Prognostic Nomogram for Patients with Hepatitis E Virus-related Acute Liver Failure: A Multicenter Study in China

Jian Wu1,2, Cuifen Shi1,3, Xinyu Sheng1, Yanping Xu1, Jinrong Zhang4, Xinguo Zhao5, Jiong Yu1, Xinhui Shi6, Gongqi Li7, Hongcui Cao1,3 and Lanjuan Li1

1State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; 2Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China; 3Department of Infectious Disease, The Second People’s Hospital of Yancheng City, Yancheng, Jiangsu, China; 4Department of Laboratory Medicine, The People’s Hospital of Dafeng City, Yancheng, Jiangsu, China; 5Department of Respiration, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China; 6Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, Jiangsu, China; 7Department of Clinical Laboratory, Linyi Traditional Hospital, Linyi, Shandong, China; 8Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physico-chemical Injury Diseases, Hangzhou, Zhejiang, China

Abstract

Background and Aims: Timely and effective assessment scoring systems for predicting the mortality of patients with hepatitis E virus-related acute liver failure (HEV-ALF) are urgently needed. The present study aimed to establish an effective nomogram for predicting the mortality of HEV-ALF patients. Methods: The nomogram was based on a cross-sectional set of 404 HEV-ALF patients who were identified and enrolled from a cohort of 650 patients with liver failure. To compare the performance with that of the model for end-stage liver disease (MELD) scoring and CLIF-C-ACLFs models, we assessed the predictive accuracy of the nomogram using the time-dependent receiver operating characteristics (td-ROC) analysis, respectively. Results: Multivariate logistic regression analysis of the development set carried out to predict mortality revealed that γ-glutamyl transpeptidase, albumin, total bilirubin, urea nitrogen, creatinine, international normalized ratio, and neutrophil-to-lymphocyte ratio were independent factors, all of which were incorporated into the new nomogram to predict the mortality of HEV-ALF patients. The area under the curve of this nomogram for mortality prediction was 0.671 (95% confidence interval: 0.602–0.740), which was higher than that of the MELD and CLIF-C-ACLFs models. Moreover, the td-ROC and decision curves analysis showed that both discriminative ability and threshold probabilities of the nomogram were superior to those of the MELD and CLIF-C-ACLFs models. A similar trend was observed in the validation set. Conclusions: The novel nomogram is an accurate and efficient mortality prediction method for HEV-ALF patients.

Introduction

Hepatitis E virus (HEV) is endemic in many developing countries because of poor sanitation. The virus is predominantly transmitted through fecal and oral routes, which is also a main cause of acute viral hepatitis. About 20.1 million HEV infection-related hepatitis cases occur worldwide, resulting in 70,000 deaths and 3,000 stillbirths in the past. Although hepatitis E usually causes asymptomatic and self-limiting diseases with low mortality, fulminant hepatitis that leads to acute liver failure (ALF) or acute-on-chronic liver failure (ACLF) are possible. Of all acute HEV cases, only a small fraction (0.5–4%) progress to ALF. The rate of progression to ALF may be as high as 10–22% in pregnant women. Notably, the fact that HEV plays an important role in the...
development of ALF has also been frequently reported in Europe. All of these could lead to high mortality rates, ranging from 0–67%. Hence, diagnosing HEV-related ALF (HEV-ALF) patients in a timely manner is extremely important.

To date, a few scoring systems have been established for the diagnosis and prediction of prognosis in patients with different kinds of liver diseases. The model for end-stage liver disease (MELD) score, the integrated MELD (also known as iMELD) score, Child-Turcotte-Pugh score, and CLIF-Consortium-ACLF score (CLIF-C-ACLFs) have been reported for predicting prognosis in patients with liver cirrhosis. The MELD and the CLIF-C-ACLFs model have been used to assess the degree of liver damage and the prognosis of patients. Although various models have been used to predict mortality and transplant-free survival in ALF patients of both acetaminophen-induced and virus-related, a scoring model for predicting the mortality of HEV-ALF patients has not yet been reported, to the best of our knowledge.

A nomogram is a graphical representation, which can be used to diagnose or predict disease occurrence or progression with multiple indicators. Moreover, nomograms can provide a user-friendly interface, which has a demonstrated advantage over the traditional staging systems used to predict patient outcomes for many critical diseases. As a result, nomogram has been proposed as an alternative method, or even as the new standard. Hence, this study aimed to develop a nomogram for predicting the mortality of HEV-ALF patients, and to compare the performance of this nomogram with that of the CLIF-C-ACLFs and MELD models.

Methods

Patients

A total of 404 eligible HEV-ALF patients were recruited from among 650 patients with liver failure from five hospitals in different regions of China. The patient enrollment flow chart is shown in Supplementary Figure 1. All diagnosed HEV-ALF patients, who were referred to The First Affiliated Hospital (Zhejiang University School of Medicine), The Fifth People’s Hospital of Wuxi, The First People’s Hospital of Yancheng City, The People’s Hospital of Dafeng City, and The Linyi Traditional Hospital between 1 January 2010 and 30 May 2019, were retrospectively and consecutively analyzed as the development set (n=249) and the validation set (n=155) of the study.

The selection criteria for HEV-ALF patients have been based on the King’s College criteria. Diagnosis of HE infection made by testing for anti-HEV immunoglobulin (Ig) M and IgG using enzyme-linked immunosorbent assays. A hepatitis E case in this study was defined by positive serum anti-HEV IgM, and/or a greater than 2-fold increase in the anti-HEV IgG titer, and/or detectable HEV RNA with clinical presentation of acute hepatitis, which showed elevated liver enzymes and/or jaundice and/or non-specific symptoms such as fatigue, itching and nausea. The inclusion and exclusion criteria for the enrolled HEV-ALF patients are both described in the supplemental material. The test methods for anti-HEV IgM, IgG antibodies and HEV RNA quantification are provided in the supplemental material.

The criteria for diagnosing ALF was as follows: (1) evidence of abnormal liver synthetic function (prothrombin activity ≤40% or international normalized ratio [INR] ≥1.5), jaundice and hepatic atrophy in 2 weeks in patients; (2) presence of stage 2 or 3 encephalopathy complicating end-stage disease manifestations; and (3) no chronic liver disease.

The exclusion criteria for the enrolled HEV-ALF patients were as follows: (1) co-infection with hepatitis B virus or hepatitis C virus, or alcoholic and non-alcoholic fatty liver disease (NAFLD); (2) drug-induced liver disease; (3) autoimmune immune liver disease; (4) liver cancer; (5) co-infection with cytomegalovirus or Epstein-Barr virus; (6) metabolic liver diseases; (7) previous kidney diseases; (8) accepted liver transplantation; (9) Wilson’s disease; (10) Budd-Chiari syndrome; (11) treatment with an immunosuppressive; (12) incomplete data; or (13) loss to follow up.

Patients were followed up every 7 days and the survival data were collected through medical records or by direct contact with the patients or their families, with death or LT as a composite endpoint. During the follow-up, two of the total four hundred and four HEV-ALF patients were treated with immunosuppressives. One was to address sarcoidosis (prednisone 20 mg/day), and the other giant cell arteritis (tocilizumab 8 mg/kg body weight per month). The present study was performed in accordance with the Helsinki Declaration and was approved by the Ethics Committee of the First Affiliated Hospital, Zhejiang University (reference number: 2011013). Informed consent was obtained from all participants or their families.

Data collection and scoring model calculation

We collected all enrolled patients’ clinical, demographic information and laboratory variables, including age, sex, coagulation parameters, hepatic encephalopathy (HE), arterial blood ammonia, laboratory parameters, length of hospitalization and intensive care unit stay, and prognosis. The diagnosis of HE met the West Haven criteria. The MELD and CLIF-C-ACLFs scoring model calculations are described in the supplemental material. Patients with HE of grade I and II were defined as mild, while those with grade III and above were defined as severe.

Scoring model calculation

The MELD score (range: 6–40) was calculated as follows:

\[
9.6 \times \log_{e} \left[\text{creatinine (mg/dL)} \right] + 3.8 \times \log_{e} \left[\text{bilirubin (mg/dL)} \right] + 11.2 \times \log_{e} \left(\text{INR} \right) + 6.43 \times (\text{etiology: 0 if cholestatic or alcoholic, 1 otherwise}).
\]

The CLIF-C-ACLFs was derived from a modification of the CLIF-sequential organ failure assessment (SOFA) scale and was calculated as follows:

\[
10 \times \left[0.33 \times \text{CLIF-SOFAs} + 0.04 \times \text{age} + 0.63 \times \log_{e} \left(\text{white-cell count:2} \right) \right].
\]

In general, the CLIF-SOFA score (range: 0–24) comprises the same six organ systems as the SOFA and is used to evaluate organ failure in HEV-liver failure patients. As such, in our study, the SOFA score (range: 0–24) was calculated as the sum of scores for six organ systems: respiratory, cardiovascular, renal, neurological systems, liver, and coagulation.

HEV-specific antibody detection

All serum samples were tested for the presence of anti-HEV IgM and IgG antibodies using commercially available HEV enzyme-linked immunosorbent assay kit (Wantai, Beijing, China) according to manufacturer’s instructions. Samples with optical density >1.1 were considered positive. Samples with optical density ≤1.1 were considered negative.

HEV RNA detection

HEV RNA was tested by means of internally controlled quan-
A prognostic nomogram for HEV-ALF patients

Comparison of predictive accuracy for HEV-ALF patients’ 7-day, 28-day and 90-day mortality between the nomogram, MELD score, and CLIF-C-ACLFs in the development set

To estimate the prognostic efficiency of the nomogram, we compared the td-AUC between the nomogram, MELD and CLIF-C-ACLFs scores. Figure 4A–C shows the time-dependent receiver operating characteristics (td-ROC) curves of the nomogram, MELD score, and CLIF-C-ACLFs for predicting HEV-ALF patients’ mortality. The td-AUC for predicting 7-day mortality using the nomogram was 0.921 (0.872–0.970), and was statistically significantly greater than that obtained using the MELD score (0.474 [0.363–0.586]) and the CLIF-C-ACLFs (0.489 [0.376–0.603]) (both p<0.05). The td-AUC for predicting 28-day mortality using the nomogram was also statistically significantly greater than that obtained using the MELD score (0.910 [0.860–0.958]) and the CLIF-C-ACLFs (0.622 [0.511–0.732]) (both p<0.05). The td-AUC for predicting 90-day mortality using the nomogram was 0.900 (0.851–0.949), and was statistically significantly greater than that obtained using the MELD score (0.476 [0.364–0.587]) and the CLIF-C-ACLFs (0.483 [0.371–0.605]) (both p<0.05).
Table 1. Characteristics of the enrolled patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n=404)</th>
<th>Development set (n=249)</th>
<th>Validation set (n=155)</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Age, years</td>
<td>57.25±12.92</td>
<td>56.11±12.07</td>
<td>57.54±12.88</td>
<td>0.177</td>
<td>1.02 (0.97–1.12)</td>
</tr>
<tr>
<td>Sex, F/M</td>
<td>115/289</td>
<td>73/176</td>
<td>42/113</td>
<td>0.631</td>
<td>1.39 (0.42–5.06)</td>
</tr>
<tr>
<td>BMI</td>
<td>23.74±2.98</td>
<td>23.55±2.37</td>
<td>23.91±2.99</td>
<td>0.599</td>
<td>1.57 (0.40–4.55)</td>
</tr>
<tr>
<td>PH</td>
<td>7.42 (7.32–7.48)</td>
<td>7.41 (7.33–7.47)</td>
<td>7.42 (7.31–7.49)</td>
<td>0.554</td>
<td>1.07 (0.91–1.04)</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>88.56±12.39</td>
<td>90.59±13.39</td>
<td>85.86±10.77</td>
<td>0.592</td>
<td>1.07 (0.91–1.04)</td>
</tr>
<tr>
<td>HE mild</td>
<td>30</td>
<td>19</td>
<td>11</td>
<td>0.842</td>
<td>2.84 (1.09–7.41)</td>
</tr>
<tr>
<td>HE severe</td>
<td>68</td>
<td>40</td>
<td>28</td>
<td>0.601</td>
<td>2.28 (1.14–4.55)</td>
</tr>
<tr>
<td>Muscle and/or joint pain (mild/serve)</td>
<td>81/34</td>
<td>48/22</td>
<td>33/12</td>
<td>0.585</td>
<td>1.09 (0.79–1.09)</td>
</tr>
<tr>
<td>Difference in laboratory values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.19 (0.94–4.99)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Total ((n=404))</th>
<th>Development set ((n=249))</th>
<th>Validation set ((n=155))</th>
<th>(p)</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{OR (95% CI)})</td>
<td>(\text{OR (95% CI)})</td>
<td>(\text{OR (95% CI)})</td>
<td></td>
<td>(\text{OR (95% CI)})</td>
<td>(\text{OR (95% CI)})</td>
</tr>
<tr>
<td>INR</td>
<td>1.50 (1.30–2.12)</td>
<td>1.50 (1.32–2.15)</td>
<td>1.51 (1.30–2.07)</td>
<td>0.881</td>
<td>7.02 (2.59–19.01)</td>
<td>(<0.001)</td>
</tr>
<tr>
<td>Ammonia, µmol/L</td>
<td>150.25 (87.56–185.55)</td>
<td>143.50 (78.22–178.25)</td>
<td>152.55 (80.20–182.50)</td>
<td>0.674</td>
<td>1.01 (1.00–1.02)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>CRP, mg/L</td>
<td>9.92 (7.15–14.87)</td>
<td>9.77 (7.04–13.98)</td>
<td>10.21 (7.19–14.97)</td>
<td>0.697</td>
<td>0.98 (0.95–1.09)</td>
<td>(0.912)</td>
</tr>
<tr>
<td>TG, mmol/L</td>
<td>1.02 (0.82–1.54)</td>
<td>1.04 (0.87–1.55)</td>
<td>0.99 (0.80–1.32)</td>
<td>0.812</td>
<td>0.42 (0.25–0.68)</td>
<td>(<0.001)</td>
</tr>
<tr>
<td>TCH, mmol/L</td>
<td>2.26±0.78</td>
<td>2.30±0.67</td>
<td>2.21±0.79</td>
<td>0.218</td>
<td>0.71 (0.52–0.90)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>GLU, mmol/L</td>
<td>3.67 (2.96–5.98)</td>
<td>3.64 (2.99–5.98)</td>
<td>3.78 (2.97–5.46)</td>
<td>0.512</td>
<td>0.89 (0.82–0.97)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Potassium, mmol/L</td>
<td>4.55±0.73</td>
<td>4.59±0.77</td>
<td>4.49±0.69</td>
<td>0.184</td>
<td>1.31 (0.96–1.72)</td>
<td>(0.156)</td>
</tr>
<tr>
<td>Sodium, mmol/L</td>
<td>138.98±65.09</td>
<td>139.76±65.18</td>
<td>137.12±64.81</td>
<td>0.234</td>
<td>1.09 (0.92–1.21)</td>
<td>(0.542)</td>
</tr>
<tr>
<td>Total T3, nmol/L</td>
<td>103.97 (57.07–136.79)</td>
<td>102.50 (58.25–132.22)</td>
<td>105.50 (60.05–139.50)</td>
<td>0.662</td>
<td>1.01 (1.00–1.01)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Total T4, nmol/L</td>
<td>0.94 (0.69–1.41)</td>
<td>0.92 (0.75–1.32)</td>
<td>0.96 (0.74–1.45)</td>
<td>0.892</td>
<td>0.98 (0.71–1.31)</td>
<td>(0.552)</td>
</tr>
<tr>
<td>TSH, mIU/L</td>
<td>1.73 (1.05–3.12)</td>
<td>1.67 (0.97–2.41)</td>
<td>1.81 (1.05–3.09)</td>
<td>0.446</td>
<td>0.92 (0.79–1.32)</td>
<td>(0.152)</td>
</tr>
<tr>
<td>RDW</td>
<td>14.88 (13.30–17.90)</td>
<td>14.85 (13.20–16.00)</td>
<td>14.95 (13.35–18.25)</td>
<td>0.875</td>
<td>1.07 (0.98–1.17)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>RLR</td>
<td>0.77 (0.59–1.42)</td>
<td>0.77 (0.59–1.29)</td>
<td>0.78 (0.59–1.41)</td>
<td>0.596</td>
<td>2.46 (1.21–4.57)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>AFP, ng/mL</td>
<td>38.37 (6.62–119.26)</td>
<td>37.55 (6.00–112.00)</td>
<td>39.90 (6.40–125.20)</td>
<td>0.905</td>
<td>0.99 (0.79–1.22)</td>
<td>(0.812)</td>
</tr>
<tr>
<td>CHE, U/L</td>
<td>2,693.24 (2,412.50–3,312.09)</td>
<td>2,695.80 (2,363.60–3,155.12)</td>
<td>2,681.20 (2,450.30–3,486.80)</td>
<td>0.472</td>
<td>1.00 (1.00–1.00)</td>
<td>(<0.001)</td>
</tr>
<tr>
<td>FER, ng/mL</td>
<td>2,912.54 (1,395.43–4,957.72)</td>
<td>2,907.79 (1,391.20–4,922.12)</td>
<td>2,932.60 (1,399.20–4,997.54)</td>
<td>0.976</td>
<td>1.00 (1.00–1.00)</td>
<td>(0.497)</td>
</tr>
</tbody>
</table>

Other organ failure except for liver and cerebral

- Kidney, \(n\) (%) | 58 (14.4%) | 35 (14.1%) | 23 (14.8%) | 0.827 | 4.08 (2.79–7.93) | \(<0.001\) |
- Coagulation, \(n\) (%) | 24 (5.9%) | 15 (6.0%) | 9 (5.8%) | 0.928 | 5.69 (4.02–7.97) | \(<0.001\) |
- Lung, \(n\) (%) | 16 (4.0%) | 10 (4.0%) | 6 (3.9%) | 0.942 | 1.60 (1.09–2.29) | \(<0.001\) |
- 2 organs failure (%) | 37 (9.2%) | 23 (9.2%) | 14 (9.0%) | 0.945 | 3.23 (2.79–4.29) | \(<0.001\) |
- ≥3 organs failure (%) | 28 (6.9%) | 17 (6.8%) | 11 (7.1%) | 0.917 | 3.48 (1.24–9.77) | \(0.018\) |

Compare the difference between the development set and validation set by \(p\) or compare the difference between different prognosis in the development set by \(p\) under univariate analysis. BMI, body mass index; PH, degree of acid or alkali; MAP, mean arterial pressure; FER, Ferritin; WBC, white blood cell; RBC, red blood count; T3, triiodothyronine; T4, tetraiodothyronine; TSH, thyroid-stimulating hormone; GLU, glucose.
Wu J. et al: A prognostic nomogram for HEV-ALF patients

Fig. 2. The nomogram for HEV-ALF patients’ 7-day, 28-day and 90-day mortality, including UREA, NLR, GGT, TBIL, INR, ALB, and CR levels. The nomogram allows the user to obtain a probability of 7-day, 28-day and 90-day mortality corresponding to a patient’s particular combination of covariates. To use the nomogram, locate the patient’s value and draw a line straight upward to determine the score received for the variable. The sum of these scores is obtained for each covariate, which is then located on the ‘Total Points’ axis. A line is drawn downward to determine the likelihood of 7-day, 28-day and 90-day mortality on the survival axis.
Wu J. et al: A prognostic nomogram for HEV-ALF patients

AUC within 28-day using the nomogram was 0.809 (0.710–0.907), and was statistically significantly greater than that using the MELD score, which was 0.683 (0.559–0.807), and the CLIF-C-ACLFs, which was 0.632 (0.498–0.766) (both p<0.05). A similar trend was seen with 90-day predictions. Comparisons of the td-AUC of all models for predicting HEV-ALF patients’ mortality are shown in Supplementary Table 2.

Moreover, DCA was used to further assess the net benefits of nomogram, MELD score, and CLIF-C-ACLFs assisted decisions at different threshold probabilities. Supplementary Figure 2A–C shows that the nomogram gave a better performance than the MELD score and CLIF-C-ACLFs over the entire range of threshold probabilities.

Validation of the predictive accuracy of the nomogram in the validation set

The clinical characteristics and laboratory parameters of the validation set are shown in Table 1. A good agreement was shown using the nomogram and the calibration curve between the prediction and actual observation of the probability of HEV-ALF patients’ 7-day, 28-day and 90-day survival (Fig. 3D–F). The C-index for the established nomogram was 0.671 (95% CI: 0.608–0.735), which was significantly greater than that of the MELD score, 0.578 (95% CI: 0.504–0.651), and the CLIF-C-ACLFs, 0.604 (95% CI: 0.530–0.675) (Supplementary Table 2). Notably, the performance of the established nomogram was also superior to that of MELD score and CLIF-C-ACLFs, which was confirmed by td-AUC (Fig. 4D–F; Supplementary Table 2) and DCA (Supplementary Fig. 2D–F).

Performance of the nomogram in stratifying risk among HEV-ALF patients

We determined the cut-off value by grouping the patients in the development set into two groups, on average after sorting according to the total score (low risk: 0–200, and high risk: ≥201); each group showed a different mortality (p<0.0001; Supplementary Fig. 3A). Similar results were obtained in the validation set. The nomogram performed well, allowing a remarkable distinction between the Kaplan-Meier curves for survival outcomes when stratifying into two risk subgroups (p<0.0001; Supplementary Fig. 3B).

Discussion

In the current study, a multicenter and multisample design was used with HEV-ALF patients. A new nomogram model was established and compared with traditional liver disease models to prognosticate the mortality of HEV-ALF patients. The nomogram integrated UREA, NLR, GGT, TBIL, INR, ALB, and CR levels, which are all significant independent risk factors for HEV-ALF patient survival. Notably, the nomogram...
had better predictive accuracy than the current conventional prognostic prediction scoring systems for liver failure. The nomogram generated from the development set had a C-index that was superior to that of MELD score and the CLIF-C-ACLFs models. In addition, stratification into two risk subgroups (low-risk and high-risk) allowed remarkable distinction between Kaplan-Meier curves for survival outcomes. Similar results were also confirmed in the validation set.

Both multivariate logistic regression and OPLS-DA revealed that UREA, NLR, GGT, TBIL, INR, ALB, and CR levels are all independent risk factors for HEV-ALF patients' survival. Both UREA and CR are important indicators for evaluating renal function. Consistent with previous studies, HEV infection and the associated renal injury is likely to be a causal factor. Cases of membranoproliferative glomerulonephritis with and without cryoglobulinemia, and membranous glomerulonephritis in HEV patients have been reported. A case of renal impairment during acute HEV infection in a solid organ transplant recipient has also been reported.

INR is an important index to evaluate the coagulation function of patients. HEV infection is associated with certain hematological diseases. Severe thrombocytopenia has been reported in patients with acute HEV infection. All these symptoms are further aggravated with the development of HEV, especially for HEV-ALF patients. NLR, which was combined with neutrophils and lymphocytes, two inflammation indicators, has been reported to predict the prognosis of patients with stable cirrhosis, NAFLD and hepatitis B virus-related decompensated cirrhosis. Several other extrahepatic disorders, such as myocarditis, thyroiditis and myasthenia gravis, have been described with HEV infection.

Jiang et al. revealed that hypoalbuminemia was associated with an increased risk of ALF in patients with acute hepatitis A and B. In addition, Manka et al. reported that ALB levels were inversely correlated with the MELD score, INR, and bilirubin. Our study also confirmed ALB was an independent risk factor for HEV-ALF patients' survival.

Compared with the majority of ALF-cohorts in the worldwide literature, the mean age of our cohort was 57.25±12.92 years, being significantly older. We consider that this is related to the high incidence of hepatitis E failure in the elderly, the mechanism of which remains to be further studied. The 7-day, 28-day and 90-day overall survival rates of the HEV-ALF patients were significantly better than patients of other etiologies. All of these are consistent with the report by Shalimar et al.

This was a retrospective study, which inherently limits the generalization of its findings. First, all HEV-ALF patients were enrolled from five hospitals located in different regions of China. Therefore, the study was easily subject to selection bias and there was considerable heterogeneity likely between units. Second, the nomogram may not be useful for pregnant females, as this cohort only include nine pregnant females. Third, the role of nomogram in HEV-related ACLF patients has not been discussed in this study and requires further focused investigation.

Conclusions

In summary, the noninvasive nomogram may serve as an important method of HEV-ALF mortality evaluation for clini-
Wu J. et al: A prognostic nomogram for HEV-ALF patients, and also enhance patient stratification in clinical trials.

Acknowledgments

We thank the authors of the primary studies for their timely and helpful responses to our information requests.

Funding

This study was supported by a grant from the National Science and Technology Major Project for Infectious Diseases (2012ZX10002004).

Conflict of interest

The authors have no conflict of interests related to this publication.

Author contributions

Conception and design (JW, CS, HC, LL), collection of patients’ samples and medical information (JZ, XS, GL, XZ), data analysis and generation of the tables and figures (XS, YY), statistical analysis (JY): obtained funding and critically revised the manuscript (HC, LL).

Data sharing statement

All data are available upon request.

References

Journal of Clinical and Translational Hepatology 2021 9
Wu J. et al: A prognostic nomogram for HEV-ALF patients

