription factors and LncRNAs were analyzed according to 
their roles as crucial components of cancer regulatory net-
works. We identified IRLncRNAs associated with KIRGs and 
DETFs, and constructed a DETFs-IRLncRNAs-KIRGs regula-
tory network to reveal the possible functional relationship. 
To date, AC127024.5 has only been reported as a prognos-
tic target for pancreatic cancer.42 In HCC, we found that 
the NRF1-AC127024.5-IKBKE axis might be involved in the 
regulation of many biological processes, further underscor-
ing its potential for clinical application. In addition, from the 
key IRLncRNAs-KIRGs network, we constructed a risk score 
model and verified the prognosis prediction efficiency, which 
could emphasize good compatibility and appropriate clinical 
applicability compared to several genes placed in a model 
based on only one data set. Our risk model showed more 
obvious discriminating power than that of tumor staging. 
Unfortunately, we could not find available data in the Gene 
Expression Omnibus and the International Cancer Genome 
Consortium, including KIRGs and IRLncRNAs simultane-
ously; thus, external validation was precluded. Ultimately, 
the correlation between any immune checkpoint gene and 
risk score indicated the current targets of immunotherapy, 
such as CD4 T cells and phagocytosis checkpoint immuno-
therapy.

Although we have identified relevant IGs, including re-
lated transcription factors and LncRNAs, there is still a long 
road ahead of us before these findings are able to be ap-
plied in clinical practice. This field of cancer immunotherapy 
also presents several obstacles and faces many challeng-
es.43 Implementation of combination therapy with immune 
checkpoint blockade or as an adjuvant treatment of HCC in 
patients will not be immediate and its potential still needs to 
be investigated systematically and thoroughly.

Conclusions

In summary, our analysis results highlight the importance 
of IGs in the HCC microenvironment. Moreover, sufficient 
information on novel biomarkers, networks, and pathways 
further unravel the underlying molecular mechanisms in the 
development of HCC. Understanding the immune microen-
vironment signatures will be advantageous to provide per-
suasive justification to improve the clinical efficacy of the 
immunotherapy.
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