
Copyright: © 2022 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License  
(CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided.  

“This article has been published in Journal of Clinical and Translational Hepatology at https://doi.org/10.14218/JCTH.2021.00501 and can also be viewed 
 on the Journal’s website at http://www.jcthnet.com ”.

Review Article

Journal of Clinical and Translational Hepatology 2022  vol. 10(6)  |  1186–1193 
DOI: 10.14218/JCTH.2021.00501

Therapeutic Perspectives of IL1 Family Members in Liver 
Diseases: An Update
Ines Bilić Ćurčić1,2#, Tomislav Kizivat1,2#, Ana Petrović1,3, Robert Smolić1,3, Ashraf Tabll4,5, George Y. Wu6  
and Martina Smolić1,3*

1Faculty of Medicine Osijek, University of Osijek, Osijek, Croatia; 2University Hospital Osijek, Osijek, Croatia; 3Faculty of Den-
tal Medicine and Health Osijek, University of Osijek, Osijek, Croatia; 4National Research Center, Giza, Egypt; 5Egypt Center for 
Research and Regenerative Medicine (ECRRM), Cairo, Egypt; 6University of Connecticut Health Center, Farmington, CT, USA

Received: 5 November 2021  |  Revised: 11 March 2022  |  Accepted: 16 June 2022  |  Published: 15 August 2022

Abstract

Interleukin (IL) 1 superfamily members are a cornerstone 
of a variety of inflammatory processes occurring in various 
organs including the liver. Progression of acute and chronic 
liver diseases regardless of etiology depends on the stage of 
hepatocyte damage, the release of inflammatory cytokines 
and disturbances in gut microbiota. IL1 cytokines and re-
ceptors can have pro- or anti-inflammatory roles, even dual 
functionalities conditioned by the microenvironment. Devel-
oping novel therapeutic strategies to block the IL1/IL1R sign-
aling pathways seems like a reasonable option. This mode of 
action is now exploited by anakinra and canakinumab, which 
are used to treat different inflammatory illnesses, and studies 
in liver diseases are on the way. In this mini review, we have 
focused on the IL1 superfamily members, given their cru-
cial role in liver inflammation diseases, specifically discussing 
their potential role in developing new treatment strategies.
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Introduction

Liver disorders are one of the major health care concerns 
worldwide1 mostly because of chronic liver diseases such 

as nonalcoholic/metabolically associated fatty liver disease 
(NAFLD/MAFLD), alcoholic liver disease (ALD) and viral hep-
atitis.2,3 In addition, acute liver disease can be associated 
with high mortality most frequently caused by drug associ-
ated liver injury, especially in Western countries.4 Autoim-
mune hepatitis (AIH) is also a risk factor for the development 
of liver cirrhosis and hepatocellular carcinoma.5 Therefore, 
exploring new therapeutic options for treatment of liver dis-
ease has become increasingly important in the past couple of 
decades. Given that inflammation, whether acute or chronic, 
and the production of proinflammatory cytokines play a key 
role in the progression of liver disease, it should not come as 
a surprise that the spotlight of recent pharmacotherapeutic 
research has been directed to immune processes and the 
development of molecules with immunomodulatory proper-
ties.6–8 In this review, we have focused on the interleukin 
(IL) 1 cytokine superfamily as an important player in the 
development of liver damage regardless of etiology.9

Pathobiological effects of the IL1 family

The IL1 superfamily consists of 11 members of IL1 super-
family cytokines and 10 members of IL1 superfamily recep-
tors and is divided into three subfamilies, the IL1 subfamily 
(IL1α, IL1β, and IL33, and IL1Ra), the IL18 subfamily (IL18 
and IL37), and the IL36 subfamily (IL36α, β, γ, and IL38). 
They are primarily associated with inflammation injury; yet 
some of the members also improve defensive mechanisms 
and build immune response to infection. However, most of 
the IL1 family have nonspecific features. These cytokines 
may function as pro-inflammatory (IL1α, IL1β, and IL33) 
or anti-inflammatory (IL1Ra, IL36Ra, IL37, or IL38) cy-
tokines; IL18 can act as either a pro- or anti-inflamma-
tory cytokine10–12 depending on the microenvironment. 
IL1 receptors (ILRs) consist of ligand binding subunits 
IL1R1, ST2, IL18Rα and IL36R, signaling subunits IL1RAcP, 
IL18Rβ, and a single immunoglobulin IL1-related receptor 
(SIGIRRs), alternatively named TIR8. SIGIRR/TIR8 has a 
regulatory function and is considered as an orphan recep-
tor.10 ILRs are comprised of two subunits, an extracellular 
immunoglobulin-like domains and an intracellular Toll/In-
terleukin1R (TIR) domain responsible for oligomerization of 
IL1R subunits after cell stimulation. Subsequently, MyD88 
activates nuclear factor-kappa B (NF-κB) and mitogen-
activated protein kinases) such as p38 and JNK pathways 
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eliciting inflammation (Fig. 1).10

IL1 superfamily members lack a signaling peptide for 
excretion. For instance, activation of IL1β, IL18, and IL37 
depends on caspase-1, which is triggered by the NOD-like 
receptor family, pyrin domain containing 3 (NLRP3)-in-
flammasome, converting procaspase-1 into the active cas-
pase.12 In contrast, IL1α is a biologically active precursor 
and is activated in liver necrosis.11 IL1α and IL33 have dual 
functions. They not only prevent inflammation induced by 
proapoptotic signals, but also act as proinflammatory fac-
tors following tissue necrosis, as part of a damage-associat-
ed molecular pattern or DAMP.11

NAFLD

NAFLD is a serious public health issue because of its high 
incidence and increased risk of its progression to liver cir-
rhosis and hepatocellular carcinoma.13 NAFLD consists of 
nonalcoholic fatty liver (NAFL), characterized by accumula-
tion of triglycerides in the absence of inflammation. Non-
alcoholic steatohepatitis (NASH), a more severe form of 
NAFLD characterized by cell damage and infiltration by in-
flammatory cells.14 In NAFL, liver damage is usually absent 
or insignificant because inflammation and pyroptosis are 
absent or mild. In NASH, stage inflammation and pyroptosis 
are more serious, and the damage is significant.15 In recent 
years, researchers have been increasingly interested in the 
association of NAFLD with inflammasomes, mostly NLRP3, 

and to some extent NLRP1, which is less understood, and 
pyroptosis.

NLRP3 inflammasomes are associated with various path-
ological events in different organs including fibrosis in the 
liver, heart, kidneys, lungs, and others.16 In the liver, activa-
tion of NLRP3 inflammasomes stimulates activation of cas-
pase-1, leading to pyroptosis.15 NLRP3 recognizes microbial 
and non-microbial signals of cell damage, and in NAFLD it 
is activated by lipotoxic ceramides17 and triggers aseptic in-
flammation18 by transferring the signal to apoptotic-related 
spot protein to activate caspase-1, a key processing media-
tor of interleukin 1 family of cytokines and gasdermin D (GS-
DMD) cleavage.12,19 GSDMD-N (cleaved GSDMD) then regu-
lates adipogenesis by activating the NF-κB signaling pathway 
and increases secretion of inflammatory cytokines.20

Pyroptosis is a form of programmed cell death, differ-
ent form apoptosis and autophagy, triggered by proinflam-
matory signals, and dependent on inflammatory caspase-1 
and caspases4, 5, and 11, with a series of inflammatory re-
sponses.15 It is characterized by the creation of membrane 
pores that dissipate ion gradients of the cells allowing in-
flux of water, cell swelling, osmotic dissolution, and release 
of proinflammatory substances inside of the cell, including 
IL1β, IL18, IL33), IL37, high mobility group protein box-1, 
and heat shock protein .7,21–23

The involvement of NLRP3 inflammasome activation 
in the severity of NAFLD has been elucidated by numer-
ous animal studies. Inflammation and fibrogenesis in liv-
er damage, was reduced in NLRP3 knockout mice fed a 

Fig. 1.  Three subfamilies of IL1 family. The IL1 subfamily (IL1α, IL1β and IL33, IL1Ra), IL18 subfamily (IL18 and IL37), and IL36 subfamily (IL36 α, β, γ, and 
IL38). These cytokines may have a dual function: proinflammatory (IL1α, IL1β, IL33) and anti-inflammatory (IL1Ra, IL36Ra, IL37, or IL38) while IL18 can act as 
pro- or anti-inflammatory cytokine. IL1 receptors (ILR) consist of ligand binding subunits IL1R1, ST2, IL18Rα and IL36R, and signaling subunits IL1RAcP, IL18Rβ, and 
SIGIRR. After cell stimulation, oligomerization of IL1R subunits takes place recruiting MyD88 and activating NF-κB and MAPK such as p38 and JNK pathways eliciting 
inflammation. IL1α and IL1β have a decoy receptor IL1R2 inhibiting their signaling, and IL1 and IL36 actions are antagonized by IL 1Ra and IL 36Ra. IL18 signaling is 
inhibited by IL18B, IL18BP, IL18-binding protein; MAPK, mitogen-activated protein kinase; c-Jun N-terminal kinase; NF-κB, nuclear factor-kappa B; PST2, suppression 
of tumorigenicity 2; SIGIRR, single immunoglobulin IL1-related receptor.
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choline-deficient amino acid diet, moreover arsenic trioxide 
induced pyroptosis by NLRP3 activation through cytoplas-
mic cathepsin that led to NAFLD development.24 MCC950, 
a selective inhibitor of NLRP3, significantly suppressed in-
flammation and fibrosis in NAFLD by reducing expression 
of caspase-1 and monocyte chemoattractant protein-1, 
IL1β and IL6 levels, and hindered migration of neutrophiles 
and macrophages in obese diabetic mice.25 Levels of IL33, 
also processed by NLRP3 inflammasomes, were increased 
in serum of mice fed a high-fat diet, and administration 
of IL33 to the mice attenuated hepatic steatosis but in-
creased fibrosis.26,27 Anakinra, an IL1 receptor antagonist, 
as a treatment in type 2 diabetes patients, resulted in a 
significant decrease of inflammation and insulin resistance. 
In the treatment of ethanol-induced liver injury, it resulted 
in a significant reduction of hepatic inflammation, steato-
sis, and neutrophil infiltration. This raises the possibility of 
its potential use for treatment of NAFLD.28–30 The evidence 
is consistent with other reports that inhibition of NLRP3 
inflammasomes and GSDMD significantly reduced inflam-
mation and fibrosis by regulating pyroptosis pathways.31–34

Another inflammasome important for the development of 
NAFLD is NLRP1. It is activated in nonhematopoietic cells 
and interacts with caspase-1, caspase-5, and most likely 
with apoptosis-associated speck-like protein containing a 
C-terminal caspase recruitment domain to form an inflam-
masome that activates both ILβ and IL18,7,35,36 but with 
a preference for IL18, at least in insulin-responsive tissue 
like adipocytes, muscle, and liver.35 Although the effects of 
activation of this inflammasome are not completely clear 
in the development of NAFLD, it has been shown that IL18 
has protective effects in animal models of NAFLD.37 How-
ever, that was not confirmed in type 2 diabetes patients or 
in obese children, in whom IL18 had the opposite correla-
tion.17,38 Henao-Mejia et al.39 reported that inflammasomes 
and their effector protein IL18 negatively regulated NAFLD/
NASH progression by modulation of the gut microbiota and 
gut leakage. In mouse models associated with inflammas-
ome-deficiency, IL18 changed the configuration of gut mi-
crobiota in a way that exacerbated hepatic steatosis and 
inflammation through influx of TLR4 and TLR9 agonists into 
the portal circulation, activating TNF-α expression that driv-
ing NASH progression.39

Furthermore, the anti-inflammatory cytokine IL37, was 
found to cause increases of circulating adiponectin and insu-
lin sensitivity in mice transgenic for human IL37 fed a high-
fat diet and in mRNA expression in human adipose tissue 
was correlated with insulin sensitivity.40 In the same trans-
genic mice fed ethanol, IL37 expression was lower than in 
pair-fed transgenic mice with the same extent of liver dam-
age. In patients with alcoholic steatohepatitis, IL37 levels 
were lower than they were in patients with NAFLD.41 It is 
important to note that no mouse homolog of IL37 has been 
described, and for that reason, only transgenic expression 
of human IL37 allows study its effects in a mouse model.

ALD

ALD includes acute and chronic forms that can progress to 
liver fibrosis or cirrhosis. Alcohol causes increased produc-
tion of the proinflammatory cytokine ILβ through activation 
of the inflammasome NLRP3-caspase 1.42,43 In addition, 
microRNA-148a, which is responsible for the inhibition of 
NLRP3 inflammasomes is decreased by alcohol consump-
tion through the transcriptional regulator forkhead box 
protein O1. A recently identified target molecule of micro-
RNA -148a, thioredoxin-interacting protein, was found to 
be overexpressed during ALD-induced inflammation in the 
liver through NLRP3 inflammasome activation and pyropto-
sis.44 ILβ also triggers invariant natural killer T lymphocyte 

activation leading to polymorphonucleocyte invasion and 
further liver damage.45,46 At the same time, several DAMPs 
such as ATP and uric acid are produced by hepatocytes,47 
further promoting liver damage. Development of new ther-
apeutic options to block the IL1/IL1R signaling pathways 
seems reasonable. For now, anakinra and canakinumab, 
drugs used to treat other inflammatory diseases, but not 
liver disease, have that mechanism of action. Anakinra is an 
ILR antagonist with an excellent safety profile, and is used 
to treat adult rheumatoid arthritis by blocking the biologic 
activity of IL1.48 The results of a study that found block-
age of IL1 signaling caused reduced liver inflammation and 
increased in liver regeneration in a mouse model of acute-
on-chronic liver injury induced by ethanol also support the 
hypothesis.49 In another animal study, administration of 
IL1Ra led to inhibition of IL1β signaling by down-regulation 
of Caspase-1 activity and inflammasome activation, thus 
reducing liver steatosis, inflammation, and damage. Admin-
istration of anakinra, an antagonist of IL1α and β receptors 
was more effective than inhibition of IL1β alone.28

Considering that human studies are lacking, data from 
the Defeat Alcoholic Steatohepatitis (DASH) study, a mul-
ticenter, randomized, double-blind controlled trial are ea-
gerly awaited. The primary objective is assessment of the 
safety and efficacy of a combination of an ILR1 antagonist, 
anakinra to suppress acute inflammation, pentoxifylline for 
hepatorenal syndrome prevention, and zinc sulfate com-
pared with methylprednisolone, a standard of care in al-
coholic steatohepatitis (ASH).29 The results of phase 2 tri-
als demonstrating the superiority of combination therapy 
regarding the survival rate after 3 and 6 months compared 
with glucocorticoid therapy are encouraging.50 Other treat-
ment options such as canakinumab, which targets IL1β and 
not IL1α seem to be less favorable compared with anakinra 
for treatment of liver disease.48

On the other hand, IL18 has shown a proinflammatory 
role in ALD by promoting inflammation and intestinal cell 
permeability in animal models.51 However, a study by Kh-
anova et al.52 using RNA sequencing and proteomic anal-
yses in a mouse binge-drinking model, showed that the 
CASP11/4- GSDMD pathway was associated with pyropto-
sis in ASH that was promoted by IL18 deficiency, indicating 
dual properties of IL18.52 Thus, depending on the microen-
vironment, IL18 has the potential to either promote or in-
hibit inflammation and liver damage, but studies in humans 
are lacking.

The IL1RL1 chain (also called ST2 or suppression of tu-
morigenicity 2, T1/ST2, or IL1-R4) is also a potential thera-
peutic target. IL33 is a soluble form of a decoy receptor 
shown to correlate with ALD severity in human patients.48 
In the early stages of the disease, ST2 has a protective 
role mediated by NF-κB inhibition in liver macrophages. It 
is independent of IL33, as was shown in an animal model 
comparing alcohol-induced liver injury, inflammation, and 
hepatic macrophage activation in wild-type, IL33−/− and 
ST2−/− mice. However, in the same study, which included 
ALD patients, only individuals with severely decompensated 
ALD had increases in serum IL33 and ST2.53,54 Hence, ST2/
IL33 potentially has a dual mode of action that is protective 
in the early stages of disease and damaging as liver injury 
and inflammation progress.

In a study investigating IL37 in humans and an animal 
model, IL37 transgenic mice had decreased expression of 
IL37 compared with pair-fed transgenic mice. Moreover, infu-
sion of human recombinant IL37 improved liver inflammation 
in a mouse binge-drinking model of ALD. In addition, IL37 
expression was compared in liver samples of NAFLD and ASH 
patients confirming, the anti-inflammatory activity of IL37 in 
ASH patients, as its expression was decreased when com-
pared to NAFLD patients.41 Enhancing IL-37 action could pre-
sent a possible therapeutic option in treating ALD.
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Fibrosis

Hepatic fibrosis is a major characteristic of chronic inflam-
matory liver disease progression and a risk factor for devel-
opment of hepatocellular carcinoma (HCC). Immunoregula-
tory mediators such as cytokines, including the IL-1 family, 
play an important role in fibrinogenesis. Activation of NOD-
like receptor NLRP3 inflammasomes has been identified as 
important factor in hepatocyte pyroptosis, liver inflamma-
tion and fibrosis, which can initiate and facilitate progres-
sion of fibrosis.55 These findings propose blockade of NLRP3 
pathway as a therapeutic target to reduce liver inflamma-
tion and fibrosis. IL-1 and its role in hepatic fibrosis has 
been extensively investigated. Gieling et al. conducted an 
in vivo study which found that IL-1 receptor-deficient mice 
exhibited decreased hepatic tissue damage and reduced fi-
brogenesis, indicating that IL-1 participates in the progres-
sion from liver injury to fibrosis.56 In a similar study, mice 
with steatosis induced by a high-fat diet, and deficient in 
either IL1α or IL1β had a significantly reduced transforma-
tion of steatosis to fibrosis. The result supports neutralizing 
IL1α and IL1β as a potential therapeutic option in the pro-
gression of liver fibrosis.57 Anakinra, an IL1R antagonist, 
has shown significant, beneficial modulation of liver inflam-
mation and fibrosis in several in vivo studies.7,28,58 On the 
other hand, in animal and human studies, IL33 activated 
hepatic stellate cells and worsened fibrosis.59,60

HCC

The IL1 family participates in signaling pathways in tumo-
rigenesis. The most extensively studied family members 
are IL1 and IL18. An epidemiological study in South Ko-
rea showed IL1β polymorphisms were associated with ei-
ther increased or decreased HCC risk.61 IL1α is produced 
in hepatocytes damaged by reactive oxygen species, and 
promoted carcinogenesis in a mouse model of carcinogen-
induced liver cancer. Targeting IL1R signaling may thus be 
a preventive or therapeutic option in HCC.62 Bermekimab, 
an IL1α-specific monoclonal antibody, was recently used in 
a phase III trial in treatment of metastatic colorectal cancer. 
The study showed no survival benefit of bermekimab, but 
cancer-associated cachexia was improved.63 There is strong 
evidence that the IL18/IL18R axis is a checkpoint in immu-
nological processes regulating carcinogenesis.9 Absence of 
IL18 production leads to loss of antitumor activity, partially 
because of the absence of the FasL-dependent cytotoxicity 
of hepatic natural killer (NK) cells. Reduced production of 
IL18 is also associated with increased liver metastasis of 
colorectal cancer.64 Currently, there are several clinical trials 
targeting the IL18 signaling pathway, including recombinant 
IL18 and a monoclonal anti-IL18 neutralizing antibody.65 El-
evated IL33 has been detected in HCC patients, and several 
animal model studies demonstrated antitumoral and anti-
metastatic activity of IL33. Some studies found decreased 
IL33 levels and its diminished effects as a protective factor 
in HCC, highlighting the need for further research of the 
mechanisms.66 Regarding IL37, current data suggests that 
it has antitumor activity in HCC, with strong evidence as-
sociating elevated hepatic levels with improved survival.67

Drug-induced liver injury

Acute liver injury is also mediated by IL1 superfamily mem-
bers. In murine-model studies of IL1α and IL1β knockout 
mice, acute liver injury was diminished compared with wild-
type mice.68 In addition, IL1869 and IL3370,71 promoted aceta-

minophen-induced liver injury, and IL36 exhibited a protec-
tive role by induction of CCL20, a protective chemokine.72 
Furthermore, in animal studies, IL37 was shown to have a 
dual function, with protection through TNF-α inhibition, and 
destruction by increasing liver injury.73,74 In acetaminophen-
induced liver injury, increased production of IL1β and IL18 by 
Kupffer cells have shown to induce IFN-γ and TNF-α secretion 
by Th1 and NK cells, resulting in acute drug-induced liver 
injury.69

Viral hepatitis (A, B, C)

The role of IL1 superfamily members in viral hepatitis-in-
duced liver inflammation has been widely studied and docu-
mented. Chronic hepatitis B virus (HBV) and hepatitis C virus 
(HCV) infection can lead to liver fibrosis, cirrhosis, and HCC. 
In vitro studies in cell cultures have shown that monocyte-
derived human macrophages, peripheral blood mononuclear 
cell – derived primary human macrophages, and Kupffer 
cells incubated with HCV demonstrated enhanced IL18 and/
or IL1β production through mechanisms involving NF-κB 
signaling, caspase-1 activation, and NLRP3 inflammasomes. 
Strategies targeting those interleukins may offer new ther-
apeutic options to reduce hepatic inflammation induced by 
HCV infection.75,76 Increased secretion of IL18 has also been 
observed in patients with hepatitis A virus (HAV) infection. 
A rare fulminant form of viral hepatitis has been reported 
in patients infection with HAV has been reported in patients 
with HAV infection and IL18 binding protein (IL18BP) defi-
ciency. IL18BP acts as inhibitory ligand, and its absence has 
been associated with uncontrolled NK cell activation by IL18 
resulting in hepatotoxicity, thus highlighting its potential in 
treatment and prevention of HAV induced acute liver.77 How-
ever, IL18-mediated stimulation of T cells, NK cells, and NKT 
cells leading to IFN-γ production has shown to significantly 
inhibit HBV replication, suggesting that IL18 has potential 
therapeutic value in HBV infected patients.78 Elevation of 
another member of the IL1 superfamily, IL33 has been ob-
served in patients with HBV and HCV, especially in those with 
the most severe forms of hepatitis. It has been suggested 
that it increases liver inflammation through activation of 
monocytes, TNFα, IL6, and IL1β.79

AIH

AIH is a chronic inflammatory liver disease with poorly un-
derstood pathophysiological mechanisms. Studies in animal 
models with concanavalin A – induced hepatitis show rapid 
neosynthesis of IL33, which demonstrates protective activity 
, possibly due to induction of anti-apoptotic factors and re-
cruitment of Treg which might be an important mechanism of 
liver repair.80 Another study suggests that NLRP3 inflamma-
some-induced IL1β production has an important role in the 
pathogenesis of concanavalin A – induced hepatitis, provid-
ing valuable findings regarding new therapeutic strategies for 
AIH by blocking NLRP3 inflammasome and IL1β.81

Therapeutic perspectives in liver disease

Current therapies for liver diseases are still quite modest, 
especially with regard to ALD or NAFLD. Therapeutic options 
targeting specific members of the IL1 superfamily seem to 
be very promising in the development of new drugs, and are 
summarized in Table 1.25,27–30,39–41,49,51,53,54,58–60,65,66,69,82–
84 In addition, some cytokines/receptors have anti-inflam-
matory action (IL37), and others like IL1α, IL1β, and IL18 
have pro-inflammatory activity, which could be very useful 
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by enabling us to act in two opposite ways on inflammatory 
liver disease, depending on whether agonist or antagonist 
properties are activated. Also, several cytokines share the 
same receptor. Hence, by its stimulation or inhibition, it is 
possible to influence several inflammatory processes medi-
ated by those molecules. For example, IL1RAcP is shared 
by IL1α, IL1β, IL33, and IL36. Interestingly, some family 
members, ST2 / IL33. Depending on the stage of damage 
or inflammation, it may have a protective effect in the early 
phase by ST2 activation. It may worsen inflammation and 
accelerate progression of fibrosis in the late phase by in-
creased IL33 secretion. However, the story behind the IL1 
superfamily is not simple, as the activation of IL1β and IL18 
involves not only the classical NLRP3/inflammatory cas-
pase-1 cytokine activation pathway, but also neutrophil ser-
ine proteases (NSPs), as shown in Figure 2, which explains 
why inhibition of NLRP3 and NLRP1 inflammasomes had low 
potency.85,86 Thus, in the future, development of therapeu-
tic options focus on targeting all of the mediators involved 
in the activation signaling pathway of all or several pro-
inflammatory cytokines, like alpha-1 antitrypsin an inhibitor 
of NSPs that protects against NAFLD development in animal 
models.6,87,88 However, a recombinant human IL1Ra, anak-
inra, has shown promising results in treating ALD, NAFLD 
in diabetic patients, and fibrosis. In addition, cankinumab, 

a human monoclonal anti-IL1β antibody demonstrated 
groundbreaking outcomes in the CANTOS trial, prevent-
ing atherosclerosis progression and reducing cardiovascu-
lar events.82 Given that administration of canakinumab in 
diabetic patients led to an improvement in hyperglycemia 
over a period of 1 year, it may have potential as an NAFLD 
treatment.83

In conclusion, most of the evidence presented in this mini 
review originates from preclinical studies, but evidence of 
the efficacy of these therapeutic options in humans is very 
scarce. Furthermore, the functions of all IL1 family mem-
bers, including IL36 and IL38, are not fully understood. We 
are still a long way from using the potential therapeutic ad-
vantages of IL1 family members in routine clinical practice 
because of lack of clinical data, high cost, and limited avail-
ability. Thus, more studies of the function of these cytokines 
and whether they truly represent a valid therapeutic target 
are needed.

Acknowledgments

This support of the Herman Lopata Chair in Hepatitis Re-
search is gratefully acknowledged (GYW).

Fig. 2.  IL1 family cytokine activation by NLRP3 inflammasomes, neutrophil serine proteases, and potential therapeutic targets. At first, in hepatocytes, 
activation of NF-κB via recruitment of MyD88 upon TLR4 receptor stimulation occurs. Then, NF-κB promotes the transcription of IL1α, IL1β, and IL18 encoding genes as 
well as NLRP3 inflammasomes. Activation of caspase-1 is stimulated by DAMP signaling mediated by the NLRP3 inflammasome complex. Pro-IL1β and pro-IL18 are acti-
vated via cleavage by caspase-1. while pro-IL1α is secreted as a biologically active precursor activated by calpain. Upon activation, IL1α, IL1β, and IL18 are transported 
to the extracellular space, promoting inflammation. Conversely, neutrophil activation causes release of NSPs, activating pro-inflammatory cytokines in the intra- and 
extracellular spaces. Inhibition of the signaling cascade represents potential therapeutic targets in liver disease. Currently available are anakinra, an IL1R antagonist, 
canakinumab, a monoclonal antibody inhibiting IL1β action and sulforaphane and MC950, which are both NLRP3 inflammasome inhibitors. DAMP, damage-associated 
molecular pattern; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor-kappa B; NLRP3, NOD-like receptor associated protein 3; NSP, neutrophil 
serin protease; TLR4, toll-like receptor; (pro)-IL1β, (pro) interleukin-1β; (pro)- IL18, (pro)- interleukin 18; (pro)-IL1α, (pro) interleukin-1α.
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