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Abstract

Background and Aims: Great efforts have been made 
towards increasing our understanding of the pathogenesis 
involved in hepatocellular carcinoma (HCC), but the rapid 
growth inherent to such tumor development remains to 
be explored. Methods: We identified distinct gene coex-
pression modes upon liver tumor growth using weighted 
gene coexpression network analysis. Modeling of tumor 
growth as signaling activity was employed to understand 
the main cascades responsible for the growth. Hub genes 
in the modules were determined, examined in vitro, and 
further assembled into the growth signature. Results: We 
revealed modules related to the different growth states in 
HCC, especially the fastest growth module, which is pre-
served among different HCC cohorts. Moreover, signaling 
flux in the cell cycle pathway was found to act as a driving 
force for rapid growth. Twenty hub genes in the module 
were identified and assembled into the growth signature, 
and two genes (NCAPH, and RAD54L) were tested for their 
growth potential in vitro. Genetic alteration of the growth 
signature affected the global gene expression. The activ-
ity of the signature was associated with tumor metabolism 
and immunity in HCC. Finally, the prognosis effect of the 
growth signature was reproduced in nine cancers. Conclu-
sions: These results collectively demonstrate the molecule 
organization of rapid tumor growth in HCC, which is a highly 
synergistic process, with implications for the future man-
agement of patients.
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Introduction

Hepatocellular carcinoma (HCC) represents a leading cause 
of cancer-related death worldwide.1 Currently, though sev-
eral staging systems can stratify the HCC patients into 
appropriate risk categories, a great deal of divergence re-
mains within each risk group, due to the molecular hetero-
geneity of tumor cells and microenvironment. One way to 
describe the progression of HCC is tumor growth, since it 
might hold for the long-held view that rapidly growing tu-
mors are more likely to metastasize and become lethal than 
slow-growing tumors;2 although, the fundamental question 
regarding the ability of tumor cells to rapidly grow remains 
to be answered.

In fact, tumor cells adapt to changing environmental con-
ditions and profoundly shape the dependencies of individual 
cells. For instance, through aerobic glycolysis, cancer cells 
produce energy by taking up glucose at much higher rates 
than other cells, while, at the same time, using a smaller 
fraction of the glucose for energy production. This allows 
cancer cells to function more like fetal cells, promoting ex-
tremely rapid growth.3 However, the underlying molecular 
basis of the intertwined interactions among tumor immunol-
ogy, oncogenic signaling, and tissue/biochemical context, 
upon tumor growth remains largely unknown.4

Currently, a robust gene coexpression network for the 
mining of hub genes that drive pivotal signaling pathways 
in terms of large-scale gene expression profiles can be 
built through weighted gene coexpression network analysis 
(WGCNA).3 Previous studies have applied WGCNA to pro-
vide functional explanations of systems biology, proposing 
candidate therapeutic targets or diagnostic biomarkers for 
cancer in recent years.5 For example, Zhao et al.6 utilized 
WGCNA to investigate the relationships underlying the mo-
lecular and clinical characteristics of cholangiocarcinoma. 
However, a robust WGCNA network for cancer growth has 
not yet been established.

In the present study, the HCC transcriptome and tumor 
growth-related modules were explored by WGCNA. Focus-
ing on rapid tumor growth, the integrative functional analy-
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sis was expanded to the levels of the growth signature, as-
sociated molecular events, and corresponding modulations.

Methods

Data preparation

The transcription profile of HCC was downloaded from the 
Gene Expression Omnibus (commonly referred to as GEO) 
with accession number GSE54236, which includes 78 pri-
mary HCC tumor samples representing the different speeds 
of tumor growth:7 Briefly, patients underwent two comput-
ed tomography scans 6 weeks apart to determine tumor 
volumes and HCC doubling time, which ranged from 30 to 
621 days and were divided into the following quartiles: ≤53 
days (n=19), 54–82 days (n=20), 83–110 days (n=20), and 
≥111 days (n=19). Based on these quartiles, tumor growth 
was classified into slow, fast, faster, and fastest states, re-
spectively. Low and non-expressed genes were removed by 
selecting probes with a mean expression in the top 50% 
of all probes. Next, genes with expression variance above 
average level were selected. Different probes targeting the 
same gene were collapsed. These steps finally resulted in 
5511 genes to infer coexpression networks.

In addition, GSE14520, GSE25097, GSE62232, GSE36376 
datasets were obtained from the GEO database. RNA-seq 
expression profiles from nine cancer types, including adren-
ocortical carcinoma, kidney renal clear cell carcinoma, kid-
ney renal papillary cell carcinoma, brain lower grade glioma, 
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma, 
mesothelioma, pancreatic adenocarcinoma, and sarcoma, 
were obtained from The Cancer Genome Atlas (commonly 
known as TCGA) database. Detailed information about the 
datasets is shown in Supplementary Table 1.

Coexpression network construction

We constructed the coexpression network using the WGC-
NA package.8 Briefly, the steps included: (1) defining the 
similarity matrix; (2) choosing the soft threshold, β, and 
inferring the adjacency matrix; (3) defining the topologi-
cal overlap matrix; (4) performing hierarchical clustering; 
(5) performing the dynamic tree cut method to identify the 
modules; and (6) computing the module eigengene (ME) of 
each module. The ME can be considered as a representa-
tive of the gene expression profiles in a module. The aver-
age-linkage hierarchical clustering method was employed 

to cluster the MEs of all modules, and the modules with 
high similarity were merged to obtain the coexpression net-
work.9 Another tool, the CEMITool package, was used to 
validate the gene modules, as described previously.10

The module preservation statistic Zsummary was used to 
assess the overlap between network modules,8 which takes 
into account the overlap in module membership (MM), the 
density (mean connectivity) and connectivity (sum of con-
nections) patterns of modules. A module was considered 
not being preserved if preservation Zsummary < 2, moder-
ately preserved if 2≤Zsummary<10, and highly preserved 
if Zsummary ≥10.

Identification of hub genes and growth signature

Hub genes (genes that are highly interconnected with the 
nodes of the module) are of functional importance. MM was 
defined as the correlation between the ME and gene expres-
sion values. The MM measure is highly related to intramod-
ular connectivity (K.in).8 Highly connected intramodular 
hub genes tend to have high MM values to the respective 
module. In short, the larger the MM value of the gene, the 
higher the correlation between the gene and a given mod-
ule. In addition, the gene significance (GS) was defined as 
mediated p-value of each gene (GS=lgP) in the linear re-
gression between gene expression and the clinical traits.5

We used the network screening function based on GS 
(representing the correlation between the gene and a giv-
en clinical trait) and MM or K.in (representing the correla-
tion between the gene and a given module) in the WGCNA 
package to directly identify the top hub genes in the fast-
est growth module, and further assembled them into the 
growth signature. The growth activity was quantified by 
applying the single-sample gene-set enrichment analysis 
(ssGSEA).6 We defined the growth signature as either high 
or low by using median cut-off.

Functional annotation

Functional annotations of the gene sets were performed us-
ing webgestalt11 or Enrichr.12

Pathway activity computation

Using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways as templates for signal simulation, a ca-

Table 1.  Hub genes in the HCC rapid growth module

Top10 GS GS.Fastest p.GS.Fastest Top10 K.in K.in Top10 MM MM.green p.MM.green

CCNA2 0.5795 7.97E-16 CDCA5 51.7516 CCNB1 0.9639 2.53E-93

NDC80 0.5733 1.89E-15 CCNB1 50.1223 CDCA5 0.9611 8.49E-91

CDCA8 0.5700 2.99E-15 PRC1 50.1064 PRC1 0.9503 1.69E-82

CENPE 0.5580 1.48E-14 CDK1 48.4094 CDK1 0.9492 9.73E-82

KIF11 0.5576 1.55E-14 EXO1 47.6809 EXO1 0.9478 7.54E-81

H2AFX 0.5571 1.66E-14 BIRC5 46.9120 DLGAP5 0.9431 6.61E-78

RAD54L 0.5534 2.69E-14 DLGAP5 46.5064 CENPF 0.9404 2.24E-76

NCAPH 0.5520 3.20E-14 CENPF 44.2346 BIRC5 0.9354 1.11E-73

RFC4 0.5495 4.42E-14 PTTG1 44.0655 PTTG1 0.9352 1.32E-73

HJURP 0.5491 4.61E-14 CDCA8 43.8984 NUF2 0.9350 1.83E-73
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nonical circuit was defined as any possible route the signal 
can traverse to be transmitted from a particular input to a 
specific output node.13 The computation of the signal in-
tensity across the different circuits of the entire pathways 
was performed by the Hipathia program.13 In addition, the 
growth signature associated cancer pathway activity in pan-
cancer was performed using GSCALite.14

Modeling genetic-gene expression

Multi-layered profiles for DNA copy numbers, mRNA expres-
sion, and mutations in the LIHC data were obtained from 
the Xena portal (http://xena.ucsc.edu/). A linear modeling 
approach that measured the association of expression lev-
els was used on a gene-by-gene basis with a number of 
potential predictors, including gene mutations or genomic 
alterations, as previously described.15 Somatically acquired 
mutations and genomic alterations were presented by us-
ing Maftools16 and encoded as being present/absent. Linear 
expression models were fit with the Limma package.17 For 
the expression of gene k in patient i, Yik is fitted by the fol-
lowing equation:

0
1

ik ij jk k
j

Y X β β ε
=

= + +∑
Xij is the mutation matrix for patient i and mutation j, with 
entries Xij=1 denoting patient i has a mutation j and 0 oth-
erwise. The coefficients βjk measure the expression change 
in gene k induced by the presence of a mutation j. The entry 
β0k implies the baseline expression level of gene k.15

Immune and metabolism signatures

For each tumor sample, ESTIMATE was used to assess tu-
mor purity.18 The cytolytic activity or the interferon score 
of the local immune infiltrate was calculated as previously 
described.19 Gene signatures of 28 tumor-infiltrating lym-
phocytes, including CD8 or CD4 T cells, B cells, natural killer 
cells, as well as markers from multiple types of oncoimmu-
nology-containing genes were referenced in a prior study.20 
The ssGSEA method was utilized to quantify the enrichment 
levels of metabolism-related signatures based on Reactome 
(https://reactome.org) gene-sets.

Cellular experiments

The human liver cancer cell line HepG2 was purchased from 
the Cell Bank of Chinese Academy of Sciences (Shanghai, 
China). Cells were cultured in DMEM (Gibco, Life Technolo-
gies, Waltham, MA, USA) supplemented with 10% fetal 
bovine serum (Gibco), and used within 20 passages after 
culture.

Lentivirus production was performed as previously de-
scribed.21 The targeting sequences of short hairpin (sh)RNAs 
were as follows: 5′-CACCGAACCAACCAACTTTAA-3′ for sh-
NCAPH#1, 5′-ACTGACTCACCTCGCTTATTG-3′ for sh-NCAPH 
#2; and 5′-CTTTGTAATCATCCAGCTCTA-3′ for sh-RAD54L#1, 
5′-TGGTCTGGGTGTAGCTCTTAG-3′ for sh-RAD54L#2. Knock-
down efficiency was verified by quantitative PCR. The Cell 
Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, 
Japan) assays were used to measure cell proliferation.

Statistical analysis

Experimental data are represented as the average ± stand-

ard deviation. Unless otherwise indicated, the Student’s 
two-tailed unpaired t-test was used to determine statistical 
significance. The significance threshold was set at 0.05. For 
survival analysis, the LIHC data were analyzed with the GE-
PIA database.22 Samples were split into high and low groups 
based on the median value. Kaplan-Meier survival analysis 
was calculated using the log rank test, with a p value for 
significance of <0.05.

Results

Rapid growth module in HCC

In defining the gene clusters involved in HCC growth, 11 
distinct gene modules were explored using WGCNA, as 
shown in Fig. 1A.

Module stability was verified by repeating network con-
struction and module identification on expression data that 
consists of resampled sets of the original dataset or alter-
natively by another tool (the CEMITool) running the same 
dataset10 (Supplementary Fig. 1). The results proved the 
robustness of module assignments.

Next, we evaluated the relationship between each mod-
ule and the growth status. Notably, the cirrhotic features 
of modules (red, blue, yellow, brown) and the aggressive 
proliferative HCC features of modules (magenta and green 
for the faster and fastest state respectively) were identi-
fied (Fig. 1B and C). Network features such as GS, MM and 
K.in23 of each module in different growth states were com-
puted (Supplementary Table 2).

Moreover, we narrowed down our analyses to the fastest 
HCC growth. Module green (referred to as the growth mod-
ule hereafter) was the best, as reflected by its strongly posi-
tive correlations to the fastest tumor growth (Fig. 1B–D).

Signal fluxes in the rapid growth module

To ask the question of whether the growth module was 
highly preserved across independent HCC datasets, ex-
ternal validation was performed. Using five different HCC 
cohorts, the growth module showed a higher preservation 
statistics summary than expected by random chance us-
ing bootstrapping procedures (Fig. 2A). Thus, the growth 
module was deemed to hold promise in independent tumor 
profiles from different patient cohorts. For function enrich-
ment, the cut-off set with the false discover rate of <0.01, 
cell cycle, DNA replication, Fanconi anemia, etc. constituted 
the main KEGG pathways in the growth module (Fig. 2B).

To decompose the KEGG pathway into detail, a canonical 
circuit was defined as any possible route the signal can trav-
erse to be transmitted from a particular input to a specific 
output node.13 Effector nodes at the end of the circuits trig-
ger specific functions in the cell. Using gene expressions as 
proxies of node activation values, computation of the signal 
intensity across the different circuits of the pathways was 
performed by canonical circuit activity analysis to compute 
the transmission of the signal along the network.13 Thus, 
we estimated the level of activity of subpathways (signaling 
circuits) using the Hipathia program,13 and detected sev-
eral pathways with perturbed activity in the growth module 
(Supplementary Fig. 2).

Focusing on the cell cycle pathway, five effector circuits 
were deemed ultimately responsible for the functions of 
DNA replication and cell cycling. These circuits were high-
lighted in the fastest state, one of them ending in the node 
including RB1, one including RAD21, one containing TFDP1 
and E2F4, one ending in the node with protein genes for 

http://xena.ucsc.edu/
https://reactome.org
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CDC45, MCM7, MCM6, MCM5, MCM4, MCM3 and MCM2, and 
the last one ending in the node with protein genes for ORC 
and MCM (Fig. 2C). Indeed, most nodes in the effector cir-
cuits have adverse outcome in the LIHC cohort (Supplemen-
tary Fig. 3). These results clearly suggested the signaling in 
the green module as providing multiple routes and broader 
activity to promote cell cycle progression, thus accelerating 
tumor growth.

Rapid growth program in HCC

Next, we examined the hub genes in the growth module. 
Hub genes,5 including the top 10 GS, K.in or MM genes, are 
shown in Fig. 3A and Table 1. Among them, 20 genes were 
identified.

There was step-wise activation of all these genes that 
accompanied increased speed of tumor growth (Fig. 3A and 
Supplementary Fig. 4). The trend was clearly consistent and 
coordinated. As expected, all these hub genes were involved 
in the advanced prognosis of HCC, as evidenced by the re-
sults from our survival analysis (Supplementary Fig. 4).

Since the top 20 hub genes were densely interacted by 
protein-protein interaction analysis,24 we categorized them 
among the rapid growth signature (Fig. 3B) and applied the 
ssGSEA algorithm to infer the growth activity for each sam-
ple.

Recent advances in molecular biomarkers of HCC have 
indicated various oncogenes and tumor suppressor genes.25 
Indeed, growthhigh patients in our study were more likely to 
show higher expression of many known adverse prognostic 
biomarkers, such as AFP, DCP1A, GPC3, MDK, MCM6. In 
contrast, growthlow patients were likely to show higher ex-
pression of tumor suppressor genes, such as GPR155 and 
IFIT3 (Fig. 3C).

Furthermore, we found that rapid growth activity has a 
bad survival prognosis, both in LIHC and GSE14520 cohorts 
(Fig. 3D). These findings suggested a negative regulation 
relationship between the HCC growth program and HCC 

prognosis.
Next, we reasoned that genes in the signature would 

have a higher degree of association with cell proliferation. 
To test this hypothesis, we selected genes (NCAPH and RA-
D54L) for experimental validation. As expected, knockdown 
of NCAPH or RAD54L significantly suppressed the prolifera-
tion of HepG2 cells (Fig. 3E).

Somatic mutations and copy number alterations of 
the growth signature

We next investigated the growth signature at the genomic 
level. By focusing on the somatic non-silent mutation or 
copy number variation (commonly known as CNV) genes 
(Fig. 4A), the principal components analysis (commonly 
known as PCA) was computed to maximize the stability of 
the components. The first two principal components, re-
spectively, account for 13.6% and 11.2% of the total vari-
ability in gene expression; the first 20 principal components 
cumulatively explain 67% of the variance (Fig. 4B). Notably, 
overlaying the status of the genetic alterations of hub genes 
(growthmut) on to the first two principal components dem-
onstrated that mutations or CNV alterations correlated with 
general gene expression profiles (Fig. 4C).

The transcriptome was globally perturbed by growthmut, 
with expression levels of 6,565/15,569 (42%) genes sig-
nificantly associated with at least one genetic change of the 
hub genes (r>0.3, false discovery rate of <0.001). For in-
stance, genetic change of NUF2 co-occurred with other hub 
genes’ alteration, which led to 1069 genes’ differential ex-
pression (Fig. 4D–E). The observed variability can be largely 
explained by the presence of other hub genes’ alteration 
leading to strong up-regulation of NUF2 mRNA (Fig. 4D). 
The expression changes of the growthmut-related genes are 
summarized in Supplementary Table 3.

To understand the mechanism underlying growthmut, 
webgestalt11 analysis showed that growthmut-related genes 
were enriched in the KEGG pathways of cell cycle, oocyte 

Fig. 1.  Growth-related modules in HCC. (A) Clustering dendrograms of all genes, with dissimilarity based on topological overlap, together with assigned module 
colors. (B) Correlation between module eigengene and tumor growth state of HCC. (C) Heatmap representation of the module-module relationship. (D) Module signifi-
cance of each module in the fastest growth state of HCC. The higher the mean GS in a module is, the more significantly associated with tumor growth the module will be.
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meiosis and DNA replication, etc. (Fig. 4G). Given that on-
cogenic signaling accelerates cell cycle progression,26 these 

data indicated that growthmut cancers can amplify growth 
signaling to maintain cell proliferation.

Fig. 2.  Signaling events in the rapid growth module. (A) Preservation of growth modules between different datasets. Each module is represented by the color-code 
and label. The left panel shows the composite statistic of preservation median rank. High median ranks indicated low preservation. The right panel shows preservation 
of the Zsummary statistic. (B) Enrichment of KEGG pathways in the green module. (C) The cell cycle pathway (hsa04110). The upper panel indicates the comparison 
between slow tumors and the adjacent cirrhotic tissues. The lower panel compares the fastest tumors with the slow tumors. Genes in red represent genes that were 
up-regulated, and blue represents genes that were down-regulated. The right panel highlights five effector circuits for the function output.
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Rapid growth is associated with tumor immune-me-
tabolism

We then explored the correlation between growth activity 
and tumor-infiltrating lymphocytes (Fig. 5A). We observed 
a significant negative correlation of growth signature with 
Th1 cell types and positive correlation with Th2 cell types. 
Next, significant negative correlations between rapid 
growth and natural killer cells, plasmacytoid dendritic cells 
or macrophages were found (Fig. 5A and Supplementary 
Table 4).

Moreover, dysregulation of diverse immune signatures in 
HCC, including HLA expression, cytokines or chemokines, 
and interferon response were identified between growthhigh 
and growthlow groups (Fig. 5C). Notably, the growth signa-
ture showed strong correlation with neoantigens (r=0.37, 
p=1.52E-12 in LIHC; r=0.38, p=5.22E-09 in GSE14520) 
(Fig. 5B). In addition, tumor rapid growth showed no sig-
nificant correlation with immunoinhibitors or immunostimu-
lators, including well-known checkpoint genes (Table S4). 
Additionally, immune cytolytic activity or tumor burden was 
not significantly different between high versus low rapid 
growth tumors (Supplementary Fig. 5). Thus, the growth 
signature itself might not elicit the active immune response.

Next, we investigated the metabolic configuration ac-
cording to the growth activity. Using curated metabolic gene 
sets from Reactome as indicators, we found rapid tumor 
growth was highly associated with diverse metabolism pro-
cesses. For example, the rapid tumor growth was signifi-
cantly positively correlated with synthesis of DNA (r=0.73, 
p=1.37E-58 in LIHC; r=0.85, p=2.52E-64 in GSE14520) and 
negatively correlated with bile acid metabolism (r=−0.43, 

p=1.70E-17 in LIHC; r=−0.46, p=1.92E-13 in GSE14520). 
Detailed growth-metabolism correlations are provided in 
Supplementary Table 5.

The representative metabolic activity between growthhigh 
and growthlow tumors is provided in Fig. 5D. For instance, 
dysregulation of cytochrome P450, xenobiotics, and biologi-
cal oxidation are shown to be associated with poor prog-
nosis. These results suggested that growthhigh tumors tend 
to present an immunetolerant and metabolism reconfigured 
microenvironment in HCC.

Prognostic role of growth signature in pan-cancer

When extending the growth signature to the pan-cancers, 
we found a significant hazard ratio between the growth 
genes and overall survival or recurrence-free survival in 
multiple cancers, including adrenocortical carcinoma, kid-
ney renal clear cell carcinoma, kidney renal papillary cell 
carcinoma, brain lower grade glioma, LIHC, lung adenocar-
cinoma, mesothelioma, pancreatic adenocarcinoma, and 
sarcoma (Fig. 6A). Gene expression was significantly higher 
in the growthhigh group (Fig. 6D) and the growthhigh indi-
cated advanced prognosis in these cancers (Fig. 6B–C). The 
pathway relation network also indicated that the signature 
was mostly involved in the cell cycle in nine cancers (Fig. 
6E).

To investigate the clinical implications of the growth sig-
nature, we searched for targets of candidate drugs by using 
the L1000 project.27 The top 10 associations are present-
ed in Fig. 6F. Palbociclib functions as a CDK4/6 inhibitor in 
multiple cancers.28 It also acts as a novel radiosensitizer, 

Fig. 3.  Hub genes in the growth module. (A) Expression level of top three hub genes from cirrhotic, slow to the fastest growth state in HCC. (B) Highly intercon-
nected top 20 hub genes constitute the rapid growth signature. (C) Expression of well-known biomarkers of HCC between the growthhigh and growthlow group. The p 
values between the two groups were calculated by the Wilcoxon rank sum test. **p<0.01. (D) Kaplan-Meier survival plot of growthhigh vs. growthlow in the LIHC cohort 
or GSE14520 cohort respectively. (E) Knockdown of NCAPH or RAD54L suppressed HepG2 cells proliferation. The right panel denotes knockdown efficiency. Student’s t 
test was used to compare the differences. *p<0.05, **p<0.01.
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dovitinib, inducing apoptosis and overcoming sorafenib 
resistance in HCC through SHP-1-mediated inhibition of 
STAT3.29–32 As the topoisomerase inhibitor, mitoxantrone, 
was widely used in clinic.33 Canertinib is an irreversible 
EGFR inhibitor in cancers.34

Discussion

The theory that patients with a rapidly growing cancer have 
a poor prognostic outlook has remained persistent;2 thus, 
detailing the biological structure in the hidden layer of rapid 
growth is an interesting question.

As illustrated in this study, to understand the growth 
rate of HCC at the modular level and toward uncovering the 
critical drivers of the disease in a comprehensive manner, 
HCC transcriptomes were explored in the context of modu-
lar pattern, in which the green module was responsible for 
rapid tumor growth after internal and external validation. 
Briefly, the top enriched functional classes of this program 
are consistent with our existing knowledge of the cell cycle, 
as well as DNA repair, replication and cell proliferation in 
cancer.

Due to the presence of the highly interconnected top 20 

hub genes, we assembled them into the growth signature. 
At the gene level, we demonstrated that the expression 
levels of all these genes were increased in coordination 
with the state of growth-rate. Accordingly, high expression 
of these genes predicted the adverse outcome of HCC. In-
deed, various lines of evidence showed the involvement of 
these hub genes in previous studies. For example, CCNA2 
is the leading gene according to the GS rank. A recent 
study revealed a new poor-prognosis HCC entity and a 
rearrangement signature related to replication stress, due 
to CCNA2 alterations.35 The top K.in gene, CDCA5, tran-
scribed by E2F1, promotes oncogenesis by enhancing cell 
proliferation and inhibiting apoptosis via the AKT pathway 
in HCC.36 The top MM gene, CCNB1 was highly expressed 
in the samples of recurrent HCC, which was associated 
with significantly reduced recurrence-free survival.37 In 
addition, the vast majority of genes within the signa-
ture, such as RFC4, HJURP, ECT2, KIFC1, NUSAP1, CDK1, 
PRC1, KIF4A, etc., contribute to the pathogenesis of HCC, 
as reported previously.38–43 At the time of preparation of 
this paper, little is known about NCAPH and RAD54L in 
HCC. In this study, however, we found that knockdown of 
NCAPH and RAD54L expression is associated with growth 
inhibition.

Genetic background and in particular genomic alteration 

Fig. 4.  Genetic change of the growth signature correlates with differential expression. (A) Overview of the somatic non-silent mutation and CNV of the growth 
signature using Maftools. Samples are displayed in columns, and different colors indicate the different types of somatic mutations. The bar plots show the recalibrated 
mutation frequencies. (B) Distribution of the variance explained by the genetic alterations across genes. (C) Scatter plot of the first two principal components of the 
gene expression data overlaid with mutation status. (D) Distribution of the variance explained by genetic alterations across genes. The right panel indicated the heat-
map of observed pairwise mutation patterns (odds ratio). Blue color denotes preferential co-mutation/high overlap, while red color indicates mutual exclusivity. (E) 
Number of differentially expressed genes for each hub gene. (F) Scatter plot of expression predictions for the NUF2 gene vs. observed expression values. The inset 
shows the model coefficients, indicating the predicted magnitudes of expression changes when a given alteration is present. (G) Bar plot showing the GSEA enriched 
KEGG pathways of growthmut-affected genes. Enrichment is represented as −log10 (p value).
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might contribute to gene expression in HCC related to tu-
mor growth speed. Taking a genetic-centric view, we speci-
fied the set of gene expression changes that correlate with 
the alteration of the signature. The number of target genes 
whose expression are differentially affected varies widely 
across the different genetic change of growth signature. For 
example, BIRC5, playing dual roles in mitosis and cell sur-
vival of HCC,44 was independently correlated with expres-
sion levels of 920 genes. These data supported the notion 
that genetic change of these hub gene results in a rapid 
tumor growth.

Moreover, the growth signature exhibited a significant 
correlation with certain genomic features, such as tumor 
purity and neoantigens. Further, no obvious association 
between rapid growth and active antitumor immune sig-
natures was found. In addition, a significant negative cor-
relation was observed between growth activity and energy 
metabolism integration, biological oxidation, vitamins, fatty 
acid, and glucose metabolism, etc. (Supplementary Table 
5). The above results supported the idea of a link between 
tumor growth, metabolic landscape reconfiguration, and 
clinical progression of cancer. Accordingly, aggressive ma-
lignant phenotypes of cancer cells obtained by accumulated 
mutations change metabolic phenotypes for proliferation 
represented by nucleotide and amino acid metabolism. In-
deed, this hypothesis of highly coordinated growth program 
warrants further study.

Finally, candidate drugs have been inferred based on the 
growth signature. Numerous cell cycle inhibitors have been 
designed over the past decades.45 The current findings of 
growth-specific drugs for HCC would have potential implica-

tions in warranting future studies toward developing tar-
geted and combinatorial therapeutics for HCC.

Conclusions

Given the inherently modular profile of tumor growth, the 
present study revealed a unifying portrait of the growth sig-
nature of HCC, and could be extended to pan-cancer. Next, 
the study offered information to better define how specific 
organizations of genes are able to orchestrate rapid growth. 
Further, the growth signature has potential prognostic and 
therapeutic intervention value for HCC, lightening the way 
toward tailoring the targeted therapeutics for HCC.
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respectively, which have prognosis effect.
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