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Abstract

Background and Aims: The study established and com-
pared the efficacy of the clinicoradiological model, radiomics 
model and clinicoradiological-radiomics hybrid model in pre-
dicting the microvascular invasion (MVI) of hepatocellular 
carcinoma (HCC) using gadolinium ethoxybenzyl diethylene 
triaminepentaacetic acid (Gd-EOB-DTPA) enhanced MRI. 
Methods: This was a study that enrolled 602 HCC patients 
from two institutions. Least absolute shrinkage and selec-
tion operator (Lasso) method was used to screen for the 
most important clinicoradiological and radiomics features 
that predict MVI pre-operatively. Three machine learning 
algorithms were used to establish the clinicoradiological, 
radiomics, and clinicoradiological-radiomics hybrid models. 
Area under the curve (AUC) of receiver operating character-
istic (ROC) curves and Delong’s test were used to compare 
and quantify the predictive performance of the models. Re-
sults: The AUCs of the clinicoradiological model in training 
and validation cohorts were 0.793 and 0.701, respectively. 
The radiomics signature of arterial phase (AP) images alone 
achieved satisfying predictive efficacy for MVI, with AUCs of 
0.671 and 0.643 in training and validation cohort, respec-
tively. The combination of clinicoradiological factors and 

fusion radiomics signature of AP and VP images achieved 
AUCs of 0.824 and 0.801 in training and validation cohorts, 
0.812 and 0.805 in prospective validation and external vali-
dation cohorts, respectively. The hybrid model provided the 
best prediction results. The results of the Delong test re-
vealed that there were statistically significant differences 
among the clinicoradiological-radiomics hybrid model, clini-
coradiological model, and radiomics model (p<0.05). Con-
clusions: The combination of clinicoradiological factors and 
fusion radiomics signature of AP and VP images based on 
Gd-EOB-DTPA-enhanced MRI can effectively predict MVI.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
cancers worldwide and the third-leading cause of cancer-re-
lated death.1,2 At present, surgical resection and liver trans-
plantation are the first-line of HCC treatment, but the recur-
rence rates are still as high as 70% and 35%, respectively, 
in the 5 years after surgery.3–5 Several studies have shown 
that microvascular invasion (MVI) is the main risk factor for 
early postoperative recurrence.6 However, at present, MVI 
can only be diagnosed through invasive techniques such as 
surgery or histopathology of biopsy specimens. Accurate 
prediction of MVI before surgery will help in the develop-
ment of treatment strategies, thereby improving the sur-
vival and quality of life of the patients.

Tumor size,7–9 tumor margin, incomplete capsule,2,10,11 
and arterial peritumoral enhancement12–14 are significantly 
associated with the occurrence of MVI. Observation of peri-
tumoral hypointensity on hepatobiliary phase (HBP) 20 m 
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after injection of the contrast agent gadolinium ethoxyben-
zyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) has 
become an important imaging feature for predicting MVI.13,15 
However, the imaging features are limited by many factors, 
including poor interobserver reproducibility and lack of ex-
ternal verification.16 Radiomics is an emerging form of im-
aging analysis that uses a series of data-mining algorithms 
or statistical analysis tools to analyze high-throughput im-
aging features. Establishing appropriate models with quan-
titative features is important for predicting MVI.17 Feng et 
al.,18 Huang et al.,19 and Peng et al.1 demonstrated that the 
radiomics model is superior to arterial peritumoral enhance-
ment, tumor margin, and peritumoral hypointensity on HBP 
in predicting MVI. However, there are other scholars who 
believe that radiomics is inferior to imaging features in pre-
dicting MVI. At present, the effectiveness of preoperative 
prediction of MVI using radiomics is still controversial, and 
there is need for further studies to support the reliability of 
radiomics. The purpose of this study was to establish and 
compare the efficacy of clinicoradiological model, a radiom-
ics model, and a clinicoradiological-radiomics hybrid model 
based on Gd-EOB-DTPA-enhanced MRI in predicting MVI.

Methods

General clinical data

A group of 851 consecutive patients with HCC who under-
went curative resection were recruited from June 2017 to 
January 2022 at two institutions. The written consents were 
obtained using protocols approved by Institutional Research 
Subpanel on Human Studies at Southwest Hospital. Based 
on the exclusion criteria listed in Figure 1, 501 patients who 
had visited Southwest Hospital between June 2017 and July 
2020 were finally included in the study. The patients were 
randomly divided into training (351 cases) and validation 
(150 cases) cohorts at a ratio of 7:3. Sixty-seven HCC pa-
tients who had visited the hospital between August 2021 
and January 2022 were included as a prospective validation 
cohort and 34 who had visited The Second Affiliated Hospi-
tal of Chongqing Medical University between August 2021 

and December 2021 were included as an external validation 
cohort.

Clinical laboratory indicators and histopathology

Clinical data analyzed included sex, age, viral hepatitis B, 
and liver cirrhosis. Preoperative biochemical tests analyzed 
included AFP, white blood cell count, lymphocyte number, 
neutrophil number, platelet count, serum alkaline phos-
phatase, alanine aminotransferase, aspartate aminotrans-
ferase, serum albumin, serum total bilirubin, thrombin time, 
prothrombin time, and activated partial thromboplastin 
time (APTT).

The MVI status of all patients was evaluated by a patholo-
gist with 15 years of working experience, who were blinded 
to other clinical information. MVI-positive was defined as 
the presence of cancer cell nests in the vascular cavity lined 
by endothelial cells under a microscope, with the branches 
of the portal vein, including intracapsular blood vessels, as 
the main branch, and no visible tumor vascular invasion.20

MRI

MRI examinations were performed using a 3.0T (TrioTim; 
Siemens Healthcare, Erlangen, Germany) and a 1.5T (Sig-
na; GE, Milwaukee, Wisconsin, USA) MRI imaging system. 
Gd-EOB-DTPA at a dose of 0.1 mL/kg was injected through 
the cubital vein at a speed of 1.0 mL/s. The scan sequence 
before MRI enhancement included the positioning image, 
and the half-Fourier acquisition single-shot fast spin echo 
sequence (HASTE) coronary position, sagittal, chemical shift 
imaging, and three-dimensional volume interpolation rapid 
gradient echo (VIBE) plain scan. In the dynamic enhanced 
MRI scan, when the contrast agent reached the lower tho-
racic aorta, the patients held their breath for the arterial 
phase (AP) scan. The portal vein phase (VP), transitional 
phase and HBP scans were taken after a delay of 70 s, 2–5 
m and 15 m. Diffusion weighted imaging (DWI) imaging 
adopted breathing-triggered single-shot echo planar imag-
ing technology, with b values of 0, 400, and 800 s/mm2. 
DWI uses spectral attenuation inversion recovery technol-

Fig. 1.  Flowchart of patient inclusion. HCC, hepatocellular carcinoma; MRI, Magnetic Resonance Imaging; MVI, microvascular invasion.
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ogy for fat suppression. The apparent diffusion coefficient 
(ADC) value was calculated using a single exponential func-
tion with b values of 0 and 800 s/mm2.

MRI evaluation

Picture archiving and communication system (PACS) was 
used to evaluate preoperative MRI images. Two radiologists 
(reader 1 and 2, with 8 years of experience in abdominal 
MRI diagnosis) independently reviewed all MRI images. Any 
discrepancies between the two radiologists were arbitrated 
by a senior physician with more than 10 years of abdomi-
nal diagnostic experience. The radiologists were aware of 
the diagnosis of HCC but were blinded to other clinical in-
formation. Inter-reader variation of imaging features was 
analyzed using k statistics. The imaging features evaluated 
included (1) tumor size, defined as the largest long axis 
on cross-sectional HBP image; (2) tumor margin, divided 
into smooth and non-smooth margins on the HBP image (a 
round or oval shape was considered to be smooth; irregu-
larly lobulated tumors were considered non-smooth mar-
gins); (3) capsule, defined as a complete annular hyperen-
hancing structure at the tumor margin in the portal vein or 
transitional phase; (4) arterial peritumoral enhancement, 
defined as a crescent or polygonal enhancement around the 
tumor on the AP image, and the enhancement degree in the 
portal venous phase is slightly higher than or equal to that 
of the normal liver parenchyma; (5) peritumoral hypointen-
sity on HBP, defined as a wedge-shaped or flame-shaped 
hypointensity around the hepatobiliary tumor; (6) intratu-
moral fat, defined as the presence of signal loss within the 
tumor in reverse phase sequence; (7) intratumoral hem-
orrhage, defined as a high signal in the tumor on the T1-
weighted imaging (T1WI) sequence and a low signal on the 
susceptibility weighted imaging (SWI) sequence.

Image segmentation

The T1WI, T2WI, AP, VP, HBP, and ADC sequences of MRI 
for all patients were exported from the PACS system in 
DICOM format and uploaded to three-dimensional slicer 
software. Two radiologists (reader three, with 3 years of 
experience and reader four, with 4 years of experience in 
abdominal MRI diagnosis) manually segmented the tumor 
volume layer by layer on the six sequences, including the 
entire tumor, intratumoral hemorrhage, and necrotic areas, 
while avoiding abnormal peritumoral enhancement areas. 
The stability of each feature extracted from 30 randomly 
chosen patients was identified; reader three repeated the 
tumor segmentation twice within a week, and reader four 
performed the segmentation independently to assess in-
tra- and inter-reader reproducibility. The reproducibility was 
subjected to intraclass correlation coefficient (ICC) analysis. 
Radiomics features with intra- and inter-reader ICC values 
greater than 0.75 indicated excellent stability and were se-
lected for subsequent analysis.

Extraction and selection of radiomics features re-
lated to MVI

The original images and tumor segmentation images of 
T1WI, T2WI, AP, VP, HBP and ADC of 602 patients were up-
loaded to the Radcloud platform (Huiying Medical Technol-
ogy Co., Ltd; Beijing, China), and 1,409 radiomic features 
were extracted for each sequence. The radiomics features 
were divided into the (1) intensity feature, which describes 
the intensity information of pixels in the region of inter-

est, including energy, entropy, means, standard deviations, 
variances, maxima, medians, ranges, and Kurtosis; (2) 
shape feature, which describes the shape and size of the 
area of interest, including volume, surface area, compact-
ness, 2D/3D maximum diameter, and flatness; (3) texture 
features, which describe the relationship between pixels in 
the region of interest, that is, the texture information of 
the image, including the gray level co-occurrence matrix, 
the gray level dependence matrix, the gray level size zone 
matrix, the gray level run length matrix, and the sapient 
gray tone difference matrix; (4) high-order features, such 
as first-order features, and texture features, extracted after 
the image was subjected to filter transformation (i.e. loga-
rithmic transformation, exponential transformation, and 
wavelet transformation).

Before the features were extracted, the platform auto-
matically preprocessed the original image with the follow-
ing parameters: resampled pixel spacing: (1,1,1), binwidth: 
15, interpolator: SitkBSpline, and normalize: true. The nor-
malization formula:

( )x

x

s x
f(x)  

−µ
=

δ
where x and f(x) are the pixel intensities of the original im-
age and the standardized image, respectively, while µx and 
δx are the mean and standard deviation of the original im-
age intensity values. To assess the ability of each individual 
MRI sequence to predict MVI, and to determine if combining 
different sequences improves MVI prediction, we performed 
correlation analyses of individual MRI sequences and the 
combination of different MRI sequences.

The nearZeroVar function was used to remove features 
with variance close to 0 and the ratio of the first mode to the 
second mode technique exceeding 0.95. To avoid multicol-
linearity, correlation coefficient analysis was used to delete 
features with correlation coefficients greater than 0.9. Fi-
nally, the Lasso algorithm was used to identify the final ra-
diomics features that were most relevant in predicting MVI 
status. The Radscore of the corresponding MRI sequence 
was calculated according to the following formula:

i i
1

Radscore Intercept Coef Feature
n

i−
= + ×∑

where Intercept is the Lasso regression intercept, n is the 
total number of features screened by the Lasso algorithm, 
Coefi is the Lasso coefficient of the ith feature, and Featurei 
is the ith feature.

Screening of clinicoradiological risk factors

The classification index was examined using point-biserial 
analysis, continuous variables were evaluated by Pearson 
correlation analysis, and t-tests were used to evaluate the 
significance of correlations between clinicoradiological indi-
cators and MVI status. The Lasso algorithm was used to 
determine potential risk factors for MVI.

Model establishment and evaluation

Logistic regression (LR, normwt: TRUE, penalty:0), random 
forest (RF, maxnodes: 2) and support vector machine (SVM, 
kernel: radial, cost: 1, gamma: 10) were used to establish 
the clinicoradiological model, radiomics model, and clinico-
radiological-radiomics hybrid model for each MRI sequence 
and various combination sequences using R software. Re-
ceiver operating characteristic (ROC) curves were plotted, 
and area under the curve (AUC) was used determine the ef-
ficacy of MVI prediction. Comparison of ROC curves among 
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different models was performed using the Delong test and 
Bonferroni-corrected p-values and provided AUC, 95% con-
fidence intervals (CIs), sensitivity, specificity, accuracy, and 
F1 values, quantitatively demonstrating model discriminant 
efficacy.

Statistical analysis

The statistical analysis was performed using R software 
(version 4.0.3; Boston, MA, USA). Continuous variables 
were reported as means (SD) and compared using t-tests. 
Qualitative variables were reported as counts and propor-
tions and analyzed using chi-square tests. Two-tailed p-
values <0.05 were considered statistically significant. In 
machine learning, clinicoradiological, radiomics, and hybrid 
models were developed using a training cohort (70%) to 
predict MVI status. A validation cohort (30%) was used to 
evaluate the generalization ability of models, and was quan-
titatively evaluated using AUC, accuracy, sensitivity, speci-
ficity, F1 value. Prospective and external validation cohorts 
were used to evaluate the generalization ability of hybrid 
model (Supplementary File 1).

Results

Clinicoradiological features

The agreement between the two radiologists for all imaging 
features was excellent (κ=0.75–0.79). Table 1 compares 
the clinical, laboratory, and imaging features of MVI-posi-
tive and negative patients in training, validation, prospec-
tive validation, and external validation cohorts. The results 
showed that AFP, APTT, tumor margin, size, capsule, intra-
tumoral hemorrhage, arterial peritumoral enhancement and 
peritumoral hypointensity on HBP were significantly different 
between MVI-positive and MVI-negative groups (p<0.05) in 
training cohort. The Lasso algorithm identified AFP, APTT, 
tumor margin, capsule, intratumoral hemorrhage, arterial 
peritumoral enhancement and peritumoral hypointensity on 
HBP as important features affecting MVI (Fig. 2A).

Screening results of radiomics features

A total of 1,409 radiomics features were extracted from the 
volume of interest images of each MRI sequence. Variance 
threshold method, correlation coefficient analysis and Lasso 
algorithm were used for screening, and we found that 19 
features in the best single sequence of AP, 18 features in the 
best fusion sequence of AP and HBP, and 18 features in the 
fusion sequence of AP and VP were the most important for 
predicting MVI (Fig. 2).

Establishment and evaluation of the prediction mod-
els

We established three prediction models in this study, clini-
coradiological, radiomics, and clinicoradiological-radiomics 
hybrid models. The AUCs for predicting MVI using the clin-
icoradiological model based on AFP, APTT, tumor margin, 
capsule, intratumoral hemorrhage, arterial peritumoral 
enhancement and peritumoral hypointensity on HBP were 
0.793 and 0.701 in the training and validation cohorts, re-
spectively.

The best performing machine learning algorithm tested in 

this study was achieved by RF. Table 2 shows the prediction 
performance of the single sequence and the optimal fusion 
sequence radiomics model. The results showed that AP had 
the best performance of the single sequence, with AUCs of 
0.671 in training cohort and 0.643 in validation cohort. The 
fusion sequence with the best performance involved AP and 
HBP, with AUCs of 0.706 in training cohort and 0.625 in the 
cohort. These findings suggested that the single radiomics 
signature of AP had better predictive efficacy for MVI.

Comparison of the ROC curves of the three models 
showed that the clinicoradiological-radiomics hybrid model, 
which was the combination of clinicoradiological factors and 
fusion radiomics signature of AP and VP images, had the 
best predictive efficacy. The AUC of the model in training co-
hort was 0.824, and its sensitivity, specificity, and accuracy 
were 77.3%, 74.9%, and 76.1%, respectively. The AUC in 
validation cohort was 0.802, which was better than the ra-
diomics model (AUCs 0.643 in validation cohort) and the 
clinicoradiological model (AUCs 0.701 in validation cohort). 
Furthermore, the AUCs were 0.812 and 0.805 in the pro-
spective validation and external validation cohorts, respec-
tively (Tables 2 and 3, and Fig. 3). The results of the Delong 
test revealed that the clinicoradiological-radiomics hybrid 
model was significantly different from the clinicoradiological 
and radiomics models (p<0.05).

Discussion

In this study, we showed that there were significant differ-
ences between the MVI-positive group and the MVI-negative 
group in AFP, APTT, tumor margin, size, capsule, intratu-
moral hemorrhage, arterial peritumoral enhancement, and 
peritumoral hypointensity on HBP (p<0.05). In addition to 
tumor size, the remaining seven features were very impor-
tant in predicting MVI. An increase in serum AFP levels was 
associated with increased risk of MVI positivity, which was 
consistent with reports from literature.21,22 High serum AFP 
levels are associated with high microvessel density, which 
increases the occurrence of MVI.23 We also found that MVI-
positive patients had prolonged APTT, which can be attrib-
uted to increased production of procoagulant activity fac-
tor (PCA) and proinflammatory cytokines by MVI-positive 
tumor cells and has not been reported in previous studies. 
PCA can activate the coagulation system and lead to the 
consumption of coagulation factors that leaves the body 
in a pre-bleeding state; while proinflammatory cytokines, 
including tumor necrosis factor-α and interleukin-1β, can 
reduce the activation of the protein-C system and promote 
intrinsic coagulation24 leading to prolonged APTT.

Previous studies have shown that rough tumor mar-
gins,12,13 incomplete capsule,2,10,11 arterial peritumoral en-
hancement, and peritumoral hypointensity on HBP12,13 are 
important risk factors for MVI, which is consistent with our 
findings. Those imaging features are associated with tumor 
malignant biological behavior. The tumor breaks through 
the capsule or infiltrates the adjacent liver parenchyma, and 
easily invades the peritumoral portal vein branches, result-
ing in compensatory blood supply of the peritumoral arte-
rial branches. That causes a corresponding decrease in liver 
parenchyma function causing the dysfunctional hepatocytes 
around the tumor in the hepatobiliary stage to take up the 
contrast agent and emit a lower signal. The larger the tu-
mor, the greater its heterogeneity, which may reflect under-
lying poor cellular differentiation with necrosis, angiogen-
esis, and extracellular matrix deposition. We also found that 
intratumoral hemorrhage was an important imaging feature 
for predicting MVI that had not previously been reported 
in literature. The possible mechanism is that the release of 
red blood cells and the aggregation of platelets after intra-
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Table 1.  Baseline patient characteristics

Characteristics
Training cohort (n=301) Validation cohort (n=150)

MVI (−) MVI (+) P value MVI (−) MVI (+) P 
value176 175 74 76

Demographic data
    Sex 0.356 0.516
        Male 148 (84.1) 154 (88.0) 60 (81.1) 65 (85.5)
        Female 28 (15.9) 21 (12.0) 14 (18.9) 11 (14.5)
    Age 53.34 (10.49) 50.61 (11.01) 0.18 52.88 (10.30) 51.70 (11.18) 0.502
    Viral hepatitis B 0.103 0.81
        Absent 27 (15.3) 16 (9.1) 10 (13.5) 9 (11.8)
        Present 149 (84.7) 159 (90.9) 64 (86.5) 67 (88.2)
    Cirrhosis 1 1
        Absent 47 (26.7) 46 (26.3) 23 (31.1) 23 (30.3)
        Present 129 (73.3) 129 (73.7) 51 (68.9) 53 (69.7)
Laboratory parameters
    AFP 0.007 0.612
        Negative (0∼20 ng/mL) 84 (47.7) 58 (33.1) 29 (39.2) 26 (34.2)
        Positive (>20 ng/mL) 92 (52.3) 117 (66.9) 45 (60.8) 50 (65.8)
    Neutrophils 6.45 (12.78) 5.19 (8.58) 0.278 5.42 (9.58) 5.66 (11.68) 0.892
    WBC 5.97 (2.27) 6.01 (2.54) 0.891 5.75 (1.99) 5.96 (2.53) 0.57
    Lymphocyte 9.53 (102.92) 1.54 (1.87) 0.305 1.57 (1.11) 1.46 (0.52) 0.404
    Platelets 151.23(78.96) 159.89 (74.19) 0.291 153.35 (62.42) 154.17 (78.33) 0.944
    ALP 119.15(113.4) 113.89 (71.57) 0.604 102.01 (30.58) 106.91 (67.79) 0.572
    TBIL 18.86 (24.51) 18.20 (9.65) 0.74 17.68 (8.58) 17.79 (7.70) 0.932
    ALB 42.04 (5.39) 41.88 (5.23) 0.782 41.64 (4.37) 42.11 (6.65) 0.611
    ALT 59.90 (81.07) 74.00 (114.21) 0.183 59.93 (96.19) 50.16 (49.89) 0.435
    AST 53.89 (69.58) 69.65 (99.41) 0.086 55.73 (78.39) 50.11 (39.00) 0.578
    PT 13.56 (12.05) 12.15 (5.60) 0.16 14.42 (13.97) 11.44 (0.90) 0.066
    TT 17.17 (1.35) 17.13 (1.74) 0.809 17.52 (1.33) 17.13 (1.51) 0.094
    APTT 23.79 (10.19) 28.06 (3.81) <0.001 30.79 (31.43) 28.28 (3.94) 0.49
Imaging features
    Intratumoral hemorrhage <0.001 0.031
        Absent 123 (69.9) 81 (46.3) 56 (75.7) 42 (55.3)
        Focal (<50%) 50 (28.4) 84 (48.0) 16 (21.6) 29 (38.2)
        Massive 3 (1.7) 10 (5.7) 2 (2.7) 5 (6.6)
    Intratumoral fat 0.468 0.644
        Absent 148 (84.1) 147 (84.0) 63 (85.1) 65 (85.5)
        Focal (<50%) 19 (10.8) 23 (13.1) 8 (10.8) 10 (13.2)
        Massive 9 (5.1) 5 (2.9) 3 (4.1) 1 (1.3)
    Tumor margin <0.001 <0.001
        Smooth 110 (62.5) 37 (21.1) 44 (59.5) 18 (23.7)
        Not smooth 66 (37.5) 138 (78.9) 30 (40.5) 58 (76.3)
    Peritumoral hypointensity on hepatobiliary phase <0.001 0.046
        Absent 157 (89.2) 115 (65.7) 59 (79.7) 49 (64.5)
        Present 19 (10.8) 60 (34.3) 15 (20.3) 27 (35.5)
    Arterial peritumoral enhancement <0.001 0.02
        Absent 151 (85.8) 113 (64.6) 59 (79.7) 47 (61.8)
        Present 25 (14.2) 62 (35.4) 15 (20.3) 29 (38.2)
    Tumor size <0.001 0.037
        ≤2 cm 32 (18.2) 18 (10.3) 17 (23.0) 7 (9.2)
        >2 and ≤3 cm 50 (28.4) 22 (12.6) 16 (21.6) 12 (15.8)
        >3 and ≤5 cm 59 (33.5) 55 (31.4) 24 (32.4) 27 (35.5)
        >5 cm 35 (19.9) 80 (45.7) 17 (23.0) 30 (39.5)
    Tumor capsule <0.001 <0.001
        Absent 12 (6.8) 24 (13.7) 6 (8.1) 9 (11.8)
        Complete 127 (72.2) 25 (14.3) 48 (64.9) 10 (13.2)
        Incomplete 37 (21.0) 126 (72.0) 20 (27.0) 57 (75.0)

(extended)
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Table 1.  (extended)

Characteristics
Prospective Validation cohort (n=67) External Validation cohort (n=34)
MVI (−) MVI (+) P 

value
MVI (−) MVI (+) P 

value31 36 24 10
Demographic data
    Sex 0.721 0.114
        Male 22 (71.0) 28 (77.8) 20 (83.3) 5 (50.0)
        Female 9 (29.0) 8 (22.2) 4 (16.7) 5 (50.0)
    Age 52.55 (8.39) 52.53 (11.09) 0.993 53.00 (10.80) 59.20 (12.96) 0.16
    Viral hepatitis B 1 0.18
        Absent 5 (16.1) 5 (13.9) 3 (12.5) 4 (40.0)
        Present 26 (83.9) 31 (86.1) 21 (87.5) 6 (60.0)
    Cirrhosis 0.044 1
        Absent 13 (41.9) 6 (16.7) 10 (41.7) 4 (40.0)
        Present 18 (58.1) 30 (83.3) 14 (58.3) 6 (60.0)
Laboratory parameters
    AFP 0.57 0.363
        Negative (0∼20 ng/mL) 16 (51.6) 15 (41.7) 13 (54.2) 3 (30.0)
        Positive (>20 ng/mL) 15 (48.4) 21 (58.3) 11 (45.8) 7 (70.0)
    Neutrophils 3.22 (1.38) 3.41 (0.95) 0.518 4.27 (2.44) 2.98 (1.01) 0.119
    WBC 5.03 (1.53) 5.18 (1.14) 0.646 6.39 (2.65) 4.89 (1.28) 0.099
    Lymphocyte 1.37 (0.42) 1.67 (1.97) 0.414 1.44 (0.50) 1.36 (0.54) 0.709
    Platelets 141.71 (52.08) 153.92 (62.39) 0.392 139.54 (43.76) 156.50 (66.38) 0.385
    ALP 97.96 (31.62) 94.75 (28.68) 0.664 81.42 (20.38) 75.70 (30.38) 0.525
    TBIL 15.04 (5.09) 18.41 (9.65) 0.085 11.74 (6.74) 10.40 (5.28) 0.581
    ALB 43.88 (6.97) 43.00 (3.51) 0.505 41.90 (3.53) 40.36 (5.67) 0.341
    ALT 37.29 (19.83) 37.75 (23.51) 0.931 28.62 (12.15) 38.10 (25.58) 0.149
    AST 35.49 (16.27) 36.18 (15.67) 0.861 26.00 (6.31) 34.00 (14.85) 0.033
    PT 11.15 (1.09) 11.24 (0.77) 0.713 13.65 (0.76) 13.32 (0.80) 0.272
    TT 18.44 (1.11) 18.05 (1.07) 0.156 17.49 (1.12) 17.20 (1.28) 0.51
    APTT 27.54 (2.00) 27.05 (2.12) 0.332 38.05 (4.49) 36.87 (2.26) 0.436
Imaging features
    Intratumoral hemorrhage 0.106 0.782
        Absent 21 (67.7) 16 (44.4) 20 (83.3) 9 (90.0)
        Focal (<50%) 7 (22.6) 17 (47.2) 3 (12.5) 1 (10.0)
        Massive 3 (9.7) 3 (8.3) 1 (4.2) 0 (0.0)
    Intratumoral fat 0.785 0.026
        Absent 23 (74.2) 27 (75.0) 18 (75.0) 5 (50.0)
        Focal (<50%) 5 (16.1) 7 (19.4) 1 (4.2) 4 (40.0)
        Massive 3 (9.7) 2 (5.6) 5 (20.8) 1 (10.0)
    Tumor margin 0.162 0.001
        Smooth 24 (77.4) 21 (58.3) 21 (87.5) 2 (20.0)
        Not smooth 7 (22.6) 15 (41.7) 3 (12.5) 8 (80.0)
    Peritumoral hypointensity on hepatobiliary phase <0.001 0.122
        Absent 31 (100.0) 22 (61.1) 23 (95.8) 7 (70.0)
        Present 0 (0.0) 14 (38.9) 1 (4.2) 3 (30.0)
    Arterial peritumoral enhancement <0.001 1
        Absent 30 (96.8) 19 (52.8) 20 (83.3) 8 (80.0)
        Present 1 (3.2) 17 (47.2) 4 (16.7) 2 (20.0)
    Tumor size 0.65 0.059
        ≤2 cm 4 (12.9) 2 (5.6) 9 (37.5) 1 (10.0)
        >2 and ≤3 cm 9 (29.0) 10 (27.8) 8 (33.3) 1 (10.0)
        >3 and ≤5 cm 13 (41.9) 15 (41.7) 4 (16.7) 5 (50.0)
        >5 cm 5 (16.1) 9 (25.0) 3 (12.5) 3 (30.0)
    Tumor capsule <0.001 0.015
        Absent 2 (6.5) 8 (22.2) 3 (12.5) 1 (10.0)
        Complete 20 (64.5) 4 (11.1) 18 (75.0) 3 (30.0)
        Incomplete 9 (29.0) 24 (66.7) 3 (12.5) 6 (60.0)

AFP, alpha-fetoprotein; ALB, serum albumin; ALP, serum alkaline phosphatase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspar-
tate aminotransferase; PT, prothrombin time; TBIL, serum total bilirubin; TT, thrombin time; WBC, white blood cell count.
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tumoral hemorrhage activate the NF-kB pathway, thereby 
promoting tumor growth, invasion, and metastasis.25 Yin et 
al.26 also showed that extravascular erythrocytes and he-

moglobin can effectively promote tumor growth and tumor 
angiogenesis. For MVI-positive patients, liver transplanta-
tion and radiofrequency ablation are not recommended.27–29 

Fig. 2.  Screening results of clinicoradiological and radiomics features. The left panels show the screening process of clinicoradiological and radiomics features based 
on the Lasso algorithm. The panels in the middle show the mean standard error of the Lasso algorithm during the clinicoradiological and radiomics feature screening pro-
cess. The panels on the right show the clinicoradiological (A) and radiomics features, the AP sequence (B), the fusion sequence of AP and HBP (C), and the fusion sequence 
of AP and VP (D). AP, arterial phase; HBP, hepatobiliary phase; Lasso, least absolute shrinkage and selection operator; MSE, mean standard error; VP, portal vein phase.

Table 2.  Performance of the single sequence and the optimal fusion sequence radiomics model

Se-
quence

Training cohort Validation cohort

AUC CI ACC Sen Spe F1 AUC CI ACC Sen Spe F1

T1WI 0.641 0.59–0.691 0.621 0.727 0.52 0.662 0.55 0.47–0.631 0.547 0.676 0.434 0.595

T2WI 0.673 0.618–0.727 0.632 0.631 0.646 0.641 0.566 0.49–0.643 0.493 0.797 0.355 NA

AP 0.671 0.617–0.726 0.615 0.716 0.531 0.628 0.643 0.559–0.727 0.58 0.324 0.895 0.636

VP 0.634 0.578–0.691 0.613 0.739 0.486 0.658 0.532 0.443–0.621 0.493 0.473 0.645 0.542

HBP 0.679 0.625–0.732 0.638 0.665 0.611 0.663 0.628 0.54–0.716 0.587 0.459 0.737 0.557

ADC 0.701 0.649–0.753 0.652 0.722 0.606 0.693 0.607 0.52–0.695 0.573 0.77 0.408 0.632

AP/HBP 0.706 0.652–0.759 0.658 0.631 0.686 0.649 0.625 0.537–0.714 0.567 0.284 0.934 0.575

NA indicated that the predictions of MVI-negative samples were wrong, resulting in confusion of the matrix of the prediction results and having only one row and two 
columns, so that precision value could not be calculated. F1=2 * (precision * sensitivity) / (precision + sensitivity); therefore, the F1 value is empty. ACC, accuracy; 
ADC, apparent diffusion coefficient; AP, arterial phase; AUC, area under the curve; CI, confidence interval; HBP, hepatobiliary phase; Sen, Sensitivity; Spe, Specificity; 
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; VP, portal vein phase.
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Table 3.  Predictive performance of the optimal clinicoradiological-radiomics hybrid model

Sequence Evalua-
tion factor

Training cohort Validation cohort

Radiomics Clinicora-
diological Hybrid Radiomics Clinicora-

diological Hybrid

AP/VP AUC 0.659 0.793 0.824 0.572 0.701 0.802

CI 0.603–0.714 0.748–0.838 0.781–0.866 0.482–0.663 0.619–0.783 0.732–0.872

ACC 0.618 0.709 0.761 0.573 0.633 0.727

Sensitivity 0.494 0.608 0.773 0.595 0.5 0.838

Specificity 0.743 0.834 0.749 0.566 0.803 0.684

F1 0.581 0.742 0.764 0.529 0.671 0.717

ACC, accuracy; AP, arterial phase; AUC, area under the curve; CI, confidence interval; VP, portal vein phase.

Fig. 3.  Comparison of ROC curves for prediction of MVI. ROC curves of the clinicoradiological model, radiomics model of AP, and clinicoradiological-radiomics 
hybrid model that combines clinicoradiological factors and fusion radiomics signatures of AP and VP in training (A) and validation cohort (B). ROC curves of the clinico-
radiological-radiomics hybrid model in prospective and external validation cohort (C). AP, arterial phase; ROC, receiver operating characteristic; VP, portal vein phase.
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Patients with small HCC should undergo resection with a 
wider margin or anatomic resection, especially for lesions 
≤2–3 cm, and for larger HCCs, anatomic resection was also 
associated with improved relapse-free survival (RFS).30 In 
conclusion, wide margin resection can improve overall sur-
vival or RFS.

Several studies have reported that MRI radiomics can be 
used to predict MVI, but the radiomics features and their 
corresponding sequences that can effectively predict MVI 
are controversial and have poor reproducibility. A study by 
Nebbia et al.31 on multiple sequences of T1WI, T2WI, DWI, 
AP and VP showed that single radiomics signature of T2WI 
and VP sequence achieved satisfying performance, with 
AUCs of 0.808 and 0.792 in the validation cohort, while the 
fusion radiomic signature of the two achieved the best per-
formance, with AUCs of 0.867 in validation cohort. Zhang et 
al.32 showed that the fusion radiomics signature of AP, VP, 
and DP achieved the best predictive efficacy for MVI. In this 
study, we found that single radiomics signature of AP per-
formed better than any single or fusion sequence, which is 
consistent with the findings of Ma et al.33 A possible reason 
is that radiomics signatures of different sequences are mu-
tually exclusive, and the predictive performance of fusion 
radiomics signatures using multisequence performed worse. 
In addition, we found that radiomics signature achieved un-
satisfactory predictive efficacy for MVI, with the AUC of the 
best prediction result being only 0.643 in validation cohort, 
which was significantly worse than the results reported in 
literature.34,35 The discrepancy may be attributed to differ-
ent inclusion criteria for tumors, scanning models, image 
acquisition times, and algorithms of artificial intelligence 
software.17,36,37

We established and compared the predictive efficacies of 
clinicoradiological, radiomics, and clinicoradiological-radi-
omics hybrid models to select the best preoperative method 
for predicting MVI, help in development of treatment strate-
gies and prolong patient survival time. The results showed 
that the AUCs of the clinicoradiological model for predicting 
MVI were 0.793 and 0.701 in training and validation co-
hort, respectively. The AUCs of radiomics signature of AP 
were 0.671 and 0.643, respectively. The clinicoradiological-
radiomics hybrid model, a combination of clinicoradiological 
factors and fusion radiomics signature of AP and VP images, 
had AUCs of 0.824 and 0.801 in the training and valida-
tion cohorts, and the AUCs were 0.812 and 0.805 in the 
prospective and external validation cohorts. We concluded 
that the combination of clinicoradiological factors and fu-
sion radiomics signature of AP and VP images based on Gd-
EOB-DTPA-enhanced MRI effectively predicted MVI status. 
We found that the performance of radiomics signature of 
AP or fusion radiomics signature of AP and HBP achieved 
better results than fusion radiomics signature of AP and VP, 
with AUCs of 0.643, 0.625 and 0.572 in validation cohort, 
respectively. However, the combination of clinicoradiological 
factors and radiomics signature of AP or the combination 
of clinicoradiological factors and fusion radiomics signature 
of AP and HBP had unsatisfactory prediction efficacy, with 
AUCs of 0.753 and 0.763 in validation cohort, respectively. 
The findings may have resulted from lack of significant dif-
ferences in the performance of the radiomics signature of 
AP, fusion radiomics signature of AP and HBP or AP and VP. 
The respective predictive information of the clinicoradiologi-
cal factors and fusion radiomics signature of AP and VP was 
just complementary, resulting in the combination of clini-
coradiological factors and fusion radiomics signature of AP 
and VP achieving the best predictive efficacy, with AUCs of 
0.802 in validation cohort.

In our study, the clinicoradiological model outperformed 
the radiomics signature, which is consistent with the results 
of Xu et al.,17 who reported that the tumor capsule, margin, 
and arterial peritumoral enhancement are more important 

than radiomics R scores. However, several studies reported 
contrasting results. A meta-analysis by Huang et al.19 re-
vealed that the radiomic signature performed better than 
the clinicoradiological features. Feng et al.18 found that the 
HBP radiomics signatures of 160 HCC patients outperformed 
imaging features such as arterial peritumoral enhancement, 
rough tumor margin, and peritumoral hypointensity on HBP, 
with AUCs of 0.57 in the validation cohort, which was con-
sistent with the findings of Peng et al.1 This inconsistency 
may be related to differences in population characteristics, 
or scan imaging and delineation methods. Research results 
with over-fitting, and poor reproducibility, also explain the 
difficulty in applying radiomics to clinical practice so far. In 
this study, the clinicoradiological-radiomics hybrid model 
achieved the best predictive efficacy, and the findings were 
consistent with Yang et al.22 and Zhang et al.32 Therefore, 
the radiomics model can be used as an auxiliary tool for 
clinicoradiological model to predict MVI.

The study has some limitations. First, the lesions were 
segmented manually, which may have had to poor repro-
ducibility among investigators, and the results may not truly 
reflected the tumor margin characteristics There is need for 
validate our results using semi-automatic segmentation 
method. We also did not investigate whether peritumoral 
regional radiomics signatures have predictive value for MVI, 
which can be done in future studies.

Conclusions

The clinicoradiological model performed better than the ra-
diomics model with Gd-EOB-DTPA enhanced MRI. The clin-
icoradiological-radiomics hybrid model had the best predic-
tive efficacy for MVI.
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