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Abstract

Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme of al-
cohol metabolism and it is involved in the cellular mecha-
nism of alcohol liver disease. ALDH2 gene mutations exist 
in about 8% of the world’s population, with the incidence 
reaching 45% in East Asia. The mutations will result in im-
pairment of enzyme activity and accumulation of acetalde-
hyde, facilitating the progression of other liver diseases, in-
cluding non-alcoholic fatty liver diseases, viral hepatitis and 
hepatocellular carcinoma, through adduct formation and 
inflammatory responses. In this review, we seek to sum-
marize recent research progress on the correlation between 
ALDH2 gene polymorphism and multiple liver diseases, with 
an attempt to provide clues for better understanding of the 
disease mechanism and for strategy making.
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Introduction of gene polymorphisms in aldehyde de-
hydrogenase 2

Function of aldehyde dehydrogenase 2 in human be-
ings

The aldehyde dehydrogenases play a key role in the me-
tabolism of toxic aldehydes. Some are produced in human 

bodies, such as 4-hydroxy-2-nonenal (4-HNE) and malon-
dialdehyde (MDA), while others were obtained from the en-
vironment, like formaldehyde, acrolein, and ethyl.1,2 As a 
member of the ALDH superfamily, ALDH2 is the most sensi-
tive isoform to irreversible inactivation and is also the most 
sensitive to inactivation by toxics, such as 4-HNE.1 This en-
zyme could metabolize acetaldehyde (ACH) to acetate ir-
reversibly in a redox reaction (Fig. 1).3 Disturbances in the 
expression of ALDH2 will dampen its metabolic capacity and 
result in accumulation of ACH consequently. Based on its 
electrophilic feature, ACH could bind with biomolecules such 
as proteins or DNA and destroy cell integrity, which contrib-
utes to the development of various human diseases,4 such 
as endocrine disorders, cardiovascular diseases, pulmonary 
diseases, oral cancers, gastrointestinal cancers, Fanconi 
anemia, and dermatitis.5–7

ALDH2 gene and polymorphisms

ALDH2 is a polypeptide consisting of 517 amino acids, prin-
cipally expressed in the liver but also in other organs, such 
as heart, kidney, muscle, and brain.8 Its coding gene is lo-
cated on chromosome 12 (12q24.2), which is 44 kilobases 
in length and comprises 13 exons.9 After translation, the 
expressed protein is transported to the mitochondrial ma-
trix to participate in dehydrogenase, esterase and reduc-
tase reactions in liver and fat tissues particularly. Studies 
of the human genome have shown 19 kinds of functional 
ALDH genes in total, with a wide range of expression and 
substrate specificities, among which the ALDH2 gene has 
the highest expression and exclusively harbors existence of 
genetic polymorphisms.1

As it encodes a key enzyme for alcohol metabolism, 
ALDH2 also has an important functional single nucleotide 
polymorphism (SNP), the rs671-Glu504Lys variant, which 
has significantly reduced activity compared to the wild 
type.10 The rs671 variant exists in 30–45% of East Asians 
(Chinese, Japanese, and Korean) and 8% of the world’s 
population.11,12 The incidence of this mutation in China is 
as high as 37–59%.13–16 Nowadays, the rs671SNP locus at 
exon 12 is of special concern in worldwide research. Ac-
cording to sequencing detection,17 a G→A point mutation 
is prone to occur at exon 12, causing the original glutamic 
acid (Glu) to be replaced by lysine (Lys), whose mutation is 
named ALDH2Glu504Lys (SNPrs671).

ALDH2rs671 SNPs are composed of three genotypes: GA, 
AA and GG. GA is a heterozygous mutation, also named as 
ALDH2*1/*2 (Glu/Lys). AA is a homozygous mutation, also 
known as ALDH2*2/*2 (Lys/Lys). GG is the normal allele, 
without mutation (Fig. 2). The majority of studies on these 
genotypes have confirmed that the GA genotype has 10–
20% of the enzyme activity compared wild type, while the 
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AA genotype loses more than 96% of the enzymatic activity. 
As a result, individuals with GA or AA mutations could show 
up to 6 or 19 times greater ACH concentrations, respec-
tively, as compared with wild type after alcohol intake.18

Distribution of ALDH2 alleles in different populations

The genotype frequencies of the ALDH2 gene polymor-
phisms vary among different races. The rare ALDH2*2 allele 
has been observed in Caucasians, Africans and Southeast 
Asians but it is widely present in East Asians.19,20 There is 
a report of this mutation being found in about 560 million 
people of East Asian descent and reducing enzymatic activ-
ity by approximately 60% to 80% in ALDH2*1/*2 heterozy-
gotes.19 Among East Asians, the ALDH2 allele frequencies 
are diverse among Japanese, Korean, and Chinese. In Chi-
na, the ALDH2*2 gene frequency in some Chinese aboriginal 
populations (e.g., Korean, Uighur, Zhuang and Olunchun) is 
lower compared to the Chinese Han population. In the Chi-
nese Han population, the ALDH2*2 allele frequency is 17% 
to 29%, the proportion of individuals with ALDH2*1/*2 het-
erozygotes is 36% to 44%, and the proportion of individuals 
with ALDH2*2/*2 homozygotes is 7% to 8%.21,22

Related liver diseases

Alcoholic liver disease

Alcoholic liver disease (ALD) is a direct outcome of chron-
ic ethanol consumption and is considered as an important 
health problem worldwide. ALD encompasses a broad spec-
trum of liver injuries, including steatosis, fibrosis, cirrhosis, 
and alcoholic hepatitis.23 The incidence of ALD has been in-
creasing yearly because of the rapid boom in alcohol con-

sumption in many developing countries over the past dec-
ade.24 The prevalence of ALD in China, the USA, Europe, 
and Japan is 4.5%, 6.2% ,6%, and 1.56–2.34%, respec-
tively.24–27 There are about 260 million people occasionally, 
habitually and excessively drinking, and appropriately 2.5 
million people die from ALD each year.28 Hence, ALD patho-
genesis and therapy have always been the focus of national 
researchers.

The ALDH2 Glu504lys polymorphism is tied closely to oc-
currence and development of ALD in related individuals,29 
though its polymorphism does not contribute to alcohol de-
pendence in the Turkish population.30 Regardless of homozy-
gous AA or heterozygous GA status, both guarantee elevat-
ed ACH level after alcohol drinking. A single-center study 
from the Fifth Medical Centre of the General Hospital of the 
Chinese People’s Liberation Army reported that only 2.3% of 
ALD patients have the ALDH2*2 allele, compared with14.5% 
of the proportion of healthy controls (281 and 535 controls; 
odds ratio [OR] of 0.13 and 95% confidence interval [CI] of 
0.07–0.24).31 In Korea, Lee et al.32 found that the ALDH2*1 
allele is associated with a higher frequency of alcoholic cir-
rhosis (p=0.001). Likewise, a meta-analysis of 12 studies 
found that people with the ALDH2*1 allele are more likely 
to go on to develop alcoholic liver cirrhosis compared with 
those with either the ALDH2*1/*2 or ALDH2*2/*2 geno-
type.33 Based on the activity of the enzyme after gene mu-
tation, ALDH2*2/*2 should have produced a poor protective 
effect of ethanol; however, it brings some body information, 
such as facial flushing, reminding those with ALDH2*2/*2 
to be alert to alcohol intake and usually leading to little ex-
cessive ethanol consumption.34 On the contrary, without the 
gene reminder, those with ALDH2*1 are not aware of con-
suming excessive alcohol.

The protection from the ALDH2 Glu504lys polymorphism 
has also been verified by Liu’s team,35 whose result demon-
strated that individuals carrying this polymorphism are pro-
tected from alcohol drinking, with a 4-fold decrease in risk. 
Ma et al.36 and Li et al.16 also provided further evidence that 

Fig. 2.  Genotypes of ALDH2rs671. 

Fig. 1.  Alcohol metabolism and enzymes that strongly impact alcohol consumption. The ALDH2*2 variant exists in 30–45% of East Asians (Chinese, Japanese, 
and Korean), which has low activity.
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the mutation and “alcohol flush” are not harmless in this 
Asian population. In other words, the ALDH2 gene mutation 
is a protective factor in the alcohol-drinking population in 
East Asia, while it is weaker in European and African popu-
lations.34 In fact, the Eastern culture encourages or chal-
lenges people to drink more alcohol in social activities, and 
sometimes people with flushing may not be able to escape 
or reject such alcoholism.

Aerobic glycolysis is involved in alcohol metabolism, 
which could be inhibited by a known factor: corticosterone. 
As is shown in the animal experiment of Gao’s team,37 a 
higher level of serum corticosterone is detected in etha-
nol-fed Aldh2(−/−) mice, compared to the wild type mice. 
Gao’s team37 also found that acute alcohol drinking in hu-
mans was related to elevated plasma glucocorticoid levels 
in human subjects, with higher levels in those with inac-
tive ALDH2 than active ALDH2. To conclude, the progress of 
aerobic glycolysis is impaired by ethanol, especially in those 
with ALDH2*2. Meanwhile, they succeeded in restored con-
canavalin A-mediated hepatitis via blockade of corticoster-
one. Therefore, aerobic glycolysis-related signaling path-
ways may be a key factor. Interestingly, the authors found 
that glucose metabolism in T cells could be disrupted by 
ACH through inhibition of the aerobic glycolysis-related sig-
nal pathways. In addition, weakened autophagy is involved 
and compromised lysosomal activity will lead to abnormal 
stacking of ethanol or acetaldehyde by-product including 
protein or DNA adducts. Guo et al.38 reported that observa-
tions both in vivo and in vitro are in favor of a beneficial role 
of ALDH2 in alcohol intake-facilitated fatty liver and inflam-
mation through autophagy regulation (Table 116,30–37).

The traditional hypothesized pathway is through oxida-
tive stress. ALDH2 dramatically attenuates hepatic oxida-
tive stress induced by chronic alcohol intake and favors a 
role of oxidative stress in ethanol- and ALDH2-elicited he-
patic responses, by restoring autophagy and reopening au-
tophagy flux. Additional ethanol consumption will increase 
the production of NADH/NAD+, and reactive oxygen species 
(ROS) in the mitochondrial electron transport chain. Then, 
ROS is able to activate nuclear factor-kappa B (NF-κB) and 

its downstream proinflammatory signal, and correspond-
ingly aggravate inflammation and hepatocyte damage.39–41 
Moreover, Zhong et al.42 selected mitochondrial ALDH2 as a 
promising therapeutic target for ALD. They said that it ac-
celerates aldehyde clearance and reverses hepatic steatosis 
and apoptosis in mice. Therefore, artificial modulation of 
ALDH2 expression may be a potential therapeutic interven-
tion for alcoholism and ALD in the future.43,44

As mentioned above, variants in ALDH2 decrease the rate 
of ACH conversion to acetate because it blocks its ability 
to remove ACH and results in a strong aversive reaction. 
Therefore, if we can find a medium to intervene this mecha-
nism and develop a blocker, we will alleviate this effect. It 
is also suggested that physicians should pay attention to 
explore the potential immunosuppressive therapy in alco-
holics.

Non-alcoholic fatty liver disease

It has become more and more accepted that non-alcoholic 
fatty liver disease (NAFLD) stands for not just a single type 
of liver disease but the hepatic manifestation of complicated 
metabolic dysfunctions. NAFLD covers a wide range of liver 
pathologies, including steatosis, steatohepatitis, fibrosis/cir-
rhosis and liver failure.14,45 Nowadays, NAFLD has become 
the leading cause of chronic liver diseases on earth and its 
global prevalence is appropriately 25%.46–49 Prevalence rates 
of NAFLD were estimated to be 22.4%, 24.13%, 23.71%, 
25%, 31% and 32% in China, the USA, Europe, Japan, the 
Middle East, and South America, respectively.14,24,50,51 In 
the USA, NAFLD is estimated to be the most common cause 
of chronic liver disease, affecting between 80 and 100 mil-
lion individuals, among whom nearly 25% progress to non-
alcoholic steatohepatitis.14 A recent report of data from the 
National Health and Nutrition Examination Survey ranging 
from 1988 to 2010 indicated that modest alcohol consump-
tion (7–21 g/day) is associated with decreased mortality 
among patients with NAFLD.52 In contrast to the studies of 
58,927 patients with NAFLD in Korea, even moderate drink-

Table 1.  Recent clinical studies on the relationship between the ALDH2 polymorphism and ALD

Year Conclusion Reference

2001 The ALDH2*2 gene protects against the development of alcoholism. 32

2012 Strong protective effect of the ALDH2 504lys (*2) allele against alcoholism and alcohol-induced  
medical diseases in Asians.

16

2015 The absence of the ALDH2*2 allele in both alcoholics and controls suggests that this polymorphism  
does not contribute to alcohol dependence in the Turkish population.

30

2015 ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and  
inflammation, through regulation of autophagy.

37

2016 People with the ALDH2*1 allele are more likely to go on to develop alcoholic liver cirrhosis compared  
with those with the ALDH2*1/*2 or ALDH2*2/*2 genotype.

33

2016 Polymorphisms in ALDH2 exerted significant indirect effects on hepatocellular carcinoma risk,  
mediated through alcohol drinking.

35

2016 The ALDH2 Glu504Lys polymorphism and ‘alcohol flush’ are not harmless in the study’s Asian  
population.

36

2017 Individuals who carry at least one copy drink typically less and are protected against heavy alcohol  
use and alcohol use disorders.

34

2018 Patients with the ALDH2 504lys variant were less associated with ALD compared to those with ALDH2  
504glu.

31

2019 ALDH2 deficiency is associated with elevated acetaldehyde and glucocorticoids post-alcohol  
consumption, thereby inhibiting T cell activation and hepatitis.

37

Abbreviations: ALD, alcohol liver disease; ALDH2, aldehyde dehydrogenase 2; Glu, glutamic acid; Lys, lysine.
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ers (10–29.9 g/day) exhibited an increased tendency to 
progress to fibrosis compared with non-drinkers.53 Whether 
consuming moderate alcohol could be a lifestyle intervention 
in the treatment requires further investigation.

In China and East Asia, genome-wide association studies 
found that ALDH2 rs671 is a susceptible gene locus for obe-
sity and significantly associated with increased body mass in-
dex and visceral fat deposition.10,11 A control study reported 
that a significant accumulation of the 4-HNE protein adduct 
and a significant up-regulation of ALDH2 protein expression 
are found in the two groups of non-alcoholic steatohepati-
tis patients, suggesting that ALDH2 plays a role in combat-
ing non-alcoholic steatohepatitis oxidative stress. We have 
reason to speculate that ALDH2 gene mutation will reduce 
the oxidative stress protection response of liver recovery 
in non-alcoholic steatohepatitis patients. On the contrary, 
Alda-1, as an activator of ALDH2, suppresses PINK1/PAR-
KIN-mediated mitophagy and its usage in apoE-mice has led 
to improvement in the degree of arteriosclerosis and hepatic 
steatosis, indicating that activation of ALDH2 can improve 
NAFLD on the condition of mitochondrial injury caused by 
vinyl chloride.54 Alda-1 protects against liver damage under 
these conditions via increasing clearance of aldehydes and 
preserving mitochondrial respiratory function.

In the field of biomedicine, researchers have found that 
inhibition of ALDH2 enhances the ACH-mediated hepato-
cyte sterol regulatory element binding protein-1 (SREB-1) 
pathway activity and promotes triglyceride (TG) deposition 
in the liver. A cohort study55 conducted by Japanese re-
searchers followed 341 patients who never or seldom drank 
or drank less for 4–6 years and found that the incidence of 
NAFLD is higher in carriers of the mutant gene ALDH2*2 
than in non-carriers. Carriers of ALDH2*2 with elevated 
γ-glutamyl transpeptidase (GGT) levels (>25.5 IU/L) have 
a significantly increased risk of NAFLD. A recent Japanese 
study investigated the association of ALDH2rs671 geno-
type with liver disease in 1,768 alcohol-dependent Japa-
nese men. They found that the ineffective ALDH2 Glu/Lys 
genotype increases the ratio or regression coefficient of 
age- and alcohol-adjusted fatty liver, ketonuria and serum 
high-density lipoprotein cholesterol (HDL-C) level, and re-
duces liver cirrhosis and serum TG level. Through logis-
tic regression analysis, Chinese scientists also found that 
the GGT level in carriers of the GA/AA type is significantly 
higher than that of the GG type, suggesting that carriers 
of the GA/AA type are more prone to suffer liver cell dam-
age and more severe fatty changes than carriers of the GG 
type. Nevertheless, another animal study suggested that 
ALDH2-deficient individuals may be resistant to steatosis 
and blood alanine aminotransferase (ALT) elevation but be 
more prone to liver inflammation and fibrosis following al-
cohol consumption.15 Furthermore, a human experiment 
showed that the prevalence of elevated ALT level increases 
with the accumulation of components of metabolic syn-
drome and that the correlation between active ALDH2 and 
elevated ALT level is sensitive.56 Their logistic regression 
analysis also revealed that body mass index, TG level, and 
ALDH2 genotype are associated with ALT elevation. This 
result coincides with the findings of the genome-wide as-
sociation studies.

To conclude, the relationship between ALDH2 and the 
NAFLD disease spectrum has begun to enter the laboratory 
stage but it needs a large number of research studies to 
clarify the connection.

Viral hepatitis

Although the global incidence of viral hepatitis, hepatitis B 
virus (HBV) infection mainly, is going down, it continues 

to play an important role in developing countries.57 There 
are approximately 257 million people with chronic HBV in-
fection globally, including 68% in Africa and the Western 
Pacific, according to a World Health Organization report.58 
In China, chronic hepatitis B (CHB) and chronic hepatitis 
C (CHC) affect 90 million and 10 million people, respec-
tively. In developed countries such as the USA, Japan, and 
the European Union, the prevalence of HBV is much low-
er (0.71–1.17%), but the prevalence of hepatitis C virus 
(HCV) (1.10–1.56%) is higher than in China (HBV: 6.52%; 
HCV: 0.72%). In 2016, the Global Health Sector Strategy 
on viral hepatitis called for elimination of viral hepatitis as a 
major public health threat by 2030.59 However, unlike other 
liver diseases, the relationship between viral hepatitis and 
ALDH2 remains unclear.

HCV infection is an important cause of chronic liver dis-
ease, with nearly 71 million chronically infected people 
worldwide.57 HCV and alcohol intake are both risk factors 
for accelerated fibrosis progression,60 and alcohol use in the 
setting of HCV infection is correlated with increased rates of 
fibrosis progression.61 Based on previous studies,62,63 the 
correlation between ALDH2 and HCV could be explained by 
the two following aspects: enhanced virus replication and 
immunity suppression.

For one thing, the metabolite ACH could help to activate 
the expression of miR-122 and miR-34a, both able to stim-
ulate HCV replication.64 Correspondingly, a large number 
of virus products brought about by strong virus replication 
will promote hepatocellular apoptosis. Apoptosis has a sec-
ondary amplification effect on the viral lethality in the liver, 
which not only delays virus clearance but also aggravates 
liver cell damage. And, then, Kupffer cells and hepatic stel-
late cells (HSC) are driven by interleukins to aggregate 
and participate in the phagocytosis and clearance of apo-
ptotic bodies.62 This process will accelerate the inflamma-
tory responses and fibrogenesis in the liver. Meanwhile, 
ACH could increase the activity of protein phosphatase 2A 
(PP2A).65 PP2A could reduce methylation of signal trans-
ducer and activator of transcription (STAT)-1 and forma-
tion of the protein inhibitor of the activated STAT-1 PIAS-
1-STAT-1 complex.64 Ultimately, the damage will enhance 
destruction of STAT-1 caused by HCV, thereby increasing 
the apoptosis (Fig. 3).

For another, some scientists have claimed that impair-
ment of immunity is a probable cause. Ethanol exposure 
enhances the inhibitory effect of HCV on innate immunity, 
thereby activating the spread of the virus in the liver and 
eventually leading to impaired adaptive immunity.63 The ex-
pression of interferon-stimulated genes (commonly referred 
to as ISGs) compromises over 300 antiviral molecules that 
synergistically exert innate immunity and are under con-
trol of the catalysis of retinol and retinoic acid biogenesis.65 
Interestingly, the toxicity of these two substances can be 
suppressed by ALDH metabolism. It means that inhibition 
of ALDH will hinder the body’s antiviral ability through the 
ISGs pathway. Therefore, one of the molecular mechanisms 
for the synergism between HCV and alcohol abuse in liver 
disease progression is hepatocyte metabolism involving 
ethanol-retinol metabolic competition.66

In addition, activated T cells can be combined with oth-
er immune cells to form a positive feedback effect, being 
aroused by various cellular factors in turn, in a bid to stir 
up inflammation and inhibiting further liver damage. Gao et 
al.37 discovered the phenomena that alcohol-fed Aldh2−/− 
mice were less sensitive to concanavalin A-induced T cell 
hepatitis than wild type mice. Their further study suggested 
that ACH directly restrained cytokine production in T cells by 
means of the inhibition of aerobic glycolysis or stimulation 
of corticosterone release, leading to the occurrence of sup-
pressed T cell hepatitis in ethanol-fed Aldh2−/− mice. What 
is more, there is a certain correlation between the HBV epi-
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demic area and the distribution of ALDH2 gene-defect ar-
eas in East Asia.67 Almost all patients with ALDH2 mutation 
genotypes are linked with HBV infection.68 Among patients 
with chronic HBV, homozygous carriers of the ALDH2*2 mu-
tant gene have a significantly increased risk of developing 
liver cirrhosis.

Generally speaking, there is an optimistic link between 
ALDH2 and HCV, and alcohol is undoubtedly a factor that 
aggravates the development of HCV disease and may also 
be a break-through point in the design of research experi-
ments.

Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the sixth most common 
cancer and the third leading cause of cancer mortality in 
the world.69 In China, HCC has emerged as one of the top 
three malignant tumors, according to rankings by preva-
lence and mortality.70,71 The prevalence rates of HCC were 
reportedly 0.03%, 0.01%, <0.01%, and <0.01% among 
the general population in China, the USA, Europe, and Ja-
pan, respectively.25 Meanwhile, HCC cases are increasing 
rapidly in China,69 which accounts for approximately 90% 
of all cases of primary liver cancer.72 Therefore, scientists 
have been endeavoring to explore the relationship between 
ALDH2 gene mutation and HCC (Table 235,73–79).

Generally, HBV infection and ALD are two major liver 
diseases with HCC developing tendency.60 Hou et al.73 in-
hibited aggressive behavior in vitro and in mice by forcing 
the expression of ALDH2 in HCC cells. Recently, Liu et al.35 
explored the association between ALDH2 polymorphisms 
and the risk of HCC among CHB patients, and their result 
showed that ALDH2 polymorphisms has nothing to do with 
HCC but does protect against developing HCC through ha-
bitual alcohol drinking, which was reported in another re-
search study as well.74 Similarly, based on an analysis of 
4,155 hepatitis B surface antigen seropositive participants, 

there is a distinct relationship between an increased risk 
of HCC in the HBV-positive cirrhosis population and ALDH2 
gene polymorphisms.75 Recently, a study involving both 
mice and human patients showed that ALDH2 gene defi-
ciency correlates well with a higher risk for advancement of 
alcohol related-fibrosis to HCC.76

A meta-analysis conducted by Chen et al.77 found that 
the ALDH2 rs671 polymorphism is not associated with HCC 
susceptibility in East Asians, and this is similar to the con-
clusion from Liu et al.35 Interestingly, Huang et al.78 found 
that the ALDH2 polymorphisms had a certain impact on 
resolution of HCC in patients. The result showed that HCC 
patients with a defective allele of ALDH2 have a prom-
ising postoperative outcome, after Kaplan-Meier analysis 
and univariate followed by multivariate Cox proportional 
hazard analysis indicated that the GG genotype is an inde-
pendent clinical predictor for shorter time-to-distant me-
tastasis (adjusted p=0.019) and shorter overall survival 
(adjusted p=0.001). Although the ALDH2*2 mutation it-
self does not lead to liver cancer directly, it will reduce 
ALDH2 protein levels and liver enzyme, which eventually 
is related to the accumulation of ACH in the blood and 
carcinogenic mutations. Likely, the results of animal ex-
periments show that the mouse ALDH2 (E487K) mutation 
significantly promotes the occurrence and development of 
mouse liver cancer.79

Unfortunately, despite a series of strong evidence sup-
porting ethanol as an environmental risk factor for HCC, the 
exact pathways by which alcohol causes HCC are still under 
exploration. ACH has been shown to affect DNA replication 
and repair mechanisms. After chronic alcohol exposure, 
Aldh2-deficient animals produce a large amount of harmful 
oxidized mitochondrial DNA via extracellular vesicles, which 
can be delivered into neighbor HCC cells and subsequent-
ly activate multiple oncogenic pathways, to promote HCC 
development (Fig. 4).76 What is more, consuming a large 
amount of ethanol induces microsomal ethanol metabolism 
by cytochrome P4502E1 (known as CYP2E1) and leads to 
additional production of acetaldehyde, as well as an in-

Fig. 3.  Effect of ALDH2 in HCV infection and toxic aldehydes. Ethanol is converted to acetaldehyde by the cytosolic enzyme ADH. Then acetaldehyde is converted 
to acetate by ALDH2. ACH could help to activate the expression of miR-122 and miR-34a, both of which are able to stimulate hepatitis C virus replication, leading to 
apoptosis. Kupffer cells and hepatic stellate cells (HSC) are driven by interleukins and aggregate to participate in the phagocytosis and clearance of apoptotic bodies. 
ACH also increases the activity of PP2A. PP2A could reduce methylation of signal transducer and activator of transcription (STAT)-1 and formation of the protein inhibitor 
of activated STAT-1 PIAS-1-STAT-1 complex. 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) are toxic aldehydes in human bodies, which are produced by 
reactive oxygen species (ROS). Meanwhile, ROS could activate nuclear factor-kappa B (NF-κB) and its downstream targets.
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crease in free radicals that can result in cell death, DNA 
damage, and even production of other carcinogenic sub-
stances.80,81 Other hypothesized pathways have included 
the transactivator protein X that is encoded by HBV and re-
molded to the extracellular matrix through hypoxia-induc-
ible factor-1α (HIF-1α) target genes and the lysyl oxidase 
(HIF-1α/LOX) pathway to promote HCC metastasis.82 The 
ALDH2-acetaldehyde-redox-AMP-activated protein kinase 
(AMPK) axis participates in the regulation of ACH levels, 
which is activated by ALDH2. Therefore, identifying ALDH2 
expression levels in HCC might be a useful biomarker for 
determining prognosis and developing targeted therapies 
that are urgently needed to treat patients with HCC.

In addition, human liver cancer tissue test results show 

that ALDH2*2 protein is extremely unstable in human liv-
er, and the low expression of ALDH2 protein has a certain 
correlation with the formation of liver cancer. The Journal 
of Hepatology also reports that a deficiency in the ALDH2 
gene expression is associated with an increased risk of HCC 
in patients with hepatitis B cirrhosis who overtake alcohol. 
Both in vivo and in vitro studies have found that liver cells 
from ALDH2-deficient mice can produce a large amount of 
harmful oxidized mitochondrial DNA,32 which is transferred 
to adjacent liver cells through extracellular vesicles and 
can activate multiple carcinogenic pathways involving ACH 
(JNK , STAT3, BCL-2, and TAZ) to promote the occurrence 
of alcohol-related HCC.73 ALDH2 could also affect metabo-
lism by regulating the ALDH2-acetaldehyde-redox-AMPK 

Fig. 4.  Effect of ALDH2 on HCC cells. After chronic alcohol exposure, the Aldh2-deficient mice produce a large amount of harmful oxidized mitochondrial DNA which 
are delivered into neighboring hepatocellular carcinoma (HCC) cells via extracellular vesicles.

Table 2.  Recent clinical studies on the relationship between the ALDH2 polymorphism and HCC

Author Year Conclusion Reference

Liu et al. 2016 Polymorphisms in ALDH2 had significant indirect effects on HCC risk, mediated  
through alcohol drinking.

35

Hou et al. 2017 Inhibiting aggressive behavior both in vitro and in mice by forcing the expression of  
ALDH2 in HCC cells.

73

Ye et al. 2018 The mutant genotypes of ALDH2 may be protective factors for HCC susceptibility in  
Guangxi Province, China.

74

Chien et al. 2016 GG genotype of ALDH2 rs671 was an HCC risk predictor in cirrhotic chronic hepatitis B  
patients.

75

Seo et al. 2019 ALDH2 deficiency is associated with an increased risk of alcohol-related HCC  
development from fibrosis in human patients and in mice.

76

Chen et al. 2020 ALDH2 rs671 polymorphisms are not associated with HCC susceptibility in East Asians. 77

Huang et al. 2019 HCC patients carrying a defective allele of ALDH2 had a favorable postoperative  
outcome.

78

Jin et al. 2015 ALDH 2 plays a role of tumor suppressor by maintaining the stability of genome in the 
liver, and the common human ALDH 2 variant would become an important risk factor  
for hepatocarcinogenesis.

79

Abbreviations: ALDH2, aldehyde dehydrogenase 2; CYP2E1, cytochrome P4502E1; HCC, hepatocellular carcinoma.
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axis,83 because AMPK can direct lipid metabolism to regu-
late tumor cell growth and survival. Actually, in proteom-
ics studies, among the proteins related to metabolism and 
liver function, ALDH2 does not have the highest expres-
sion level of enzymes, compared to ALDH1, ALDH4 and 
ALDH9A, according to the characteristics of the metabolic 
subgroup;84 however, we cannot look down upon the role 
of ALDH2 in HCC. Zahid et al.85 reported transcriptional 
suppression of alcohol metabolism regulators, and dem-
onstrated that ALDH2, downstream of the mTOR signal, is 
partly responsible for triggering oncogenic transformation 
of hepatocytes, resulting in disease onset and progression 
in HCC in silico.

In summary, ALDH2 is a potential risk factor for HCC. 
However, the clinical correlation between ALDH2 gene poly-
morphism and the occurrence and development of liver can-
cer remains to be further studied.

Conclusions

ALDH2 is a key enzyme in alcohol metabolism, and its ge-
netic mutations are mainly clustered in East Asia. The ge-
netic mutations of ALDH2 will depress ALDH2 enzyme activ-
ity and provoke accumulation of ACH, which will lead to the 
destruction of liver cells. Importantly, ALDH2 gene mutation 
and the potential impact of ACH on T cell response may 
become one of the factors affecting the progression of liver 
disease and outcomes of global liver disease. In conclusion, 
understanding the impact of disease progression related to 
the ALDH2 gene may be helpful for the improvement of fu-
ture liver disease prevention strategies.
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