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Abstract

Portal hypertension in nonalcoholic fatty liver disease (NAFLD) 
mostly occur in cirrhotic stage. However, several experimental 
and clinical studies showed evidence of portal hypertension in 
NAFLD without significant or advance fibrosis. This early de-
velopment of portal hypertension in NAFLD is associated with 
liver sinusoidal contraction by hepatocellular lipid accumula-
tion and ballooning, which is also accompanied by capillariza-
tion and dysfunction of liver sinusoidal endothelial cells. Both 
of these impaired mechanical and molecular components can 
cause an increase in intrahepatic vascular resistance which 
lead to the increase of portal pressure in the absence of sig-
nificant liver fibrosis. Extrahepatic factors such as insulin re-
sistance and gut dysbiosis may also contribute to liver sinu-
soidal endothelial dysfunction and early portal hypertension 
in NAFLD. The clinical impact of early portal hypertension in 
NAFLD is still unclear. However, clinical tools for diagnosis and 
monitoring of portal hypertension in NAFLD are being investi-
gated to predict high-risk patients and to guide therapy.
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Introduction

NAFLD is a growing problem in western countries as well 

as in Asian countries. The prevalence of NAFLD has shown 
an increasing trend globally. A systemic review and meta-
analysis by Younossi et al.1 estimated an overall 25.24% 
global prevalence of NAFLD. The highest prevalence was in 
the Middle East (31.79%) and South America (30.45%). 
Another systematic review and meta-analysis by Li et al.2 
focusing on Asian studies from 1999 to 2019, showed an in-
creasing trend of NAFLD cases, from 25% in 1995–2005 to 
34% in 2012–2017. A higher prevalence of around 51% was 
reported by a study in an urban population in Indonesia.3 
As NAFLD has a close association with multiple metabolic 
comorbidities, an updated definition using new terminology 
of metabolic dysfunction-associated fatty liver disease or 
MAFLD has been suggested. Using MAFLD criteria, a sys-
temic review and meta-analysis by Liu et al.4 showed that 
among overweight or obese patients, the estimated global 
prevalence of MAFLD was 50.7%.

Similar to viral or alcohol etiologies, NAFLD can progress 
to liver cirrhosis. Most patients are asymptomatic until 
complications of portal hypertension develop. A subset of 
NAFLD patients can progress to nonalcoholic steatohepatitis 
(NASH), which is a risk factor of cirrhosis progression and 
hepatocellular carcinoma (HCC) development.5 According to 
survey data of the USA’s National Health and Nutrition Ex-
amination Survey, there were 2.5-fold and 2-fold increases 
in the prevalence of NASH cirrhosis and NAFLD-associated 
advanced fibrosis, respectively, in 2009–2012 compared 
with 1999–2002.6 Furthermore, in the USA, NASH and alco-
holic liver disease are the most common etiologies among 
liver transplant waiting list registrant without any evidence 
of HCC.7

The reported prevalence of portal hypertension in com-
pensated advanced liver disease (cALD) because of NASH, 
defined as a hepatic venous pressure gradient (HVPG) ≥5 
mmHg, is 60.9%, while the prevalence of clinically signifi-
cant portal hypertension (CSPH) defined as an HVPG ≥10 
mmHg is 39.1%.8 Mendes et al.9 showed that complica-
tions related to CSPH, such as esophageal varices, spleno-
megaly, portosystemic encephalopathy, and ascites, were 
present in 25% of NAFLD patients, 88% of whom had al-
ready developed cirrhosis or advance fibrosis. Interestingly, 
it was reported that 12% of NAFLD patient with signs of 
portal hypertension had no significant fibrosis (F0–F2), but 
had severe-grade steatosis. In their retrospective analy-
sis, Rodriques et al.10 found that in 14 of 89 patients with 
CSPH, mostly were NASH or with nodular regenerative hy-
perplasia without cirrhosis but with perisinusoidal fibrosis 
and eight of them had hepatocyte ballooning. The presence 
of mild portal hypertension, an HVPG of 5–9 mmHg, has 
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also been reported in a small number of noncirrhotic NAFLD 
patients, suggesting that steatosis per se also contributed 
to increased portal pressure.11–13 The studies suggest that 
portal hypertension can develop early during the natural 
history of NAFLD before development of significant fibrosis 
or cirrhosis. In this review we look into the pathogenesis, 
diagnosis, and therapy of portal hypertension in NAFLD.

Pathogenesis

General pathogenesis of portal hypertension

Portal hypertension (PH) can be divided into three groups 
based on the site of resistance, which are presinusoidal, 
sinusoidal, and post-sinusoidal. Sinusoidal PH is the most 
common in advanced liver disease of any etiology. The pri-
mary change in sinusoidal PH is an increase in intrahepatic 
vascular resistance (IHVR). The IHVR is mainly caused by 
distortion of structural components such as fibrosis and re-
generative nodules. The structural changes are accompa-
nied by an increase in intrahepatic vascular tone because 
of endothelial dysfunction secondary to an imbalance of in-
creased vasoconstrictors and decreased vasodilator stimuli. 
Furthermore, an increase in portal venous inflow because 
of splanchnic vasodilatation and increase in cardiac output 
further exacerbates the portal pressure. Increase in the 
portal pressure leads to formation of portosystemic collat-
eral vessels and varices. The evidence suggest that angio-
genesis also contributes to the formation of portosystemic 
collateral vessels.14

Liver steatosis contributes to the IHVR by sinusoidal 
compression and capillarization of endothelial cells

The main histopathological features of NAFLD include >5% 
steatotic hepatocytes with a centrilobular distribution, 
hepatocyte ballooning, lobular inflammation, and perisinu-
soidal fibrosis in NASH. With disease progression, fibrous 
septa, bridging fibrosis, and cirrhosis will eventually de-
velop. Several clinical studies have shown a correlation 
between steatosis grade and portal pressure in NAFLD pa-
tients, and the data suggest that an early increase in por-
tal pressure can occur without any evidence of significant 
fibrosis.9,11,12 Steatotic changes in NAFLD can contribute 
to increased portal pressure by sinusoidal compression and 
reduced vascular compliance, as shown by measurement 
of portal venous pulsatile flow and flow velocity. Several 
studies have found a negative correlation between portal 
venous pulsatility and flow velocity with steatosis and fi-
brosis grade in NAFLD patients.15–17 Using advanced tools 
such as intravital microscopy, Davis et al.18 was able to 
show in real time that the sinusoidal diameter was sig-
nificantly lower around steatotic hepatocytes in high-fat 
diet-fed C57BL/6 mice. Using a methionine choline-defi-
cient diet to induce NASH in C57BL/6J mice, McCuskey et 
al.19 reported a significant narrowing of the sinusoid lu-
men, especially in the centrilobular region in as early as 
3 weeks after feeding began.19 Morphological changes in 
liver sinusoidal endothelial cells (LSEC) in early NAFLD/
NASH have also been reported. In healthy livers, LSECs 
are fenestrated, porous, and without a basement mem-
brane. Miyao et al.20 reported that as early as 1 week after 
starting a choline-deficient L-amino acid defined diet (early 
steatosis model) and 22 weeks after a high-fat diet in a 
mice (early NASH model), there was a capillarization or 
defenestration with reduction in porosity of the LSEC fol-
lowed by Kupffer cell and HSC activation. In human NAFLD, 

using CD31 as a marker of LSEC capillarization, increased 
expression of CD31 was detected in the centrilobular area 
(zone 3).21 Excessive dietary lipid or glucose may trigger 
LSEC capillarization in NAFLD. An in vitro study showed 
that when primary human LSECs were treated with ox-
LDL, the fenestral diameter and porosity of LSECs were 
reduced, and the responses were mediated via the LOX1/
ROS/NF-kB signaling pathway.22 The defenestration of 
LSECs may then promote liver steatosis, creating a vicious 
cycle in NAFLD disease progression. Plasmalemma vesicle-
associated protein (PLVAP), is an endothelial-specific in-
tegral membrane glycoprotein required for the formation 
of endothelial fenestrae. Mice deficient in PLVAP showed a 
reduced number of LSEC fenestration with impaired pas-
sage of chylomicron remnant from sinusoidal into hepato-
cytes. Lack of chylomicron remnants by the hepatocytes 
might then stimulate de novo lipogenesis or endogenous 
cholesterol biosynthesis.23 That, in turn, further augments 
liver steatosis and an increase in the IHVR. Furthermore, 
restoration of LSEC porosity by returning to a normal diet 
or statin administration may reduce portal pressure.24

Liver steatosis contributes to IHVR through sinusoi-
dal endothelial dysfunction

Sinusoidal endothelial dysfunction refers to the inability of 
LSEC to expand in response to the shear stress of blood flow. 
It is characterized by diminished bioavailability of vasodila-
tors such as nitric oxide (NO) and increased synthesis of va-
soconstrictors such as endothelin-1 (ET-1), resulting in in-
creased intrahepatic vascular resistance (IHVR). Early NAFLD 
is associated with LSEC dysfunction and increased oxidative 
stress in the absence of inflammation or fibrosis.25 Pasarin 
et al.26 showed that when Wistar Kyoto rats were fed a diet 
rich in saturated fat for 1 month, the in vivo portal pressure 
was increased and the Akt-dependent endothelial nitric ox-
ide synthase (eNOS) phosphorylation and NOS activity were 
decreased in the absence of liver inflammation and fibrosis. 
There was also a decreased response to vasodilator acetyl-
choline in isolated liver perfusion experiments. Similar re-
sults were also reported by Francque et al.27 in methionine 
choline-deficient diet-fed rats. They showed that the liver ex-
pression of vasoconstrictor ET-1 was significantly increased. 
In healthy LSECs, NO keeps Kupffer cells and hepatic stellate 
cells (HSC) in a quiescent state. LSEC dysfunction with di-
minished NO bioavailability can lead to sinusoidal contraction 
by activated perisinusoidal HSCs and increased IHVR and 
portal pressure.14 Diminished NO may in turn aggravate liver 
steatosis and further increase IHVR. NO can decrease liver 
steatosis by s-nitrosylation of very long chain acyl coenzyme 
A dehydrogenase, an enzyme in the liver that catalyzes the 
first committed step in fatty acid β-oxidation.28 NO is also in-
volved in fatty acid synthesis by controlling mitochondria en-
zymes, such as citrate synthase and NADH–cytochrome c ox-
idoreductase (KI+III) and inhibition of glycerol-3-phosphate 
acyltransferase (GPAT).[29.30] In addition to NO, hedgehog 
signaling, the expression TGFβ and VEGF by dysfunctional 
LSEC are also increased and augment HSC activation and 
sinusoidal contraction.31

Change of liver steatosis is associated with splanch-
nic vasodilatation

Francque et al.32 showed that in Wistar rats fed a methio-
nine choline-deficient diet, steatosis induced portal hyper-
tension with an increase in mesenteric arterial and portal 
venous flow, arterial low responsiveness to vasoconstric-
tors, and decreased mean arterial blood pressure, indicat-
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ing the presence of splanchnic vasodilation and hyperdy-
namic circulation.32

Extrahepatic factors

Insulin resistance is associated with NAFLD through in-
creased adipose tissue lipolysis, with the increase of free 
fatty acid delivery to hepatocytes. Insulin resistance may 
also play a role in LSEC dysfunction and contribute to IHVR 
and portal pressure. Pasarin et al.33 in a study using a rat 
model of simple steatosis, showed that dose-dependent si-
nusoidal endothelium vasodilation was blunted in response 
to insulin in rats fed an HFD. Treatment with metformin, 
an insulin sensitizer, restored insulin-enhanced endotheli-
um vasodilatation in the livers of the HFD-fed rats. In their 
analysis, Francque et al.13 showed that the homeostatic 
model assessment for insulin resistance (HOMA-IR), as a 
parameter of insulin resistance, was significantly higher in 
NAFLD patients with PH than without PH, independent of 
liver steatosis and visceral fat.13

Gut dysbiosis has a role in NAFLD disease progression, 
including the development of portal hypertension. In rat 
model of NASH, 8 weeks of high-fat and high glucose-fruc-
tose feeding induced histological NASH without fibrosis, ac-
companied by endothelial dysfunction and increased portal 
pressure. In that rat model of NASH, intestinal microbiome 
diversity was reduced with significant increase in Firmicutes 
and decrease in Bacteroidetes. Furthermore, fecal trans-
plantation from control rats reduced portal pressure and 
IHVR and improvement of endothelial dysfunction.34

Animal models

Several animal models have been used to study portal hy-
pertension in NAFLD (Table 1).26,27,34–36 The models show 
that portal pressure increases early in NAFLD or NASH in the 
absence of advanced fibrosis or cirrhosis. Unlike common 
animal models of cirrhotic portal hypertension, the presence 
of hyperdynamic circulation and increased portal vein inflow 
were not consistent evident in diet-induced model.

Clinical aspect

Diagnosis

Currently, hepatic venous pressure gradient (HVPG) is con-
sidered the main diagnostic tool for measuring the PPG and 
is considered the gold standard for measurement of CSPH.37 
HVPG is the difference between wedged and free hepat-
ic venous pressure. Limitations of HVPG are invasiveness 
and availability limited to specialized centers. The report-
ed prevalence of portal hypertension, defined as HVPG >5 
mmHg, was lower in nonobese and obese NASH compared 
with other etiologies of compensated advanced chronic liver 
disease.8 There was a weaker correlation between wedged 
hepatic venous pressure and portal pressure in decompen-
sated NASH cirrhosis compared to alcohol or viral-related 
cirrhosis, suggesting that HVPG might underestimate the 
portal venous pressure 38 That might be associated with the 
presence of presinusoidal hypertension or the heterogenous 
distribution of steatosis and fibrosis within the liver paren-
chyma. Another study showed that portal hypertension-
related decompensation was associated with lower HVPG 
levels in advanced NAFLD.39 In NASH cirrhosis, a decrease 
in HVPG after nonselective beta blocker was not predictor 
of decompensation or long-term transplant free survival.40 
Therefore, routine HVPG measurement may not be an ideal 
tool for detection and monitoring of portal hypertension in 
NAFLD or different HVPG cutoff level should be established 
for NAFLD.

Some noninvasive tools have been developed for the de-
tection of CSPH through measurement of liver or spleen tis-
sue stiffness. According to the revised Baveno VII criteria, 
a combination of liver stiffness measurement by transient 
elastography (TE) ≤15 kPa and platelet count ≥150×109/L) 
have sensitivity and negative predictive values of >90% 
for ruling out CSPH in most etiologies of compensated ad-
vanced liver diseases (cALD, TE >10 kPa), including NASH. 
In viral- and alcohol-related cALD and also in nonobese 
NASH-related cALD, using a higher cutoff of TE ≥ 25kPa, 
we can rule in CSPH with specificity and positive predictive 
value >90%) but not in obese NASH.37 While Baveno VI 

Table 1.  NAFLD animal models with portal hypertension

Author (year) Animal Histopathology Note

Dietary model

  Francque et al., 201227 Male Wistar rats methionine choline-
deficient diet for 4–8 weeks

Severe steatosis 
without marked 
inflammation & fibrosis

No feature of metabolic 
syndrome. Increased 
portal pressure

  Pasarin et al., 201226 Male Wistar Kyoto rats. Cafeteria 
diet (65% saturated fat) for 1 month

Steatosis without 
inflammation 
and fibrosis

With features of metabolic 
syndrome. Increased 
trend of portal pressure 
(not significant)

  Garcia et al., 201834 Male Sprague Dawley rats. High-fat 
high glucose-fructose diet (30% 
fat mainly saturated) for 8 weeks

Steatohepatitis with 
mild or absent fibrosis

With features of metabolic 
syndrome. Increased 
portal pressure

Transgenic mice

  Klein et al., 201935 Transgenic TG (mRen2)27(Ren2) 
hypertensive rats with elevated 
tissue Angiotensin II

Renin induced liver 
injury. Steatohepatitis 
and mild fibrosis

Hypertensive rats, 
nonobese. Renin induced 
portal hypertension

Combined

  Cremonese et al., 202036 TGR (mREN2)27 rats with 
Western diet for 2 or 4 weeks

Steatohepatitis 
and fibrosis

Obese. Increased 
portal pressure

NAFLD, nonalcoholic fatty liver disease.
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criteria (TE <20 kPa + platelet count >150×103/mm3) can 
be used to rule out high-risk esophageal varices.41 However, 
obesity can overestimate liver stiffness measurement using 
TE, and obese patients have a lower prevalence of CSPH 
despite high liver stiffness.37,42

Splenomegaly in portal hypertension is associated with 
changes in spleen stiffness due to splenic congestion and 
spleen tissue hyperplasia and fibrosis. Spleen stiffness 
measurement (SSM) using several techniques such as TE, 
SWE, or MRE could predict portal hypertension and the pres-
ence of esophageal varices or high-risk varices.43 In cALD 
patients of various etiologies, Colecchia et al.44 showed that 
the combined model of Baveno VI criteria + SSM ≤46 kPa 
could rule out high-risk esophageal varices with high sen-
sitivity and negative predictive value. A spleen-dedicated 
stiffness measurement, using a 100 Hz specific TE probe, 
has recently been shown to be more accurate for predict-
ing varices or high-risk varices in chronic liver disease,45,46 
but further studies are needed to validate the findings in 
NAFLD/NASH. In early NAFLD/NASH, IHVR may not be ac-
companied by the splenomegaly and concomitant increase 
of splanchnic inflow. Therefore, the use of SSM for predict-
ing portal hypertension in NAFLD may be limited to patients 
with advanced liver disease or cirrhosis.

Several Doppler ultrasound (US) parameters are associ-
ated with portal hypertension in chronic liver disease. How-
ever, definitive parameters for accurate prediction of por-
tal hypertension in NAFLD are lacking. In NAFLD, steatosis 
grade is correlated with reduced portal venous blood ve-
locity (lower peak maximum–minimum velocity, mean flow 
velocity, and portal vein pulsatility index (VPI) and com-
pensatory increase of hepatic arterial flow (lower hepatic 
artery resistive index).15,16,47,48 Using routine Doppler US, 
portal VPI can be calculated as (Vmax – Vmin) / Vmax, 
where Vmax is the maximum and Vmin is the minimum 
pulsed-wave Doppler ultrasound–estimated velocity of por-
tal venous blood. Baikpour et al.15 showed that lower portal 
vein pulsatility index (VPI) was associated with higher fibro-
sis stage in NAFLD and could be used to predict high-risk 
NAFLD (with ≥F2 stage liver fibrosis). Further study of VPI 
for predicting and monitoring portal hypertension in NAFLD 
is still needed.

Several novel methods have been developed to diagnose 
portal hypertension, such as subharmonic aided pressure 
estimation (SHAPE) using contrast enhanced ultrasonogra-
phy, magnetic resonance (MR) methods, and the endoscop-
ic ultrasound-portal pressure gradient (EUS-PPG). Gupta et 
al.49 compared SHAPE to HVPG to diagnose portal hyperten-
sion. In 125 patients, 18% with NASH and most with chron-
ic hepatitis C, they found that SHAPE had 95% accuracy 
for detecting CSPH or HVPG ≥12 mmHg.49 MR elastography 
(MRE) has been studied in NAFLD. A multicenter retrospec-
tive study found that liver stiffness assessed by MRE had 
an area under the curve of 0.707 (95% CI: 0.511–0.902) 
for differentiating decompensated NAFLD-related cirrhosis, 
defined as ascites, hepatic encephalopathy or esophageal 
variceal bleeding, from compensated cirrhosis.50 Recently, 
EUS-guided direct measurement of portal vein and hepatic 
vein pressure under the guidance has been developed. The 
mean difference of portal vein and hepatic vein pressure is 
then reported as the PPG. A human pilot study showed ex-
cellent correlation between EUS-PPG and HVPG (r=0.923).51 
The potential use of EUS-PPG for monitoring portal hyper-
tension after endoscopic gastric plication in NASH-related 
cirrhosis has also been reported.52

Endothelial dysfunction contributes to intrahepatic resist-
ance in NAFLD, and von Willebrand factor (VWF-Ag) is con-
sidered a marker of endothelial dysfunction. A retrospec-
tive study of 236 cirrhosis patients with various etiologies 
including NASH (12.3%) evaluated the diagnostic perfor-
mance of VWF-Ag for predicting CSPH. At a cutoff of >226, 

VWF-Ag had an area under the curve (AUC) of 0.79 (95% 
CI: 0.72–0.87), a sensitivity of 76%, and a specificity of 
71%. Using the VWF-Ag/thrombocyte ratio (VITRO score), 
there was the AUC increased to 0.86 (95% CI: 0.81–0.91), 
with a sensitivity of 80% and a specificity of 70% at a cutoff 
of >1.58 in predicting CSPH. The combination of TE and 
VITRO score further improved prediction for CSPH, with an 
AUC of 0.96 (95% CI: 0.91–0.98), a sensitivity of 91%, and 
a specificity of 93% at a cutoff of >0.71.53

Therapy

Lifestyle interventions including diet and physical exercise 
to reduce body weight is considered the first-line treatment 
for obese NAFLD. A target of 7–10% weight loss is associ-
ated with improvement in liver histology, including fibro-
sis. Obesity is a predictor of decompensation in compen-
sated cirrhotic patients with various etiologies independent 
of HVPG and albumin or treatment with a beta blocker.54 
In the SportDiet study, a pilot study involving overweight/
obese patients with compensated cirrhosis and an HVPG ≥ 
6 mmHg, Berzigotti et al.55 showed that a 16 week individu-
alized hypocaloric normal-protein diet and 60 min/week of 
moderate exercise significantly reduced HVPG by 10–20%. 
The reduced HVPG was significantly associated with body 
weight loss. There were no episodes of decompensation 
during the short-term intervention, suggesting that calorie 
restriction while maintaining protein intake with moderate 
exercise is safe in compensated cirrhosis. Further study is 
needed to evaluate the long-term efficacy, feasibility, and 
safety of lifestyle interventions in cALD or cirrhosis.

Nonselective beta blockers (NSBBs) like propranolol, na-
dolol, or carvedilol are recommended in compensated cir-
rhosis with CSPH to prevent clinical decompensation and 
improve survival. NSBB reduces the risk of variceal bleeding 
not only by reducing the portal pressure, but also by im-
proving intestinal permeability and reduced bacterial trans-
location.56 Carvedilol is the preferred NSBB in compensated 
cirrhosis because of a greater reduction of portal pressure. 
Carvedilol does not adversely affect insulin sensitivity, glu-
cose and lipid profile, which should be considered in NAFLD 
patients with metabolic comorbidities.57

Statin use is common in NAFLD with dyslipidemia or 
high cardiovascular risk. Several nonrandomized, controlled 
studies suggest beneficial effect of statin on NASH resolu-
tion and liver fibrosis. In an early NASH model with portal 
hypertension, statins decreased portal pressure by inducing 
recovery of LSEC capillarization and regression of HSC acti-
vation by upregulation of the hepatic endothelial expression 
of Kruppel-like factor 2, an endothelial transcription factor. 
Statins also decrease hepatic stellate cell activation by inhi-
bition of RhoA / Rho-kinase signaling.58 A study by Zafra et 
al.59 showed that acute administration of 40 mg simvastatin 
in cirrhotic patients increased hepatic blood flow, decreased 
hepatic resistance, and increased NO products in hepatic 
venous blood.59 That proof-of-concept study was followed 
by several randomized controlled trials (RCTs) that evalu-
ated the effect of statins on HVPG levels. A meta-analysis 
of six RCTs showed that statin use was associated with re-
duction of portal hypertension >20% of baseline or <12 
mmHg) at 1 month (RR=2.01; 95% CI: 1.31–3.10) but the 
difference was not significant at 3 months (RR=3.76; 95% 
CI: 0.36–39.77).60 None of the studies specifically looked 
at NAFLD-related cirrhosis. Because of potential liver and 
muscle toxicity, we should be cautious on the use of statins 
in decompensated cirrhosis and it should be avoided Child-
Pugh C patients.

Obeticholic acid, a farnesoid X receptor agonist, has been 
shown to improve the histological features of NASH.61 In a 
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rat model of cirrhotic portal hypertension, it lowered IHVR 
associated with increased eNOS activity, down-regulation of 
Rho-kinase, upregulation of dimethylarginine dimethylami-
nohydrolase-2, and reduced asymmetric-dimethylarginine, 
an eNOS inhibitor.62,63

Sodium-glucose transport protein 2 (SGLT2) inhibitors 
are a class of antidiabetic agents that have also been stud-
ied in NAFLD or NASH. SGLT2 inhibitors reduce transami-
nase levels and improve liver fat content and body com-
position in NAFLD patients with type 2 diabetes mellitus.64 
SGLT2 inhibitors target the pathophysiology of portal hy-
pertension. SGLT2 blockade inhibits glucose and sodium 
reabsorption in the proximal renal tubule, resulting in an 
increase in sodium delivery to the macula densa. Conse-
quently, both renin secretion and angiotensin II level are 
reduced. SGLT2 inhibitors also reduce sympathetic nervous 
activity.65 A recent observational study showed that SGLT2 
inhibitors were well tolerated in a small sample of cirrhotic 
patients and type 2 DM.66 Further studies are needed to 
evaluate the therapeutic effectiveness of SGLT2 inhibitors in 
portal hypertension.

The renin angiotensin system (RAS) is associated with 
disease progression in NAFLD. Experimental data has indi-
cated that angiotensin II (Ang II) generation was associated 
with de novo lipogenesis, mitochondrial dysfunction, reac-
tive oxygen species generation, pro-inflammatory cytokine 
production, and HSC activation.67 Steatohepatitis with portal 
hypertension developed in transgenic TGR (mREN2)27 rats 
overexpressing mouse renin. Stimulation of angiotensin II 
type 1 receptor in HSCs by Ang II was found to induce fibro-
sis and portal hypertension via Janus kinase-2.35,36 Clinical 
evidence of the therapeutic effectiveness of RAS inhibitors 
on the development of portal hypertension in NAFLD is still 
limited. However, several observational studies found a sig-
nificant association of RAS inhibitors and disease regression 
in NAFLD patients with obesity or type 2 diabetes.68,69

Conclusion

Experimental and clinical evidence suggests that portal hy-
pertension develop early in NAFLD through an increase in 
IHVR. Both the mechanical component of liver steatosis and 
the molecular component of liver sinusoidal endothelial dys-
function together with insulin resistance and gut dysbiosis 
in NAFLD augment IHVR. Furthermore, liver sinusoidal en-
dothelial dysfunction activates HSCs and further augments 

IHVR via perisinusoidal fibrosis (Fig. 1). HVPG is recom-
mended as the gold standard for diagnosing portal hyper-
tension, but in advanced NAFLD, HVPG might underesti-
mate portal pressure, and decompensation can still occur 
in a small number of patients with mild HVPG. Noninvasive 
liver stiffness measurement is considered an alternative to 
predict CSPH in NAFLD, but obesity might obscure the im-
pact of liver stiffness on portal venous pressure. Further 
validation is needed for new biomarkers or other noninva-
sive tools specifically in NAFLD. Lifestyle modification is the 
first-line therapy for NAFLD and also to control comorbidi-
ties, with early data suggesting that body weight loss is 
also associated with reduction of HVPG levels. Similar to 
other etiologies, NSBB is also recommended to prevent de-
compensation and improve survival in NAFLD with CSPH, 
and statins may decrease portal venous pressure in addition 
to improvement of dyslipidemia and cardiovascular risk in 
NAFLD. Future drug development for NAFLD should also ad-
dress portal hypertension as an important endpoint.
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