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Abstract

Background and Aims: Hepatocellular carcinoma (HCC) 
is a common primary liver neoplasm with high mortality. 
Dermcidin (DCD), an antimicrobial peptide, has been re-
ported to participate in oncogenesis. This study assessed 
the effects and underlying molecular events of DCD overex-
pression and knockdown on the regulation of HCC progres-
sion in vitro and in vivo. Methods: The serum DCD level 
was detected using enzyme-linked immunosorbent assay. 
DCD overexpression, knockdown, and Ras-related C3 botu-
linum toxin substrate 1 (Rac1) rescue were performed in 
SK-HEP-1 cells using plasmids. Immunofluorescence stain-
ing, quantitative PCR, and Western blotting were used to 
detect the expression of different genes and proteins. Dif-
ferences in HCC cell migration and invasion were detected 
by Transwell migration and invasion assays. A nude mouse 
HCC cell orthotopic model was employed to verify the in 
vitro data. Results: The level of serum DCD was higher in 
patients with HCC and in SK-HEP-1 cells. DCD overexpres-
sion caused upregulation of DCD, fibronectin, Rac1, and cell 
division control protein 42 homologue (Cdc42) mRNA and 
proteins as well as actin-related protein 2/3 (Arp2/3) pro-
tein (but reduced Arp2/3 mRNA levels) and activated Rac1 
and Cdc42. Phenotypically, DCD overexpression induced 
HCC cell migration and invasion in vitro, whereas knockout 
of DCD expression had the opposite effects. A Rac1 rescue 
experiment in DCD-knockdown HCC cells increased HCC cell 
migration and invasion and increased the levels of active 
Rac1/total Rac1, Wiskott-Aldrich syndrome family protein 
(WASP), Arp2/3, and fibronectin. DCD overexpression in-
duced HCC cell metastasis to the abdomen and liver in vivo. 

Conclusions: DCD promotes HCC cell migration, invasion, 
and metastasis through upregulation of noncatalytic region 
of tyrosine kinase adaptor protein 1 (Nck1), Rac1, Cdc42, 
WASP, and Arp2/3, which induce actin cytoskeletal remod-
eling and fibronectin-mediated cell adhesion in HCC cells.
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Introduction

Hepatocellular carcinoma (HCC) is a common primary liver 
neoplasm with high mortality, and it imposes a significant 
health and economic burden worldwide.1 HCC risk factors 
include hepatitis virus B and/or C infection and alcohol 
consumption leading to the dysregulation of cell signaling 
transduction pathways, such as MAPK, AKT and ERK, imbal-
ance between the activities of proto-oncogenes and tumor 
suppressor genes, and immortal proliferation of liver cancer 
stem cells.2–4 High HCC mortality and poor prognosis are 
mainly due to tumor metastasis, and the underlying mo-
lecular mechanism of HCC metastasis has been extensively 
studied. Many genes participate in the process of HCC me-
tastasis, including EGFR, TP53, APP, VEGFA, MAPK1, PI3K-
CA, and MMP9.5 However, further investigation of the genes 
and gene pathways in HCC metastasis could help us control 
HCC more effectively in the future.

Dermcidin (DCD) was originally identified in eccrine 
sweat glands. With a molecular weight of 11.2 kDa, as a 
precursor protein, DCD is composed of 110 amino acid resi-
dues.6,7 After the removal of the first 19-amino acid signal 
peptide, the precursor matures to a secreted protein with a 
9.5 kDa molecular weight. In eccrine sweat, DCD is further 
proteolytically processed into many active peptides with dif-
ferent antimicrobial activities.6–9 Moreover, DCD is putative-
ly produced and processed by cancer cells, including those 
of melanoma,10 pancreatic cancer,11,12 breast cancer,11,13,14 
gastroesophageal tumors,15 leukemia,16,17 and HCC.18 DCD 
participates in oncogenesis19 and induces cancer cachexia 
and cancer cell growth and survival20 but reduces serum 
dependency19 for tumor invasion21 and migration.22 Thus, 
DCD expression may contribute to cancer progression and a 
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poor cancer prognosis.13

In HCC, DCD has been reported as a factor affecting sur-
vival.12 DCD levels were found to be significantly elevated in 
HCC tissues and the sera of patients, and serum DCD levels 
were associated with tumor metastasis and thus could po-
tentially be a biomarker for HCC diagnosis.23 Previous stud-
ies also revealed that noncatalytic region of tyrosine kinase 
adaptor protein 1 (Nck1), a Src homology (SH) 2 and SH3 
domain-bearing protein, can bind to Wiskott-Aldrich syn-
drome protein (WASP) and modulate reorganization of the 
actin cytoskeleton and cell mobility.24 The phosphotyrosine 
residue at position 20 of the DCD molecule was found to 
be crucial to its interaction with Nck1.18 Moreover, actin cy-
toskeleton reorganization caused by different Rho GTPases 
(e.g., Ras-related C3 botulinum toxin substrate 1 [Rac1] 
and cell division control protein 42 homologue [Cdc42]) 
binds to WASP and activates the WASP/ actin-related pro-
tein 2/3 (Arp2/3) complex25 for cell growth, migration, and 
adhesion.26–29 In this context, fibronectin, a glycoprotein of 
the extracellular matrix,30 also influences cell growth, ad-
hesion, migration, and/or differentiation.30 Dysregulated 
fibronectin expression was found to cause cancer and liver 
fibrosis.31,32 Other publications showed that DCD can bind 
to the Nck1 SH2 domain and activate Rac1, Cdc42,18 and 
ρ-GTPases18 to promote HCC cell migration;18 although, the 
signaling mechanisms that facilitate cell adhesion, growth 
and migration in HCC have not been thoroughly elucidated.

In this study, we assessed the effects of DCD overexpres-
sion and knockdown on the regulation of HCC cell pheno-
types and the expression of Nck1, Rac1, Cdc42, WASP, and 
Arp2/3 in vitro and in nude mice.

Methods

Patients

The study protocol was approved by the Institutional Hu-
man Research Committee of Guangzhou Hospital of Tradi-
tional Chinese Medicine (Guangzhou, China), with approval 
number 2015NK001, and conducted following the standards 
set by the Declaration of Helsinki. Each patient provided 
written informed consent. The study cohort included 105 
patients with HCC and 42 healthy controls (non-cirrhotic 
and non-HCC individuals).

The patients were treated at Guangzhou Hospital of Tra-
ditional Chinese Medicine between October 2016 and May 
2017. There were 83 men and 22 women, with a median 
age of 56.37 years. The control individuals visited our hos-
pital for an annual health check, and had no abnormal find-
ings. The patients and healthy controls were demographi-
cally matched. The inclusion criteria were HCC diagnosed 
histologically according to the Standardization of Diagnosis 
and Treatment for Hepatocellular Carcinoma (2017 edition) 
without any pretreatment or other malignancies and aged 
18 years or older.

Enzyme-linked immunosorbent assay (ELISA)

Blood samples were requisitioned from both the patients 
and controls for ELISA analysis of the serum DCD levels 
using a human DCD ELISA kit (Cat. #KT-13259; Kaniya Bio-
medical, Fullerton, CA, USA). According to the manufacturer, 
this ELISA was a double-antibody sandwich type with a high 
sensitivity and excellent specificity for DCD detection, with 
no significant cross-reactivity or interference between DCD 
and its analogue using the DCD antibody that recognizes 
Homo sapiens antigen. The procedures were conducted in 

accordance with the manufacturer’s protocol. In brief, 100-
µL serum samples were added to ELISA plates in triplicate 
and incubated at 37°C for 2 h. The solution was then rinsed 
out, and Buffer A from the kit was added for incubation at 
37°C for 1 h. The wells were washed 3 times with 350 µL of 
the washing solution for 2 m, after which 100 µL of Buffer B 
was added and incubated at 37°C for 30 m. Thereafter, the 
wells were washed 5 times with the washing solution and 
90 µL of the color solution was added; after incubation at 
37°C for up to 25 m in the dark, stop solution was added 
and mixed well. Then, the solution was measured at 450 nm 
using a spectrophotometer (Fenghua, Guangzhou, China). 
The measurement was repeated at least once.

Cell line, culture, and transfection

HCC SK-HEP-1 cells were purchased from the cell bank of 
the Chinese Academy of Medical Sciences (Shanghai, Chi-
na) and grown in high-glucose Dulbecco’s modified Eagle’s 
medium (DMEM; Gibco, Clayton, VIC, Australia) containing 
10% fetal bovine serum (Gibco), 100 U/mL penicillin, and 
100 µg/mL streptomycin in a humidified incubator contain-
ing 5% CO2 at 37°C.

The DCD cDNA was PCR-amplified and subcloned into 
pReciever M06 (FulenGen, Guangzhou, China), while the 
GST-tagged SH2 domain of Nck cDNA was constructed us-
ing PCR amplification with a human Nck cDNA template and 
ligated into pGEX-4T-3 (GE Healthcare, Fairfield, CT, USA). 
After confirming the DNA sequencing, these vectors were 
transfected into SK-HEP-1 cells using Lipofectamine 2000 
(Invitrogen, Carlsbad, CA, USA) in accordance with the 
manufacturer’s protocol. DCD small interfering (si)RNA and 
negative control siRNA (NC) were obtained from FulenGen 
and transfected into the SK-HEP-1 cells using Lipofectamine 
2000. The DCD siRNA targeting sequence was 5′-AGACGTC-
CTTGACTCAGTA-3′, while the NC sequences were not dis-
closed by the manufacturer.

Immunofluorescent detection of NCK and DCD in SK-
HEP-1 cells

DCD cDNA-, siRNA-, or NC-transfected SK-HEP-1 cells were 
subjected to immunofluorescence staining of DCD and NCK 
proteins using anti-DCD and NCK antibodies (Santa Cruz Bi-
otechnology, Dallas, TX, USA), respectively. The procedures 
were conducted in accordance with the manufacturer’s rec-
ommended protocol. Images were then captured with a 
fluorescence microscope (Olympus, Tokyo, Japan).

Western blot analysis

Western blotting was utilized to assess changed protein 
levels according to a previous study.33 Primary antibodies 
against DCD, Nck1, and GAPDH were purchased from Ab-
cam (Cambridge, MA, USA), Santa Cruz Biotechnology, and 
Sigma-Aldrich (St. Louis, MO, USA), respectively.

RT-quantitative (q)PCR

Total cellular RNA was isolated using TRIzol reagent (Invit-
rogen) in accordance with the manufacturer’s instructions. 
cDNA was synthesized via reverse transcription with 1-µg 
RNA samples of each using a Geneseed II First Strand cDNA 
Synthesis Kit (Geneseed Biotech, San Diego, CA, USA).

qPCR was then used to amplify different genes using 
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Geneseed qPCR SYBR Green Master Mix in an ABI Prism 
700 machine in accordance with the manufacturer’s proto-
col. The primer sequences are listed in Supplementary Table 
1. The PCR conditions were set to a hot start at 95°C for 5 
m, followed by 40 cycles of 95°C for 10 s and 60°C for 34 s, 
and a melting program of 95°C for 15 s, 60°C for 60 s, and 
95°C for 15 s. The relative level of mRNA was normalized to 
GAPDH mRNA and expressed as 2−ΔΔCt.

Transwell assay

SK-HEP-1 cells (0.5–1.0×105 cells/well) were cultured in 
the upper chambers of 24-well Transwell plates with 8.0-
µm pore filters (BD Biosciences, San Jose, CA, USA). The 
bottom chambers were filled with complete cell growth me-
dium. The cells were treated in duplicate with vehicle alone, 
doxorubicin (Adriamycin; 5 µg/mL), or different concentra-
tions (10–30%) of Mahong and cultured for 8 h. The differ-
ence between the migration and invasion assays was the 
filter used in the Transwells, i.e. precoated with 50 µL of 
Matrigel (BD Biosciences) for the invasion assay or not sub-
jected to any pretreatment for the migration assay.

The cells on the surface of the upper chamber membrane 
were carefully removed using cotton swabs, and the mi-
grated or invaded cells at the bottom surface of the upper 
chamber membrane were fixed and stained with 0.5% crys-
tal violet in 70% ethanol and photographed under a light 
microscope (YS100; Nikon, Tokyo, Japan). The numbers of 
migrated or invaded cells in five fields of each upper cham-
ber were counted in a blinded manner. For the invasion as-
say, the Transwell filters were precoated with Matrigel (BD 
Biosciences) for 24 h.

Rac1 and Cdc42 activation assay

The intracellular activity of the Rac1 and Cdc42 GTPases 
was measured with Rac1 and Cdc42 activation assay kits 
(Upstate Biotechnology, Lake Placid, NY, USA), respective-
ly, and conducted in accordance with the manufacturer’s 
instructions. In particular, cells were washed with ice-cold 
phosphate-buffered saline (PBS) and lysed with Mg2+ lysis/
wash buffer. The samples were clarified using glutathione 
agarose and quantified, and equal aliquots of protein were 
incubated with the Rac/Cdc42 assay reagent (PAK-1PBD, 
agarose) at 4°C for 1 h. GTP-S-pretreated lysate was used 
as a positive control. GTP-bound Rac1 and Cdc42 were pre-
cipitated and eluted in Laemmli reducing sample buffer, re-
solved by 12% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and blotted with monoclonal anti-Rac1 or 
Cdc42 antibody. The cell lysate (5%) was also subjected to 
Western blotting using these two monoclonal antibodies to 
assay the total amount of Rac1 and Cdc42.

SK-HEP2 cell orthotopic mouse model

The animal study protocol was approved by the ethics 
committee of Guangzhou Hospital of Traditional Chinese 
Medicine. This study was conducted in accordance with the 
Guidelines of the Care and Use of Laboratory Animals issued 
by the Chinese Council on Animal Research. Specifically, 20 
male Balb/c nude mice, 6–7 weeks-old, were obtained from 
the Animal Experimental Center of Guangzhou Yuanshen 
Biomedical Technology (Guangzhou, China), quarantined in 
a specific pathogen-free (SPF) barrier facility, and housed 
under controlled temperature and humidity with alternating 
12-h light and dark cycles. The mice received SPF mouse 
chow and were allowed to drink sterile water ad libitum for 

7 days before the experiments.
For our experiments, SK-HEP2-luc and HEP2-luc-DCD 

cells (1×106 cells/injection), obtained by the stable trans-
fection of DCD cDNA into SK-HEP-1 cells using lentivirus 
carrying pCDH-DCD-copGFP or pCDH-DCD-LUC-copGFP, 
were injected into mouse liver. The mice were anesthetized 
using 3% isoflurane and the abdomen opened to expose the 
liver for a direct injection of the tumor cells (2×107 cells/
mL in 50 µL PBS) into the liver. The injection site was sealed 
with biogum, and the abdomen was then sutured. These 
mice had free access to food and water; water bottles were 
fitted with extended 3.5-inch spouts. Mice that were unable 
to walk were hand-watered. The mice were left to recover. 
The mice were monitored daily, and the data were recorded 
every 3 days. On day 26 after tumor cell transplantation, 
metastatic lesions within the liver and abdomen were exam-
ined under luciferin light (Abcam). At the end of the experi-
ments, the mice were euthanized by intraperitoneal injec-
tion of 160 mg/kg sodium pentobarbital.

Statistical analysis

The data were expressed as the mean±standard deviation 
of three independent experiments. Statistical analyses of 
normally distributed continuous data were performed us-
ing the unpaired t-test. Comparisons of multiple groups of 
data with confidence intervals among and between groups 
were analyzed using one-way analysis of variance and then 
Bonferroni correction or Dunnett’s tests, respectively. The 
diagnostic value of the serum DCD level in patients was 
assessed using a receiver operating characteristic (ROC) 
curve and logistic regression analyses by calculation of the 
area under the ROC curve (AUC). All statistical analyses 
were performed using Statistica 19.0 (Palo Alto, CA, USA). 
A p value <0.05 was considered statistically significant.

Results

Demographic and clinicopathological characteristics 
of patients

Our data showed no significant difference in the demo-
graphic data between the patient and control groups (Sup-
plementary Table 2). However, the serum DCD levels were 
significantly higher in the patients than in the healthy con-
trols. The ROC analysis showed that DCD could be used as 
a diagnostic marker of HCC (AUC=0.856, 95% confidence 
interval [CI]: 0.789–0.908). The optimum DCD cutoff value 
was 18.87 ng/mL, with sensitivity of 74.29% (95% CI: 64.8–
82.3%) and specificity of 92.86% (95% CI: 80.5–98.5%); 
the positive predictive value and negative predictive value 
at this cutoff level were 96.3% (95% CI: 89.6–99.2%) and 
59.1% (95% CI: 46.3–71.0%), respectively (Table 1, Fig. 1 
and Supplementary Table 2).

Upregulated expression of DCD and Nck1 in HCC cells

DCD protein was able to bind to the Nck1-SH2 domain in 
HCC tissues. Their coexpression in vitro was verified us-
ing immunofluorescence microscopy. DCD overexpression 
plasmids or DCD-siRNA were transfected for 48 h into SK-
HEP-1 cells, and the DCD and NCK levels were detected by 
immunofluorescence. Images were captured under an im-
munofluorescence microscope. The data showed that both 
DCD and NCK were localized in the cytoplasm and nuclei in 
the control cells and increased after DCD cDNA transfection. 
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However, DCD-siRNA transfection led to the expression of 
both DCD and NCK in the nuclei (although their levels were 
lower; Fig. 2).

Effects of DCD on the expression of Rac1, Cdc42, 
fibronectin, WASP, and Arp2/3 in SK-HEP-1 cells

DCD cDNA-transfected SK-HEP-1 cells showed a significant 
increase in the mRNA levels of DCD, Arp2/3, WASP and fi-
bronectin, whereas transfection of DCD-siRNA significantly 
decreased the mRNA levels of these genes (Fig. 3A, E), while 
transfection of DCD-siRNA significantly increased the level 
of Arp2/3 (mRNA; Fig. 3C). Moreover, transfection of DCD 
cDNA also significantly induced the protein levels of DCD, 
active Rac1, active Cdc42, fibronectin, WASP, and Arp2/3, 
whereas transfection of DCD-siRNA significantly decreased 
the protein levels of DCD, active Rac1, active Cdc42, fi-
bronectin, WASP, and Arp2/3 in HCC cells (Fig. 3F, G).

Effects of DCD manipulation on SK-HEP-1 cell migra-
tion and invasion

Transfection of DCD cDNA significantly increased tumor cell 
migration and invasion, whereas transfection of DCD-siRNA 
significantly decreased these cell numbers in SK-HEP-1 cells 
(Fig. 4A, B).

Rac1 attenuation of DCD-siRNA-mediated inhibition 
of SK-HEP-1 cell migration and invasion

Transfection of Rac1 cDNA significantly increased HCC cell 
migration and invasion, and transfection of Rac1 cDNA into 
HCC cells after DCD-siRNA transfection also attenuated the 
inhibitory effects of DCD-siRNA on SK-HEP-1 cell migration 
and invasion (Fig. 4C, D).

Rac1 rescued the expression of active Rac1/total 
Rac1, WASP, Arp2/3, and fibronectin in DCD-siRNA-
transfected SK-HEP-1 cells

The levels of different proteins were assessed after trans-
fection of Rac1 into SK-HEP-1 cells with previous DCD-siRNA 
transfection. The data showed a significant decrease in the 
levels of DCD, active Rac1/total Rac1, WASP, Arp2/3, and 
fibronectin proteins in DCD-siRNA-transfected SK-HEP-1 

cells (Fig. 5). Transfection of Rac1 cDNA in SK-HEP-1 cells 
significantly (p<0.01) increased the levels of active Rac1/
total Rac1, WASP, Arp2/3 and fibronectin protein. However, 
cotransfection of DCD-siRNA and Rac1 cDNA led to the lev-
els of active Rac1/total Rac1, WASP, Arp2/3 and fibronectin 
proteins reaching those of the control in SK-HEP-1 cells.

Effect of DCD on the regulation of SK-HEP-1 cell me-
tastasis in mice

SK-HEP2-luc and HEP2-luc-DCD cells were injected into 
mouse liver, and on day 26 after transplantation, fluores-

Fig. 1.  Detection of serum DCD values as a diagnostic marker for HCC. 
(A) ELISA comparison of DCD levels between patients with HCC and healthy 
controls. (B) ROC analysis of the DCD levels in patients, showing that DCD di-
agnosis of HCC had an AUC of 0.856 (95% CI: 0.789–0.908). DCD, dermcidin; 
HCC, hepatocellular carcinoma; ELISA, enzyme-linked immunosorbent assay; 
ROC, receiver operating characteristic.

Table 1.  ROC analysis of the DCD value in HCC diagnosis

Value 95% CI

AUC 0.856 0.789–0.908

DCD cutoff 18.87 –

Se 74.29 64.8–82.3

Sp 92.86 80.5–98.5

+LR 10.4 3.5–31.1

–LR 0.28 0.2–0.4

+PV 96.3 89.6–99.2

–PV 59.1 46.3–71.0

ROC, receiver operating characteristic; Se, sensitivity; Sp, specificity; +LR, 
positive likelihood ratio; −LR, negative likelihood ratio; +PV, positive predictive 
value; −PV, negative predictive value; Se, sensitivity; Sp, specificity.
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cence revealed that two-thirds of the mice implanted with 
HEP2-luc-DCD cells showed metastatic lesions in the liver 
and abdomen. SK-HEP2-luc cells only showed metastatic le-
sions within the liver but without abdominal lesions in the 
mice (Fig. 6).

Discussion

In the current study, we found that the DCD level was higher 
in the sera of patients with HCC and in SK-HEP-1 cells. The 
detection of serum DCD levels could be used as a diagnos-
tic marker for HCC. Furthermore, both DCD overexpression 
and knockdown influenced the expression of Nck1, Rac1, 
Cdc42, fibronectin, WASP, and Arp2/3, the ability of HCC 
cells to migrate and invade in vitro and tumor cell metasta-
sis in nude mice. These results showed that DCD-promoted 
HCC cell migration, invasion, and metastasis were affected 
through regulation of NCK and its downstream signaling 
pathway (Fig. 7).

Indeed, our current data on an increase in serum DCD 
levels are consistent with our previous study23 and sup-
port the possibility of serum DCD levels being used as a 
biomarker for HCC diagnosis.23 However, there was a dif-
ferent serum DCD cutoff value used between the current 
study and our previous study,23 i.e. 18.87 ng/mL and 25.75 
ng/mL, respectively. This may be due to the differences in 
sizes of the patient and control populations of the two stud-
ies. A future study with a larger sample size from multiple 

institutions is needed to verify the true cutoff for serum 
DCD in HCC diagnosis. Moreover, DCD overexpression led to 
increases in HCC cell migration and invasion, while knock-
down of DCD expression reduced the capacity of SK-HEP-1 
cell migration and invasion in culture, and DCD overexpres-
sion induced HCC cell abdominal metastasis in vivo. Similar 
data have been observed in other cancers19–22 with further 
confirmation that DCD expression is associated with cancer 
progression and unfavorable prognosis.13 Taken together, 
DCD has the potential to be used as a diagnostic and prog-
nostic biomarker for HCC.

The colocalization of DCD and Nck1 proteins in SK-HEP-1 
cell cytoplasm and nuclei was consistent with the data show-
ing that DCD binds to the Nck1-SH2 domain in HCC after 
coimmunoprecipitation-Western blot analysis.18 Nck1, as a 
SH2 and SH3 domain-bearing protein, can bind to WASP 
and modulate actin cytoskeleton reorganization through the 
WASP/Arp2/3 complex and promote cell directional migra-
tion via pseudopodia.24 Indeed, the phosphorylated tyrosine 
residue at position 20 of the DCD molecule was crucial to its 
interaction with Nck1.18 However, tyrosine residue 20 is not a 
part of the signaling peptides, the survival promoting peptide 
(Y-P30) or proteolysis inducing factor. It may not be possible 
to attribute the DCD function to interaction with Nck1; thus, 
further investigation using specific antibodies and genetic 
approaches is needed to better understand the underlying 
molecular mechanisms. Moreover, our observations showed 
that overexpression of DCD increased the expression of Nck1 
and cell migration and invasion, whereas knockdown of DCD 

Fig. 2.  Colocalization of DCD and NCK proteins in SK-HEP-1 cells. DCD overexpression plasmids were transfected into SK-HEP-1 cells, and 48 h after transfection, 
DCD and NCK were detected with fluorescence-labeled DCD antibody or NCK antibody, respectively. DCD was mainly detected in the cytoplasm, while NCK was mainly 
detected in both the cytoplasm and nuclei, and NCK colocalized with DCD in HCC cells. Magnification, 200×. The length of the scale bars is 400 µm. DCD, dermcidin; 
Nck, noncatalytic region of tyrosine kinase adaptor protein 1.
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Fig. 3.  Detection of the DCD, fibronectin, WASP, and Arp2/3 mRNA and protein levels in SK-HEP-1 cells. (A) Level of DCD mRNA in SK-HEP-1 cells after 
transfection with DCD siRNA. (B) Level of DCD mRNA in SK-HEP-1 cells after transfection with DCD cDNA. (C–E) Levels of Arp2/3, WASP and fibronectin mRNA in 
transfected SK-HEP1 cells. (F and G) SK-HEP-1 cells were transfected with an empty vector, wild-type DCD cDNA or DCD siRNA, and 48 h after transfection, the levels 
of DCD, active Rac1, active Cdc42, fibronectin, WASP, and Arp2/3 protein were determined by Western blotting. Comparisons of multiple groups of data with confidence 
intervals among and between groups were analyzed using one-way analysis of variance and then Bonferroni correction or Dunnett’s tests, respectively. The data show 
the mean±standard deviation (n=3). **p<0.01. DCD, dermcidin; Arp2/3, actin-related protein 2/3; Cdc42, cell division control protein 42 homologue; Rac1, Ras-
related C3 botulinum toxin substrate 1; WASP, Wiskott-Aldrich syndrome family protein.
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expression decreased the expression of Nck1. Cell migration 
and invasion in cultured SK-HEP-1 cells revealed that Nck1 
was involved in DCD-mediated HCC progression.

Reorganization of the actin cytoskeleton could be caused by 
different Rho GTPases, such as Rac1 and Cdc42, after binding 
to WASP and activation of the WASP/Arp2/3 complex.25 Rac1, 
a Rho-like GTPase, modulates the cytoskeleton and influences 
cell growth, migration, and adhesion.26–29 Rac1 is activated 
to induce the establishment of actin-rich lamellipodia protru-
sions at the leading edge of migrating cells and drives the cell 
membrane to extend for cell movement,34,35 which leads to 
cell epithelial mesenchymal transition.36,37

Cdc42, a GTPase of the Rho family, modifies signaling 
pathways for diverse cellular functions, such as cell migra-
tion.38 Activated Cdc42 binds to WASP, stimulates actin cy-
toskeleton remodeling, promotes the formation of filopo-
dia39–41 and pseudopodia,42 and aids cell migration, invasion 
and metastasis.42

The WASP family comprises five members, including 
WASP and N-WASP, with a similar protein structure.43 The 
Arp2/3 complex comprises seven-subunit proteins and 
plays a key role in regulation of the actin cytoskeleton.44 
WASP is activated after binding to Cdc42, PIP2,43 and GTP-
bound Rac1.45,46 After activation, WASP can bind to the 
Arp2/3 complex.47 The complex has affinity for the existing 
filaments and triggers elongation of a new filament as actin 

nucleation cores.44 The formation of filopodia is required for 
cell motility48 and promotes cell migration.45,46

In the current study, we also found that DCD overexpres-
sion increased the expression of WASP and Arp2/3, whereas 
knockdown of DCD expression decreased the expression of 
WASP and Arp2/3 in cultured SK-HEP-1 cells. Overexpression 
of DCD also increased the levels of active Rac1 and Cdc42 
proteins, whereas transfection of DCD-siRNA decreased the 
levels of active Rac1 and Cdc42. All of these results indicate 
that DCD also regulates the activation of Rac1 and Cdc42 as 
well as the expression of WASP and Arp2/3, influences actin 
cytoskeleton modelling, and promotes cell migration, inva-
sion, and metastasis in HCC (Fig. 7).18,45,46 This was further 
confirmed by our observation that transfection of Rac1 cDNA 
into DCD-siRNA-transfected SK-HEP-1 cells attenuated DCD-
siRNA-induced suppression of HCC cell mobility and invasion 
and rescued the expression of active Rac1/total Rac1, WASP, 
and Arp2/3 proteins. Thus, overall, DCD protein binds to Nck 
through the Nck-SH2 domain to, in turn, activate WASP, lead-
ing to Rac1, Cdc42, and Arp2/3 activation and therefore to 
enhanced cell mobility. We also observed that DCD reduced 
the level of Arp2/3 mRNA but increased the level of Arp2/3 
protein, indicating that DCD could regulate Arp2/3 at the 
transcriptional level but stabilized Arp2/3 protein; however, 
further study is needed to confirm and clarify this.

Fibronectin is a glycoprotein of the extracellular matrix30 

Fig. 4.  Effects of DCD on HCC cell migration and invasion and attenuation of the DCD-siRNA-mediated suppression of SK-HEP1 cell migration and inva-
sion. (A) Transfection was employed to introduce an empty vector, DCD expression vector, or DCD siRNA into SK-HEP-1 cells. Cells were then inoculated into the upper 
compartment of the chamber and cultured for 18 h. Cells and cell extensions that migrated through the pores of the Transwell plates (migration; magnification, 200×) 
and (B) cells that invaded Matrigel and their invasion extent were calculated. (C) SK-HEP-1 cells were transfected with DCD-siRNA, Rac1 expression vector, or both for 
48 h. (D) The rescuing effects of Rac1 on HCC cell migration and invasion of DCD-siRNA-transfected SK-HEP1 cells were detected. Photographs were taken under a 
phase-contrast Nikon microscope (magnification, 200×). Comparisons of multiple groups of data with confidence intervals among and between groups were analyzed 
using one-way analysis of variance and then Bonferroni correction or Dunnett’s tests, respectively. The data show the mean±standard deviation (n=3). **p<0.01). The 
length of the scale bars is 200 µm. DCD, dermcidin; HCC, hepatocellular carcinoma; Rac1, Ras-related C3 botulinum toxin substrate 1.
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that influences cell growth, adhesion, mobility, and differen-
tiation.30 Deregulated fibronectin expression causes cancer 
and fibrosis.31,32 Overexpression of DCD increased the ex-
pression of fibronectin, while knockdown of DCD decreased 
the expression of fibronectin in cultured SK-HEP-1 cells. This 
suggests that DCD also promotes cell migration and invasion 
via fibronectin-mediated cell adhesion in HCC,49 which was 
further demonstrated by Rac1 rescue in DCD-siRNA-trans-
fected SK-HEP-1 cells.

However, our current study does have some limitations. 

For example, the study is a proof-of-principle, and DCD’s ef-
fects on HCC progression in vivo need further confirmation. 
Moreover, our nude mouse data only showed the effects of 
DCD cDNA in vivo, and there are no data on the inverse ef-
fects of DCD knockout in vivo. In conclusion, DCD protein 
levels were higher in the sera of patients with HCC and in 
SK-HEP-1 cells. DCD expression induced HCC cell migra-
tion, invasion, and metastasis in vitro and in nude mice by 
modulating Nck1, WASP, Arp2/3, and fibronectin expression 
and activating Rac1/Cdc42.

Fig. 5.  Rac1 rescue experiments of the active Rac1/total Rac1, WASP, Arp2/3, and fibronectin protein levels in DCD-siRNA-transfected SK-HEP-1 cells. 
SK-HEP-1 cells were transfected with DCD-siRNA, Rac1 expression vector, or both and then subjected to Western blot analysis of active Rac1/total Rac1, WASP, Arp2/3, 
and fibronectin. (A) Western blotting. (B) DCD protein. (C) Active Rac1/total Rac1. (D) WASP protein. € Arp2/3 protein. (F) Fibronectin. Comparisons of multiple groups 
of data with confidence intervals among and between groups were analyzed using one-way analysis of variance and then Bonferroni correction or Dunnett’s tests, 
respectively. The data show the mean±standard deviation (n=3). **p<0.01. Rac1, Ras-related C3 botulinum toxin substrate 1; WASP, Wiskott-Aldrich syndrome family 
protein; Arp2/3, actin-related protein 2/3; DCD, dermcidin.
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