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Abstract

Background and Aims: Growing evidence suggests that 
metabolic-related genes have a significant impact on the 
occurrence and development of hepatocellular carcinoma 
(HCC). However, the prognostic value of metabolic-relat-
ed genes for HCC has not been fully revealed. Methods: 
mRNA sequencing and clinical data were obtained from 
The Cancer Genome Atlas and the GTEx Genotype-Tissue 
Expression comprehensive database. Differentially ex-
pressed metabolic-related genes in tumor tissues (n=374) 
and normal tissues (n=160) were identified by the Wil-
coxon test. Time-dependent receiver operating character-
istic curve analysis, univariate multivariate Cox regression 
analysis and Kaplan-Meier survival analysis were used to 
evaluate the predictive effectiveness and independence of 
the prognostic model. Two independent cohorts (Interna-
tional Cancer Genome Consortiums and GSE14520) were 
applied to verify the prognostic model. Results: Our study 
included a total of 793 patients with HCC. We construct-
ed a risk score consisting of five metabolic-genes (BDH1, 
RRM2, CYP2C9, PLA2G7, and TXNRD1). For the overall sur-
vival rate, the low-risk group had a considerably higher 
rate than the high-risk group. Univariate and multivariate 
Cox regression analyses indicated that the risk score was 
an independent predictor for the prognosis of HCC. Con-
clusions: We constructed and validated a novel prognostic 
model, which may provide support for the precise treat-
ment of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the second major cause 
of cancer-related death in the world.1,2 The prognosis of 
HCC is still not ideal, although related research has made 
great progress in recent years.1,3 This is mainly related to 
the high heterogeneity of HCC and the high diagnostic rate 
of advanced HCC,4–7 even with identical pathological types 
and clinical stages, patients’ individual responses to the 
same treatment can be diversified.8,9 It is worth noting that 
patients with HCC usually have a background of liver cir-
rhosis. Nevertheless, in clinical practice, which monitoring 
strategy is most effective for early tumor detection is uncer-
tain.10 There is a pressing need to identify reliable biomark-
ers for the diagnosis and prognosis of HCC, to improve the 
survival of HCC.

In recent years, growing evidence has shown that the 
metabolic pattern of the cell cancerization process has 
changed significantly, which involves many aspects, such 
as glycolysis, the citric acid cycle, and oxidative phospho-
rylation of amino acids metabolism, fatty acid metabo-
lism and nucleic acid metabolism, etc. This phenomenon 
is known as the reprogramming of energy metabolism of 
tumor cells, which is crucial for tumor growth.11,12 Some 
scholars have found that metabolic abnormalities are an 
important factor in the pathogenesis of HCC.6,7,13 Lee et 
al.13 noted that the gene expression levels involved in gly-
colysis and oxidative metabolism in HCC livers were much 
higher than those in normal livers, which was indeed rel-
evant to an increased risk of liver cancer and may rep-
resent a potential target for the prevention of HCC. Gao 
et al.6 conducted a multidimensional proteomics study of 
159 hepatitis B virus-positive liver and para cancer sam-
ples from patients in China, and found that most of the 
liver-specific metabolic pathway proteins (such as sugar 
dysplasia, detoxification, ammonia and urea metabolism) 
in liver tumors were significantly reduced; however, the 
key enzymes of cholesterol metabolism (SOAT1, SOAT2, 
etc.) and glutamine metabolism-related proteins (GLS and 
GLUD2) expressed in tumors were increased significantly, 
suggesting that hepato-specific metabolic pathways are 
reprogrammed in hepatitis B virus-associated HCC. Some 
scholars have also proposed that metabolic changes in the 
tumor microenvironment (TME) can inhibit antitumor im-
munity (such as immune cell infiltration) by producing im-
munosuppressive metabolites.14,15 However, there is still a 
lack of research on genes related to metabolism in predict-
ing the prognosis of patients with liver cancer. Investiga-
tions into the metabolic genes of HCC are expected to open 
up new avenues for the treatment of HCC.
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This research study established a risk score (RS) based 
upon the expression levels of five metabolism-related genes 
and analyzed the diverse clinicopathological features cor-
related with the new RS. The correlations of the RS with 
tumor immune cell infiltration were also evaluated.

Methods

Data collection and extraction of metabolic genes

The clinical data and mRNA expression profiles of patients 
with HCC were taken from The Cancer Genome Atlas (TCGA; 
https://portal.gdc.cancer.gov/), including 374 HCC samples 
and 50 normal samples; the Genotype-Tissue Expression 
project (GTEx; www.gtexportal.org), including 110 normal 
samples; the International Cancer Genome Consortium 
(ICGC; https://icgc.org/), including 215 patients with HCC; 
and the Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) (GSE14520), including 235 patients with 
HCC. A total of 2,752 metabolic-related genes that encoded 
all the known human transporters and metabolic enzymes 
were obtained from a previously published paper,16 for sub-
sequent analysis. The gene expression profiles obtained 
from different databases were normalized with the “com-
bat” package in R software. The collected data were used in 
accordance with the data access strategies of TCGA, ICGC 
and GEO. All research processes and analyses were con-
ducted in compliance with relevant regulations and guide-
lines. HCC clinical survival data and mRNA profile data were 
publicly available, and approval of the local ethics commit-
tee was not required.17

Identification of differentially expressed metabolic-
related genes (DEMRGs)

Using the Wilcoxon method in the R package “limma” to 
detect differential genes related to metabolism in HCC and 
normal tissues, the results of log2 fold change >1 and false 
discovery rate <0.05 were regarded as significantly differ-
ent. The “limma” and “heatmap” packages in the R software 
were used to form volcano and heat maps of DEMRGs.

Annotations of DEMRGs’ functions and pathways

This research applied the R package “cluster profile” for 
DEMRGs annotation (gene ontology [GO] and Kyoto En-
cyclopedia of Genes and Genomes [KEGG] pathway)18 to 
evaluate the underlying biological function of DEMRGs.

Identification of prognostic-related genes and con-
struction of the prognostic model in the TCGA cohort

We used 343 patients (survival ≥1 month) from the TCGA 
dataset as the training cohort, to develop the prognostic 
model. During the building process of the prognostic model, 
we combined univariate Cox regression analysis, Lasso re-
gression analysis, and multivariate Cox regression analy-
ses. First, univariate Cox regression analysis was applied to 
screen DEMRGs associated with prognosis (p-value <0.001 
considered significant).19,20 Next, the least absolute shrink-
age and selection operator algorithm was utilized to avoid 
overfitting of the prognosis-related genes. During the pro-
cess of this analysis, we subsampled the dataset 1,000 
times and chose the genes that were repeated >900 times. 

A subselection of prognosis-related genes was determined 
by penalty parameter tuning performed via 10-fold cross-
validation. Only genes with non-zero regression coefficients 
were retained for subsequent multivariate Cox regression 
analyses19–22 (Supplementary Fig. 1). The formula of the RS 
was as follows: RS = the sum of each multivariate Cox re-
gression coefficient of mRNA multiplied by each normalized 
mRNA expression level. According to the median RS, pa-
tients were divided into two groups: the low-risk (LR) group 
and the high-risk (HR) group. Utilizing the Kaplan-Meier 
approach in the R-package “suvminer” produces survival 
curves, and the log-rank test was used to contrast discrep-
ancies between the two groups. Using the time-dependent 
receiver operating characteristic (ROC) curve analysis fea-
ture in the R package, “survival ROC” aimed to evaluate the 
prognostic ability of the RS.

Independence validation of the prognostic model

Univariate and multivariate Cox regression analyses were 
applied to detect whether the RS was an independent prog-
nostic predictor. A value of p<0.05 was statistically signifi-
cant.

Internal validation of the prognostic model in the 
TCGA cohort

We divided the patients into several subgroups for internal 
validation according to their pathological features (includ-
ing α-fetoprotein [AFP] level, vascular invasion, histologi-
cal grade, AJCC-TNM stage, new tumor after initial treat-
ment, and individual tumor status). The analysis of survival 
adopted the Kaplan-Meier method, and when the log-rank 
test detected a value of p<0.05, it was considered statisti-
cally significant.

External validation of the prognostic model using 
multiple independent cohorts

We calculated the RS of patients in the validation cohort 
(ICGC, GSE14520) using the same formula established 
by the TCGA cohort. The patients were separated into a 
LR group and a HR group based on the same cutoff value. 
Kaplan-Meier survival analysis, ROC curve analysis and uni-
variate and multivariate Cox regression analysis were con-
ducted as described above.

Correlation analysis between the RS and clinicopa-
thology

We used the chi-square test to analyze the correlation be-
tween the RS and clinicopathology (including gender, age, 
AJCC-TNM stage, Barcelona Clinic Liver Cancer [BCLC] 
stage, Cancer of the Liver Italian Program [CLIP] stage, 
main tumor size, histologic grade, AFP, and vascular tumor 
cell type). A value of p<0.05 was statistically significant.

Correlation analysis between RS and tumor immune 
cell infiltration

The CIBERSORT method (using the characteristic matrix of 
547 genes to express 22 types of infiltrating immune cells) 
was used to measure the infiltration ratio of immune cells 
as a number in tumor tissues, and the samples with p<0.05 
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were selected for subsequent analysis.

Gene set enrichment analysis (GSEA)

To further explore the internal mechanism of the prognostic 
model, we conducted GSEA on the LR and HR groups of the 
three independent cohorts to reveal the molecular biological 
characteristics of the LR and HR groups.

Results

Functional enrichment analysis and survival analysis 
of DEMRGs

A total of 134 metabolic-related genes were differentially 
expressed in HCC tissues (n=374) compared with nor-
mal tissues (n=160) (Fig. 1A–B). GO enrichment analysis 
showed that the main functions of these differentially me-
tabolized genes included small molecule catabolism, organic 
acid biosynthesis, sulfur compound metabolism, carboxylic 

acid biosynthesis, organic acid catabolism, fatty acid me-
tabolism, carboxylic acid catabolism and other processes 
(Fig. 1C). The KEGG enrichment analysis identified these 
genes as being prevailingly related to chemical carcinogen-
esis, arachidonic acid metabolism, drug metabolism, glu-
tathione metabolism, retinol metabolism, and carbon me-
tabolism (Fig. 1D).

Construction of the five-metabolic gene prognostic 
model

To facilitate the clinical application of our prognostic model, five 
metabolic-related genes were identified by Lasso-penalized 
Cox analysis to establish a predictive model. RS=(−0.02928* 
BDH1 normalized expression level)+(0.04763*RRM2 nor-
malized expression level)+(−0.0018*CYP2C9 normalized 
expression level)+(0.0111*PLA2G7 normalized expression 
level)+(0.0111*TXNRD1 normalized expression level). The 
median RS (0.967) of the TCGA cohort is a critical value that 
divides all patients with HCC into HR and LR groups. This 
research applied disease-specific survival (DSS), overall 
survival (OS), progression-free survival (PFS) and disease-

Fig. 1.  Identification and functional enrichment analysis of DEMRGs. (A–B) The heatmap and volcano plot of DMRGs. (C) GO enrichment analysis of DMRGs. 
(D) KEGG enrichment analysis of DMRGs.
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free survival (DFS) to compare the prognosis of patients 
with different risks. The Kaplan-Meier curve showed that 
compared with the HR group, the PFS, DFS, DSS, and OS 
of the LR group were remarkably higher (p<0.001) (Fig. 
2A–D).

When assessing the performance of the prognostic model 
by measuring the area over time under the ROC curve, the 
higher the area under the curve, the better was the mod-
el performance. The areas under the curve for the 1-year, 
3-year, and 5-year PFS were 0.689, 0.621, and 0.683, 
respectively (Fig. 2D); the areas under the curve for the 
1-year, 3-year, and 5-year DFS were 0.678, 0.615, and 
0.691, respectively (Fig. 2C); the areas under the curve 
for the 1-year, 3-year, and 5-year DSS were 0.815, 0.738, 
and 0.674, respectively (Fig. 2B); and, the areas under the 
curve for the 1-year, 3-year, and 5-year OS were 0.8, 0.692, 
and 0.673, respectively (Fig. 2A). The RS was an independ-
ent prognostic indicator linked to PFS, DFS, DSS and OS, 
as presented by univariate and multivariate Cox regression 
analyses (Fig. 3A–D).

Internal validation of the prognostic model in the 
TCGA cohort

We divided the patients into several subgroups for internal 
validation according to their pathological features, con-
sistent with previous results. Compared to the LR group, 
the HR group patients’ OS rates were notably lower (Fig. 
4A–F).

External validation of the prognostic model in the 
ICGC and GSE14520 cohorts

Two independent datasets (ICGC, n=215; GSE14520, 
n=235) were used to test the prognostic value of the RS. 

The calculation formula of RS and the threshold value for 
dividing the HR and LR groups were consistent with that of 
the TCGA cohort. The HR patients’ OS was notably lower 
than that of LR patients in the two independent cohorts (Fig. 
5A, D). The area under the ROC curve of the 1-year, 3-year 
and 5-year overall survival rates of the ICGC cohort and 
GSE14520 cohort were 0.750, 0.734, 0.829, 0.675, 0.671, 
and 0.673, respectively (Fig. 5A, D). The RS could be re-
garded as an independent prognostic indicator by univariate 
and multivariate Cox regression analyses (Fig. 5C, F). Due 
to the lack of relevant information about the Child/model for 
end-stage liver disease score, we cannot directly compare 
the prognostic value of the Child/model for end-stage liver 
disease score with the RS. However, by comparing the area 
under the curve values of the ROC curve between the RS 
and the traditional TNM staging system, we found that the 
RS had better performance in predicting prognosis (Sup-
plementary Fig. 2).

Correlation of the prognostic model with clinico-
pathological characteristics

We performed chi-square tests on three independent co-
horts (TCGA, ICGC, and GSE14520) and revealed that 
stage, grade, vascular tumor cell type, individual neoplasm 
status, main tumor size, and new tumor event after initial 
treatment concerned the RS of patients with HCC (Supple-
mentary Tables 1–3).

Correlation analysis between the RS and tumor im-
mune cell infiltration

The CIBERSORT algorithm was used to further analyze the 
infiltration degree of immune cell subtypes (samples were 
screened by p<0.05). The results showed that, compared 

Fig. 2.  Kaplan-Meier survival analysis and time-dependent ROC analysis for (A) OS, (B) DSS, (C) DFS and (D) 
PFS. 
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with the LR group, the HR group had a markedly higher in-
filtration degree of M2 macrophages and a lower infiltration 
degree of M1 macrophages (Fig. 6A–C).

GSEA

As shown in Supplementary Fig. 3, the activity of metabolism-
related pathways in the LR group was significantly stronger 
than that in the HR group, suggesting that we may be able to 

find new therapeutic strategies to improve the prognosis of 
HCC by targeting metabolic reprogramming of HCC.

Discussion

Because HCC usually occurs in the context of cirrhosis, it 
has high morbidity, mortality, recurrence and heterogene-
ity,1–3 and poses a great threat to human health. With the 
worldwide application of next-generation gene sequencing 

Fig. 3.  Forrest plot of the univariate and multivariate regression analysis regarding (A) OS, (B) DSS, (C) DFS and (D) PFS in the TCGA cohort. Green 
represents univariate analysis, and red represents multivariate analysis.
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Fig. 4.  Internal validation in the TCGA cohort based on clinical features. (A) AFP. (B) Tumor status. (C) Histopathological grade. (D) New tumor event after 
initiate treatment. (E) AJCC-TNM stage. (F) Vascular tumor cell type.
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technology, people have gradually realized that the prog-
nosis of patients with HCC is not only dependent on the 
traditional clinical staging system but is also related to mo-
lecular genetic factors.5,7,23–25 Growing evidence has shown 
that metabolic reprogramming exerts a huge function in the 
emergence and growth of HCC.11,13 The prognostic value of 
some metabolic genes has been validated,6,26 but they are 
still numerically inadequate. Thus, there remains a pressing 
need to identify more biomarkers related to the prognosis 

of HCC.20

Compared with previous studies,18–20,26,27 this study 
highlighted the following aspects. First, in this study, mRNA 
data from TCGA, ICGC, GEO, and GTEx were integrated to 
study the prognostic value of metabolic-related genes in 
HCC. Second, we used three independent cohorts (TCGA, 
ICGC, and GSE14520) to construct and validate the prog-
nostic model, making the conclusion more reliable. Third, 
we investigated the relationship between the prognostic 

Fig. 5.  External validation of the prognostic model in two independent cohorts. (A) Kaplan-Meier curve of OS and time-dependent ROC analysis in the ICGC cohort. 
(B) Heatmap of the five genes and the distribution of RS and the survival status of patients of the ICGC cohort. (C) Univariate and multivariate Cox regression analysis of the 
five-gene signature in the ICGC cohort (green represents univariate analysis, and red represents multivariate analysis). (D) Kaplan-Meier curve of OS and time-dependent 
ROC analysis in the GSE14520 cohort. (E) Heatmap of the five genes and the distribution of RS and the survival status of patients of the GSE14520 cohort. (F) Univariate 
and multivariate Cox regression analysis of the five-gene signature in the GSE14520 cohort (green represents univariate analysis, and red represents multivariate analysis).
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Fig. 6.  Relative proportion of 22 kinds of immune cell infiltration in HR and LR patients estimated by the CIBERSORT method. (A) Barplot. (B) Heatmap. 
(C) Radar plot visualizing significantly different infiltration immune cells between HR and LR groups (p-value significant codes: 0≤ *** <0.001 ≤ ** < 0.01 ≤ * < 0.05).



Journal of Clinical and Translational Hepatology 2021 vol. 9  |  169–179 177

Huo J. et al: Hepatocellular carcinoma metabolic signature

model and tumor immune cell infiltration.
Patients were classified into a LR group and a HR group, 

based on a uniform cutoff (0.967). In both the train-
ing cohort (TCGA) and the validation cohort (ICGC and 
GSE14520), the OS of the HR group was significantly lower 
than that of the LR group. The area under the curve of the 
ROC curve showed that the RS had higher specificity and 
sensitivity for the prediction of prognosis. Clinical correla-
tion analysis showed that patients with a HR score were 
found to be significantly correlated with higher tumor grade, 
larger main tumor size (>5 cm), older (age >65 years), 
vessel invasion, AFP >300 ng/mL, advanced BCLC stage 
(B–C), advanced CLIP stage (≥2) and advanced TNM stage 
(III–IV), and these results suggest the high-RS patients had 
a higher degree of malignancy. For patients with the same 
clinical features, the prognosis of the HR group patients was 
markedly worse than for those of the LR group, which high-
lights the importance of our RS establishment because it 
can better reflect the heterogeneity of patients compared 
with the traditional clinical stage.

It has been reported that abnormal metabolism of pu-
rines (such as abnormal elevation of uric acid) is related to 
the appearance and growth of different malignant tumors, 
such as colorectal cancer metastasis, non-small cell lung 
cancer brain metastasis, and the prognosis of pancreatic 
cancer, etc.,28–33 but there have been few reports on HCC. 
Immune cells are the main non-tumor components in the 
TME, and earlier studies have suggested that the infiltration 
of immune cells (neutrophils, dendritic cells, macrophages, 
etc.) in tumors has a close relationship with unadvanced 
HCC prognosis.34–39 Macrophages are the most numerous 
in tumor tissues and have the most significant regulatory 
effect on tumors. As such, they are called tumor-associ-
ated macrophages. Studies have found that M1-type mac-
rophages can recognize tumor antigens, and phagocytose 
or kill tumor cells. Type II interferon (interferon-γ) is a clas-
sic inducer of M1 macrophage polarization and tumor cell 
killing.36,38 M2-type macrophages inhibit the activation and 
proliferation of T cells and natural killer cells by producing 
interleukin-10, transforming growth factor-β and prosta-
glandin E2 (prostaglandin E-2, PGE-2), and induce immune 
tolerance of tumor cells, thus promoting the proliferation, 
invasion and metastasis of tumor cells.36 In this study, it 
was found that the HR group had a higher infiltration degree 
of M2 macrophages and a lower degree of M1 macrophages 
than the LR group. These results suggested that this model 
could be used as an effective predictor of immune cell in-
filtration.

At present, obesity and metabolic diseases have become 
important factors that induce liver cancer.40 The beige fat 
cells in the body have come under scrutiny for their ability 
to burn energy to prevent obesity.41,42 Wang et al.43 found 
that catabolic metabolism of n-hydroxybutyrate mediated 
by 3-hydroxybutyrate dehydrogenase (BDH1) is an impor-
tant step in the formation of beige fat cells in the body. Mar-
tinez-Outschoorn et al.44,45 found that BDH1 is preferen-
tially expressed in breast tumor mesenchymal cells and that 
overexpression of BDH1 can promote the growth of cancer 
cells by generating fibroblasts to drive increased mitochon-
drial synthesis. Saraon et al.46 also found significant up-
regulation of BDH1 expression in prostate cancer tissues. 
The current study discovered that, compared with normal 
tissues, BDH1 expression in tumor tissues was markedly 
down-regulated (Supplementary Fig. 4). Moreover, the high 
expression of BDH1 in tumor tissues was correlated with 
better OS and earlier TNM stage and a maximum tumor 
diameter of ≤5 cm and AFP of ≤300 ng/mL (Supplementary 
Figs. 5–8). Whether the mechanism is related to the previ-
ously reported promotion of beige fat cell formation in vivo 
deserves further study.

The ribonucleotide reductase m2 RRM2 has been con-

firmed repeatedly to have a relationship with HCC prognosis 
in recent years.47–49 Kosakowska et al.50 found a reduction 
in RRM2 remarkably suppressed HCC cell proliferation, and 
that RRM2 catalyzes the conversion of ribonucleoside 5′-di-
phosphate into a corresponding 2′-deoxyribonucleotide, 
and since this reaction is a rate-limiting step in DNA syn-
thesis, RRM2 has been identified as a new target for cancer 
therapy.51,52 Additionally, this study discovered that poor 
OS was responsible for high RRM2 expression and predicted 
low tumor differentiation (Supplementary Figs. 5–8).

The cytochrome P450 system of the liver plays an impor-
tant role in drug metabolism. The CYP2 family is the largest 
family of the CYP450 enzyme family, among which CYP2C9 
is one of the most important subtypes.53 Nebert et al.54 
once reported that the expression of CYP can affect the pro-
duction of arachidonic acid-derived molecules and change 
various downstream signal transduction pathways, thus 
causing cell cancerization. Yan et al.’s55 study found that 
the expression level of CYP was significantly destroyed dur-
ing the cancer process, while the activity of CYP was high-
ly correlated with the expression level of the protein. The 
current study found that the expression level of CYP2C9 in 
tumor tissue was remarkably lower than that in normal tis-
sue (Supplementary Fig. 4), and patients with high CYP2C9 
expression in tumor tissues had a better prognosis (Sup-
plementary Figs. 5–8). In addition, the reduced CYP2C9 ex-
pression level had a significant relationship with higher TNM 
stage and higher BCLC stage, a maximum tumor diameter 
of >5 cm, AFP of >300 ng/mL and vessel invasion (Sup-
plementary Figs. 5–8). The results were similar to those of 
CYP4A11 in the study by Eun et al.56 These findings indicate 
that the high CYP2C9 expression is likely to be a favorable 
signal for the prognosis of HCC (Supplementary Figs. 5–8). 
Clinically, we can consider using CYP2C9 as a therapeutic 
target to further improve the prognosis of HCC.

The platelet-activating factor acetylhydrolase PLA2G7 is 
an effective proinflammatory and anti-inflammatory mole-
cule involved in a variety of inflammatory processes.57 Nair 
et al.58 found that PLA2G7 expression was significantly up-
regulated in fat cell precursors in obese individuals. Hou 
et al.59 and Hoffmann et al.60 identified PLA2G7 as a risk 
factor for cardiovascular disease. The current study found 
that compared with the level in normal tissues, the PLA2G7 
expression level in tumors was remarkably higher (Supple-
mentary Fig. 4), and the high expression level of PLA2G7 
was significantly correlated with AFP >300 ng/mL (Supple-
mentary Figs. 5–8), so PLA2G7 may be a new diagnostic 
marker for HCC.

Increasing evidence shows that oxidative stress caused 
by the destruction of the reduction-oxidation system is 
closely related to the occurrence of liver cancer.61–63 The 
thioredoxin reductase 1 TXNRD1, as a member of the 
thioredoxin system, is essential for maintaining the balance 
of the redox state in cells.62,64 This study found that TXN-
RD1 was significantly correlated with poor OS and higher 
TNM staging (Supplementary Figs. 5–8), which was similar 
to the report of Fu et al.65 and Lee et al.66 Therefore, TXN-
RD1 may be a biomarker with important prognostic value 
for HCC.

Targeted sequencing based on five metabolic genes can 
undoubtedly significantly reduce the cost of sequencing, but 
there are some limitations because our research results are 
mainly based on the description of the phenomenon, and 
we need to explore its mechanism through experiments. 
HCC is a complex disease caused by multiple mechanisms, 
not just metabolic disorders. Although we made full use 
of data resources, the lack of some clinical data will cause 
inevitable limitations, for example, the adjuvant treatment 
methods patients receive, such as chemotherapy, targeted 
therapy, and immunotherapy, comorbidities of patients and 
whether patients have underlying cirrhosis, because these 
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factors have a significant impact on the clinical outcome. 
This study was retrospective and needs to be improved 
upon and verified in future multicenter prospective studies.

Conclusions

This research established and verified a reliable prognostic 
model for HCC patients. The five metabolic genes in the 
model may be promising targets for the precise treatment 
of HCC. Therefore, it is likely to have influential potential for 
clinical practice in the near future.
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