Effects of Bivalirudin and Unfractionated Heparin on Liver and Renal Function in Chinese Patients with Coronary Artery Disease Undergoing Coronary Angiography with/without Percutaneous Coronary Intervention

Qiaowei Jia1#, Jia Hu2#, Wenfeng Ji2, Liansheng Wang2 and Enzhi Jia2*

1Department of Cardiovascular Medicine, Liyang People’s Hospital, Liyang, Jiangsu, China; 2Department of Cardiovascular Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Abstract

Background and Aims: Unfractionated heparin (UFH) and bivalirudin are widely used as anticoagulants in cardiovascular medicine, including for thrombosis prevention during coronary angiography (CAG) and percutaneous coronary intervention (PCI). Little is known of the effects of UFH and bivalirudin on liver and kidney function in patients subjected to these procedures. This study compared the effects of bivalirudin and UFH on liver/renal function in patients with coronary artery disease who underwent CAG, with or without PCI.

Methods: The study comprised 134 consecutive patients (40–89 years-old), who underwent CAG (or CAG and PCI); among them, 66 and 68 patients were subject to, respectively, bivalirudin or UFH. The following indicators of liver/renal function were measured before and after the procedures: plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen, estimated glomerular filtration rate (eGFR), creatinine clearance, and serum creatinine. Patients were further stratified by severity of chronic kidney disease (CKD), based on original eGFR.

Results: Relative to baseline, in the bivalirudin group, ALT and AST were higher after CAG (p < 0.05, <0.001), while blood urea nitrogen and serum creatinine were lower (p < 0.01, 0.001). In the UFH group, ALT, AST, eGFR, and creatinine clearance were lower after CAG (p < 0.001, all). Patients given bivalirudin with moderate or severe CKD, but not those with mild CKD, gained significant improvement in kidney function.

Conclusions: Relative to UFH, bivalirudin may better safeguard the renal function of patients with coronary artery disease who underwent CAG, especially patients with moderate-to-severe renal insufficiency. UFH may cause less liver damage than bivalirudin.

Citation of this article: Jia Q, Hu J, Ji W, Wang L, Jia E. Effects of bivalirudin and unfractionated heparin on liver and renal function in Chinese patients with coronary artery disease undergoing coronary angiography with/without percutaneous coronary intervention. J Clin Transl Hepatol 2021;00(00):00–00. doi: 10.14218/JCTH.2020.00150.

Introduction

Coronary angiography (CAG) and percutaneous coronary intervention (PCI) are recommended for patients with a high risk of acute coronary syndrome. These procedures require adjunctive antithrombotic therapy with anticoagulants and antiplatelet agents.1 However, there is no gold standard antithrombotic agent, with both optimal clinical benefits and acceptable risk of complications.

Unfractionated heparin (UFH) is one of the oldest agents applied for prevention and treatment of arterial and venous thromboembolism, and is used widely as an anticoagulant during CAG and PCI for its convenience, safety, and low cost. In addition, many new anticoagulation agents have appeared in clinical practice in recent decades. Bivalirudin is a direct thrombin inhibitor, extracted from the derivative hirudin fragment, which is widely used in patients undergoing PCI. Compared with UFH or glycoprotein IIb/IIIa inhibitors, the clearance of bivalirudin is less dependent on renal function,2 and bivalirudin is characterized by rapid onset and fewer complications, with a short half-life of 25 minutes under normal renal function.3

Bivalirudin is currently considered an alternative for patients with progressed and advanced chronic kidney disease (CKD).4 CKD is prevalent among patients with coronary artery disease (CAD) and has been associated with shorter survival, bleeding, and thrombosis as a complication of PCI.5-7 This may be due to the multiple hemostatic perturbations in patients with CKD.8-9

Hemostasis is largely modulated by protein synthesis...
and degradation in the liver. In patients with severe liver disease, the hemostatic system is always dysfunctional because of hepatic protein synthesis disorders. Yet, studies concerning the effects of anticoagulants on liver function are limited.

To aid clinicians’ selection of anticoagulant, the present study evaluated the relative effects of bivalirudin and UFH on the liver and kidney functions of patients with CAD who underwent CAG, with or without PCI.

Methods

Participants

Participants were recruited from consecutive patients who underwent CAG with or without PCI at the First Affiliated Hospital of Nanjing Medical University from 8 July 2017 to 30 June 2020. Patients with any of the following were excluded: massive hemorrhage within 1 month; severe thrombocytopenia (blood platelet count <20×10^9/L); dialysis-dependent end-stage renal failure; or allergy to bivalirudin or hirudin. Massive hemorrhage sufficient for exclusion was defined as clinically overt bleeding, accompanied by a decrease in hemoglobin ≥2 g/dL, requiring a transfusion of ≥2 U of packed red blood cells, and occurring at a site of concern (intracranial, intraocular, intraspinal, intra-articular, intramuscular with compartment syndrome, pericardial, or retroperitoneal), or resulting in death.

Finally, the study population consisted of 134 patients, aged 40 to 89 years. Among them, 66 and 68 were administered, respectively, bivalirudin and UFH as antithrombotic therapy during CAG.

Application of bivalirudin and UFH during CAG

Bivalirudin was given intravenously at a loading dose of 0.75 mg/kg before CAG, and then at 1.75 mg/kg/h as intravenous drip until the end of the surgery, with an additional 0.04 mg/kg/kg/h. UFH was given intravenously at a dose of 2,000 U bivalirudin or hirudin. Massive hemorrhage sufficient for exclusion was defined as clinically overt bleeding, accompanied by a decrease in hemoglobin ≥2 g/dL, requiring a transfusion of ≥2 U of packed red blood cells, and occurring at a site of concern (intracranial, intraocular, intraspinal, intra-articular, intramuscular with compartment syndrome, pericardial, or retroperitoneal), or resulting in death.

Finally, the study population consisted of 134 patients, aged 40 to 89 years. Among them, 66 and 68 were administered, respectively, bivalirudin and UFH as antithrombotic therapy during CAG.

Clinical design

Demographic data, medical history, and the results of laboratory measurements of the patients, including alanine aminotransferase (ALT, in U/L), aspartate aminotransferase (AST, in U/L), blood urea nitrogen (BUN, in mmol/L), serum creatinine (SCR, in μmol/L), total cholesterol (TC, in mmol/L), triglyceride (TG, in mmol/L), fasting high-density lipoprotein (HDL) cholesterol (in mmol/L), fasting low-density lipoprotein (LDL) cholesterol (in mmol/L), fasting blood glucose (FBG, in mmol/L), uric acid (UA, in μmol/L), myoglobin isoenzyme of creatine phosphokinase (CK-MB, in ng/mL), myohemoglobin (MBH, ng/mL), red blood cell count (×10^12/L), white blood cell count (×10^9/L), platelet count (×10^9/L), hemoglobin (in g/L), and the Gensini score, were collected and stored in a dedicated database. The differences in the following laboratory parameters before (baseline) and after CAG were compared between the bivalirudin and UFH groups: ALT, AST, creatinine clearance (CCR), and estimated glomerular filtration rate (eGFR). The results of CAG were reported by at least two experienced cardiologists immediately at the end of the procedure. The Gensini score was used to evaluate the severity of CAD, after all procedures and other data collection.

The CCR was estimated using the Cockcroft-Gault equation, as follows: CCR in mL/m=(140-age, y)×(weight in kg)/(72×SCR in mg/dL). The eGFR in this Chinese population was calculated using the “CKD-EPI” equation as follows, with the GFR expressed as mL/m/1.73 m², SCR as mg/dL and age in years. For females with SCR ≤(>)0.7, then eGFR=(144)×(SCR/0.7)^a×(0.993)^age, where a=–0.329 (–1.209). For males with SCR ≤(>)0.9, then eGFR=(141)×(SCR/0.9)^a×(0.993)^age, where a=–0.411 (–1.209).

Patients were stratified according to eGFR as having mild (≥60 mL/m²), moderate (30–69 mL/m²), or severe (<30 mL/m²) CKD.

Ethical approval and consent to participate

All patients provided written informed consent. The ethics committee of Nanjing Medical University approved all the experimental protocols.

Data analysis

The data analysis was performed using the Statistical Package for Social Sciences software (ver. 16.0; SPSS, Chicago, IL, USA). Skewed data are presented as median (interquartile range), normal data as mean±standard deviation, and categorical data as absolute values. Data analyses utilized chi-squared tests to determine differences in sex, smoking status, drinking status, and medical history. Independent samples t-tests, one-way analysis of variance, and paired samples t-tests were applied to normal data, as appropriate. Other baseline characteristics (non-normal data) were examined by Mann-Whitney and Wilcoxon rank tests. Multiple-factor logistic regression analysis was applied to identify the risk factors to liver function and kidney function. A p-value of <0.05 was considered significant in the 2-tailed tests.

Results

Baseline characteristics of the subjects

Compared with the patients given UFH in this study, the patients in the bivalirudin group were significantly older (p=0.001), and with higher levels of ALT, SCR, BUN (p=0.001), each, and AST (p=0.002). In addition, patients in the bivalirudin group had significantly higher rates of hypertension, cerebral infarction (p=0.002, both) and CAD (p=0.011). The HDL cholesterol (p=0.280), LDL cholesterol (p=0.274), and FBG (p=0.836) (Table 1).

Baseline characteristics of the bivalirudin group stratified by CKD severity

Renal function was judged prior to CAG as mild, moderate, or severe based on eGFR, according to the international standard (Table 2). Among all the baseline characteristics considered, levels of only the following increased significantly with classification of severity: SCR, BUN, UA, and MHB (p<0.001, all). Only FBG decreased with severity of CKD (p=0.032).
Liver and renal function tests before and after CAG

To evaluate the potential benefits of bivalirudin for patients with CKD, the differences in ALT, AST, BUN, and SCr from baseline after CAG were examined (Table 3). For patients given bivalirudin, the serum levels of ALT and AST were significantly higher after CAG (\(p=0.005, 0.025\), respectively), which indicated possible liver injury, while BUN and SCr were lower (\(p=0.049, <0.001\)), suggesting a renoprotective effect. Significant increases in the calculated CCr (\(p=0.001\)) and eGFR (\(p=0.022\)) also indicated improvement in renal function.

In the UFH group, the serum levels of ALT and AST significantly declined after CAG compared with the baseline (\(p<0.001\), \(p=0.001\)); while BUN (\(p=0.009\), SCr (\(p<0.001\), CCr (\(p<0.001\)) and eGFR (\(p<0.001\)) decreased. Thus, UFH may exert some positive effects on the liver but not on the kidney.

Differences in eGFR after CAG according to eGFR and Gensini score

To explore the renal benefits of bivalirudin among patients with different original renal functions, patients were apportioned to three groups according to eGFR. Gensini scoring is widely used for determining the severity of CAD (Table 4). To investigate further the renal benefits of bivalirudin in patients with different severities of CAD, patients were apportioned to three groups according to the range interquartile of Gensini score. The eGFR data after CAG in patients with different severities of CAD showed no significant difference, suggesting that the renal benefits of bivalirudin may be not related to the severity of CAD.

Risk factors of liver and renal effects based on multi-factor logistic regression analysis

To identify risk factors of liver and renal effects among the overall population, a multi-factor logistic regression analysis was conducted (with the forward selection-conditional method; Table 5). The following were determined to affect renal function independently: the anticoagulant used in PCI (\(p<0.001\)); weight (\(p=0.001\)); and, Gensini score (\(p=0.030\)). Bivalirudin increased the probability of improvement in renal function by 82.7% compared with UFH. Similarly, UFH exerted a hepatoprotective effect that was independent of other potentially confounding factors. In the UFH group, the plasma levels of ALT and AST were, respectively, 82.2% and 65.8% in the bivalirudin group.

Discussion

In this study, we compared the effects of bivalirudin and UFH on liver and renal function in patients with CAD who

| Table 1. Baseline characteristics of the subjects by the anticoagulants used in CAG and PCI |
|----------------------------------|----------------|----------------|
| Subjects, n | Bivalirudin | UFH |
| Age, years | 66 | 68 |
| Sex, M/F | 71.09±11.53 | 62.68±9.18 |
| Weight, kg | 69.39±11.05 | 66.72±7.82 |
| Hypertension, Y/N | 55/11 | 40/28 |
| Diabetes mellitus, Y/N | 26/40 | 19/49 |
| Cerebral infarction, Y/N | 23/43 | 8/60 |
| Smoke, Y/N | 25/41 | 31/37 |
| Drink, Y/N | 15/51 | 11/57 |
| ALT, U/L | 22.65 (14.28–34.23) | 35.00 (27.93–44.00) |
| AST, U/L | 22.65 (17.95–31.10) | 27.85 (20.93–40.78) |
| SCr, µmol/L | 117.00 (80.85–186.95) | 61.20 (51.83–73.13) |
| BUN, mmol/L | 8.36 (6.10–13.95) | 5.69 (4.75–6.81) |
| TC, mmol/L | 4.04±1.23 | 3.95±1.05 |
| TG, mmol/L | 1.20 (0.93–1.62) | 1.39 (0.94–2.04) |
| HDL, mmol/L | 0.98±0.29 | 1.02±0.23 |
| LDL, mmol/L | 2.48±0.90 | 2.32±0.78 |
| FBG, mmol/L | 5.03 (4.34–6.13) | 4.99 (4.48–6.26) |
| UA, µmol/L | 427.29±134.88 | 318.81±99.09 |
| CK-MB, ng/mL | 3.79 (2.39–12.18) | 2.05 (1.66–3.62) |
| MHB, ng/mL | 24.00 (11.30–43.64) | 13.18 (10.36–19.95) |
| Gensini score | 86.00 (37.75–126.00) | 48.00 (12.88–93.00) |

Skewed data are presented as median (interquartile range), normal data as mean±standard deviation, and categorical data as absolute values. N, no; Y, yes.
underwent CAG, with or without PCI. For data analysis, the subjects were apportioned to either the bivalirudin or UFH group, as appropriate. After rigorous laboratory measurements, data collection, and statistical comparisons, we made some surprising and interesting discoveries.

In the group given UFH, the ALT and AST levels after CAG were 19.60 (13.95–31.25) and 23.50 (18.80–29.25), respectively. In the bivalirudin group, the ALT and AST levels were 22.65 (14.28–34.23) and 22.65 (17.95–31.10), respectively. These differences were statistically significant (p = 0.005 and p = 0.025, respectively).

Table 2. Baseline characteristics of patients’ prior bivalirudin by CKD severity

<table>
<thead>
<tr>
<th>CKD Severity</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects, n</td>
<td>26</td>
<td>25</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Age, years</td>
<td>67.92±11.92</td>
<td>72.84±12.21</td>
<td>73.67±8.76</td>
<td>0.195</td>
</tr>
<tr>
<td>Sex, M/F</td>
<td>19/7</td>
<td>19/6</td>
<td>13/2</td>
<td>0.595</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>71.87±11.41</td>
<td>68.00±10.58</td>
<td>67.43±11.11</td>
<td>0.343</td>
</tr>
<tr>
<td>HTN, Y/N</td>
<td>19/7</td>
<td>22/3</td>
<td>14/1</td>
<td>0.179</td>
</tr>
<tr>
<td>Diabetes mellitus, Y/N</td>
<td>8/18</td>
<td>9/16</td>
<td>9/6</td>
<td>0.165</td>
</tr>
<tr>
<td>CI, Y/N</td>
<td>11/15</td>
<td>9/16</td>
<td>3/12</td>
<td>0.348</td>
</tr>
<tr>
<td>Smoke, Y/N</td>
<td>10/16</td>
<td>9/16</td>
<td>6/9</td>
<td>0.966</td>
</tr>
<tr>
<td>Drink, Y/N</td>
<td>5/21</td>
<td>7/18</td>
<td>3/12</td>
<td>0.726</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>26.75 (15.18–39.45)</td>
<td>19.60 (13.95–31.25)</td>
<td>24.00 (12.50–31.60)</td>
<td>0.216</td>
</tr>
<tr>
<td>AST, U/L</td>
<td>25.35 (18.35–35.23)</td>
<td>23.50 (18.80–29.25)</td>
<td>18.20 (14.00–21.90)</td>
<td>0.091</td>
</tr>
<tr>
<td>SCr, µmol/L</td>
<td>74.07±19.33</td>
<td>139.50±30.40</td>
<td>286.75±93.49</td>
<td><0.001</td>
</tr>
<tr>
<td>BUN, mmol/L</td>
<td>6.32±2.83</td>
<td>10.26±4.07</td>
<td>16.76±4.48</td>
<td><0.001</td>
</tr>
<tr>
<td>TC, mmol/L</td>
<td>3.92±1.24</td>
<td>4.10±1.24</td>
<td>4.15±1.25</td>
<td>0.818</td>
</tr>
<tr>
<td>TG, mmol/L</td>
<td>1.55±0.78</td>
<td>1.26±0.43</td>
<td>1.18±0.52</td>
<td>0.112</td>
</tr>
<tr>
<td>HDL, mmol/L</td>
<td>0.89±0.28</td>
<td>1.08±0.28</td>
<td>0.95±0.27</td>
<td>0.068</td>
</tr>
<tr>
<td>LDL, mmol/L</td>
<td>2.36±0.83</td>
<td>2.48±1.00</td>
<td>2.70±0.89</td>
<td>0.517</td>
</tr>
<tr>
<td>FBG, mmol/L</td>
<td>5.46 (4.84–6.69)</td>
<td>4.91 (4.37–5.96)</td>
<td>4.47 (4.04–5.35)</td>
<td>0.032</td>
</tr>
<tr>
<td>UA, µmol/L</td>
<td>346.01±103.48</td>
<td>468.71±118.81</td>
<td>499.13±142.44</td>
<td><0.001</td>
</tr>
<tr>
<td>CK-MB, ng/mL</td>
<td>3.75 (2.39–11.35)</td>
<td>3.15 (2.06–7.70)</td>
<td>6.07 (2.52–14.99)</td>
<td>0.426</td>
</tr>
<tr>
<td>MHB, ng/mL</td>
<td>14.50 (8.54–22.28)</td>
<td>25.00 (12.26–39.44)</td>
<td>78.88 (34.78–116.36)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data points are as reflected by eGFR. Skewed data are presented as median (interquartile range), normal data as mean±standard deviation, and categorical data as absolute values. CI, cerebral infraction; HTN, hypertension; N, no; Y, yes.

Table 3. Laboratory parameters reflecting liver and renal functions before and after CAG in the bivalirudin and UFH groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Before PCI</th>
<th>After PCI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALT, U/L</td>
<td>Bivalirudin</td>
<td>UFH</td>
</tr>
<tr>
<td></td>
<td>22.65 (14.28–34.23)</td>
<td>27.00 (21.55–36.00)</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>22.65 (17.95–31.10)</td>
<td>25.50 (19.20–32.95)</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>10.18±5.43</td>
<td>9.53±5.10</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>147.19±94.99</td>
<td>136.68±84.91</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>53.54±33.61</td>
<td>58.02±38.56</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>55.21±31.49</td>
<td>57.79±32.19</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>35.00 (27.93–44.00)</td>
<td>28.70 (19.43–40.58)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>27.85 (20.93–40.78)</td>
<td>27.00 (19.48–38.48)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>5.81±1.52</td>
<td>5.37±1.62</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>64.43±17.20</td>
<td>68.83±17.44</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>99.37±26.69</td>
<td>92.07±21.93</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>100.53±15.41</td>
<td>96.80±15.53</td>
<td><0.001</td>
</tr>
</tbody>
</table>
were significantly lower compared with the baseline levels. This appears to conflict with previous studies. According to the National Library of Medicine’s LiverTox database, hepatotoxicity is the most frequently reported adverse event associated with heparins,17–24 and 8% of the events were due to UFH.18 The association between UFH and elevations in serum AST was first reported in 1975.19 However, although AST levels were higher after heparin administration, such elevations were asymptomatic and did not lead to severe liver injury. Conjectured mechanisms included non-hepatic sources for the enzymes,25 induction of these enzymes in hepatocytes,26 reduction in the clearance of these enzymes from circulation, and hepatocellular membrane modification.27,28 In a recent randomized study, circulating mir-122 was selected as a biomarker to identify liver cell necrosis. The researchers opined that heparins, including UFH, may cause a transient, low-level death of hepatocytes, and the subsequent activation of innate immune response may promote the injury.29

For clarification, we explored the data further. Among the 68 patients in the UFH group, 8 had higher pre-CAG ALT levels than normal and the remaining 60 had normal pre-CAG ALT levels. While among the eight patients who had higher pre-CAG ALT levels, 4 showed ALT descent to a normal level after CAG. Besides, 14 patients had higher pre-CAG AST levels among the 68 subjects, and only 3 patients’ AST level descended to a normal level after CAG. After taking an intersection, we found that only two patients with both higher pre-CAG ALT and AST levels among the 68 subjects achieved improved ALT and AST levels, which descended to normal (where elevation of ALT and AST was defined as ≥69 and >45 U/L).

On the other hand, among the 66 patients given bivalirudin, 64 had normal pre-CAG ALT levels and only 2 had higher pre-CAG ALT levels than normal. While among the 64 patients who had normal pre-CAG ALT levels, 4 patients’ ALT rose to an abnormal level after CAG. Besides, 62 patients had normal pre-CAG AST levels among the 66 subjects, and 7 patients’ AST level rose to an abnormal extent after CAG. After taking an intersection, two patients with both normal pre-CAG ALT and AST levels in the bivalirudin group showed worse ALT and AST levels, which became abnormal (where normal ALT and AST was considered 13–69 U/L and ≤45 U/L).

It was reported that cardiac hepatopathy, which is used to describe any liver damage caused by cardiac disorders in the absence of other possible causes of liver damage, can be examined as congestive hepatopathy and acute cardiogenic liver injury. Furthermore, acute cardiogenic liver injury is

| Table 4. Baseline and postoperative eGFR values according to severity of CKD and Gensini score in the bivalirudin group |
|---------------------------------|------------------|------------------|-------|
| CKDb | Baseline | Postoperative | p |
| Mild | 26 | 88.7±19.43 | 90.8±22.32 | 0.406 |
| Moderate | 25 | 41.8±7.80 | 45.0±9.73 | 0.018 |
| Severe | 15 | 19.3±6.57 | 21.8±7.31 | 0.039 |
| Gensini score | | | |
| <37.5 | 16 | 55.3±37.62 | 56.5±36.01 | 0.542 |
| 37.5–126 | 35 | 52.3±28.23 | 55.3±30.47 | 0.099 |
| ≥126.5 | 15 | 61.8±32.91 | 64.8±33.13 | 0.064 |

Data are presented as mL/m. aBefore and after CAG; eGFR ranges for mild, moderate, and severe CKD were ≥60, 30–60, and <30 mL/m, respectively.

| Table 5. Multi-factor logistic regression analysis of associations between anticoagulant (bivalirudin or UFH) and basic characteristics of patients and renoprotective effectsa, ΔALTb, and ΔASTc |
|---------------------------------|------------------|------------------|----------|
| OR (95% CI) | p |
| Renoprotective effectsa | |
| Anticoagulant | 0.173 (0.073–0.409) | <0.001 |
| Weight | 0.922 (0.878–0.968) | 0.001 |
| Gensini score | 1.007 (1.001–1.013) | 0.030 |
| ΔALTb | |
| Anticoagulant | 0.178 (0.078–0.404) | <0.001 |
| TG | 0.478 (0.244–0.936) | 0.031 |
| ΔASTc | |
| Anticoagulant | 0.342 (0.155–0.755) | 0.008 |
| Sex | 0.395 (0.159–0.980) | 0.045 |
| Gensini score | 1.011 (1.005–1.018) | 0.001 |

aThe renoprotective effect was calculated as ΔeGFR=eGFR2−eGFR1; where eGFR1 and eGFR2 are the eGFR values before and after CAG, respectively. ΔeGFR >0 (<0) indicates positive (negative) renoprotective effects. The covariates were age, sex, weight, medical history, smoking and drinking status, plasma levels of ALT, AST, BUN, TC, TG, HDL, LDL, Fbg, UA, CK-MB and MHB, and Gensini score. bΔALT=ALT2−ALT1; where ALT1 and ALT2 are the ALT values before and after CAG, respectively. The covariates were age, sex, weight, medical history, smoking and drinking status, plasma level of AST, SCr, BUN, TC, TG, HDL, LDL, Fbg, UA, CK-MB and MHB, and Gensini score. cΔAST=AST2−AST1; where AST1 and AST2 are the AST values before and after CAG, respectively. The covariates were age, sex, weight, medical history, smoking and drinking status, plasma level of ALT, SCr, BUN, TC, TG, HDL, LDL, Fbg, UA, CK-MB and MHB, and Gensini score.
most commonly associated with acute cardiocirculatory fail-
ure caused by acute myocardial infarction, acute decompens-
ated Haiti disease, or myocarditis.30 In acute cardicogenic
liver injury patients, the laboratory measurements showed
vention in transaminase and lactate dehydrogenase lev-
els.30–32 Thus, we hypothesize that the decline in transami-
ner elevation in transaminase and lactate dehydrogenase lev-
liver injury patients. The laboratory measurements showed
tection of the decline in transaminase and lactate dehydrogenase lev-
e in the UFH group was mainly due to the improvement in
coronary circulation and myocardial oxygen delivery after the
CAG; the liver benefited as well, and the mild liver injury from the UFH was more than compensated for.
Thus, regarding liver function, patients undergoing CAG
and PCI may benefit more from UFH, relative to bivalirudin. Notably, heparins were shown to alleviate liver injury in sev-
nal animal studies.33,34
In addition, significant renal improvement was observed in
the bivalirudin group compared with the UFH (Supple-
mentary Fig. 1 and 2). This was especially true for patients
suffering from moderate or severe CKD; patients with eGFR
≥60 mL/m showed no significant renal benefits from biva-
irudin. The paired-samples tests suggested that the reno-
protective effects of bivalirudin may not be associated with
the severity of CAD. In other words, the renal benefits of
bivalirudin may be enjoyed by patients with either mild or
severe CAD.
This study has several limitations. First, the sample size
is small, which may lead to inaccuracy of the results and
conclusions. Further studies with large samples are war-
anted. Second, the results would be more convincing if
patients with similar renal function were matched with the
bivalirudin group as a control group. The mechanisms of the
effects on liver and kidney of bivalirudin and UFH have not
been clarified, and we intend further explorations of these
questions in the future.
Despite its limitations, this study is the first to discuss the
renal benefits of bivalirudin, and to suggest a possible liver
benefit associated with UFH, in patients undergoing CAG
and PCI. This report may help physicians choose anticoagu-
ents for patients with abnormal liver and kidney function.
We have planned a future multicenter, large-sample, and
multi-ethnic study to verify these conclusions and explore
the mechanisms of the observed renal benefits of bivalirudin
and PCI. This report may help physicians choose anticoagu-
ents for patients with abnormal liver and kidney function.

Conclusions
As anticoagulants used for CAG and PCI procedures, bival-
irudin may provide better benefit to renal function compared
with UFH, especially in patients with moderate-to-severe
renal insufficiency. On the other hand, UFH is less likely to
cause liver injury than bivalirudin.

Acknowledgments
The authors are grateful for the support provided by the
First Affiliated Hospital of Nanjing Medical University and Liyang People’s Hospital.

Funding
This study received support from the National Natural Sci-
ence Foundations of China (No. 81970302).

Conflict of interest
The authors have no conflict of interests related to this publi-
cation.

Author contributions
Guarantor (EJ), conception of the study (EJ), initial drafting of
the paper (QJ), enrollment of participants and collection of
data (JH), supervision of the enrollment of patients and
collection of data (EJ), and data analysis and review of the
manuscript for important intellectual content (EJ, QJ, JH).

Data sharing statement
All data are available upon request.

References
al. Abciximab and heparin versus bivalirudin for non-ST-elevation myo-
Moa1109596.
[2] Reed MD, Bell D. Clinical pharmacology of bivalirudin. Pharmacotherapy
[3] Banualore S, Pencina MJ, Kleinman NS, Cohen DJ. Heparin monotherapy or
bivalirudin during percutaneou coronary intervention in patients with non-
ST-segment-elevation acute coronary syndromes or stable ischemic heart
disease: results from the Evaluation of Drug-Eluting Stents and Ischemic
Events registry. Circ Cardiovasc Interv 2014;7(3):365–373. doi:10.1161/CIR-
CINTERVENTIONS.113.001126.
[4] Hanna EB, Chen AY, Roe MT, Wiviott SD, Fox CS, Saucedo JF. Characteris-
tics of and in-hospital outcomes of patients with non-ST-segment elevation
myocardial infarction and chronic kidney disease undergoing percutaneous
[5] Basra SS, Tsai P, Lakkis NM. Safety and efficacy of antplatelet and anti-
thrombotic therapy in acute coronary syndrome patients with chronic
2011.08.051.
impact of renal insufficiency on clinical outcomes in patients undergoing
1119. doi:10.1016/s0735-1097(02)01745-x.
al. Bivalirudin provides increasing benefit with decreasing renal function:
kidney disease. Circulation 2012;125(21):2649–2661. doi:10.1161/CIR-
CULATIONAHA.111.084996.
[9] Kao D, Dalhotra D. Platelet dysfunction and end-stage renal disease. Sem-
[10] Northup P, Reutenmann B. Management of coagulation and anticoagula-
of antithemostatic medicinal products in non-surgical patients. J Thromb
2010 ESC Guidelines for the management of acute coronary syndromes in
patients presenting without persistent ST-segment elevation. Eur Heart J
[13] Gensini GG. A more meaningful scoring system for determining the sever-
dy of coronary heart disease. Am J Cardiol 1983;51(3):606. doi:10.1016/s0002-
9149(83)80105-2.
[14] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum
disease and chronic kidney disease on life expectancy in patients with
10-year diabetes cohort study. Diabetes Care 2020;43(8):1750–1758. doi:10.2337/dc20-
1937.
[17] LiverTox: Clinical and Research Information on Drug-Induced Liver Injury
[Internet]. Bethesda (MD): National Institute of Diabetes and Digestive
[18] Heparin Sodium, USP package insert. New York: Pfizer Global Manufactur-
ing; 2009.
[19] Sonnenblick M, Oren J, Jacobsen W. Hyper-transaminasemia with hepa-
al. Transaminase elevations in patients receiving bovine or porcine hepa-
5-646.

Jia Q. et al: Bivalirudin and UFH in CAG and PCI

