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Introduction
The second greatest cause of death worldwide is stroke, which is a 
very complicated condition. Pathologically, cerebral ischemia due 
to vascular occlusions has become the main cause of death after 

stroke. Early blood flow restoration through thrombolytic therapy 
is the common treatment for reducing morbidity and mortality.1–3 
However, the reperfusion itself triggers additional injury to the 
ischemic penumbra, which is the region that borders the infarct 
core, leading to cerebral ischemia/reperfusion (I/R) injury. Brain 
cells require a constant supply of energy substrates to maintain 
the ionic equilibrium across neural membranes. Ischemia depletes 
the brain cells of energy substrates. Cell-membrane ionic pump 
failure would lead to brain edema (cytotoxic edema).4 The blood-
brain barrier (BBB) would be harmed by the post-I/R secondary 
cerebral edema, resulting in brain edema (vasogenic edema),4 el-
evated intracranial pressure, and eventually, nerve cell necrosis. 
This type of damage is irreversible, and greatly affects health re-
covery after cerebral ischemia thrombolysis. Therefore, the best 
strategy to treat I/R injury may be to effectively reduce the cer-
ebral edema.
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Abstract
Background and objectives: This study focused on the effects of the combination of baicalin (BC) and gardenoside (GD) (7:3) 
on blood-brain barrier (BBB) permeability, brain tissue water content, and aquaporin-4 (AQP-4) expression in rats with cerebral 
ischemia-reperfusion (I/R) injury. The previous research conducted by the investigators demonstrated that the combination 
of BC and GD (7:3) has anti-ischemic properties. Further research was conducted to determine the mechanism underlying the 
reduction in cerebral edema.

Methods: A total of 150 male Sprague-Dawley rats were randomly assigned to the following groups to receive treatment: 
sham, I/R, allyl chloride (AC), 30 mg/kg BC/GD, and 60 mg/kg BC/GD groups. Then, neurobehavioral scores were assigned 
to determine the effectiveness of the treatment. Evans blue (EB) was used to trace the BBB. The dry/wet method was used to 
evaluate the brain water content. Transmission electron microscopy was performed to examine the ultrastructure of the brain 
tissue. Immunohistochemistry and western blot were performed to detect the presence of AQP-4 in the hippocampus. Reverse 
transcription polymerase chain reaction (RT-PCR) was used to determine the amount of AQP-4 mRNA.

Results: The BBB permeability, brain water content, and AQP-4 expression were significantly greater in the CA1 area of the hip-
pocampus in the I/R group, when compared to the sham group. Furthermore, the endoplasmic reticulum was dilated, and most of 
the nerve cells underwent degeneration or necrosis. After the BC/GD treatment, the markers improved in a dose-dependent manner.

Conclusions: BC/GD can inhibit the BBB permeability and cerebral edema by reducing the expression of AQP-4 in the CA1 
area of the hippocampus in rats after I/R injury, improving the structure of nerve cells and exerting brain-protective effects.
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Aquaporin-4 (AQP-4), which is a membrane protein involved 
in the transmembrane transfer of water, is expressed in astrocytes 
throughout the central nervous system in the brain, spinal cord 
and optic nerve, and is particularly concentrated in foot processes 
adjacent to microvessels in the BBB.5 After brain injury, the al-
tered microenvironment would cause the upregulation of AQP-4 
and alterations in cell membrane structure, BBB permeability, and 
water movement. The onset and progression of cerebral edema are 
directly correlated with the AQP-4 expression, which is consistent 
with the research results reported by Wang.6

Numerous previous studies have revealed the therapeutic ef-
ficacy of various traditional Chinese medicines against cerebral 
edema.7–10 The dried roots of Scutellaria baicalensis Georgis 
contain a substance called, baicalin (BC), which has anti-apop-
totic, anti-inflammatory and antioxidant effects.11–13 Previous 
investigations have demonstrated that BC can protect against 
cerebral ischemia injury.14,15 Furthermore, the extract of Garde-
nia jasminoides Ellis, which is known as gardenoside (GD), has 
anti-inflammatory, analgesic and antioxidant properties.16 In rats 
with cerebral I/R injury, the previous research conducted by the 
investigators indicated that BC/GD can reduce neurological dam-
age, and that the BC/GD treatment (at a ratio of 7:3) exhibited the 
greatest efficacy by decreasing the expression of cysteinyl leu-
kotriene, which is involved in the pathophysiological process of 
inflammation in various cerebrovascular diseases. In addition, it 
was found that the release of cysteinyl leukotriene increased after 
various brain injuries.17,18 However, the mechanism underlying 
the reduction in I/R complications, including brain edema, has not 
been completely defined.

Therefore, the present study aimed to determine whether BC/
GD can lower the expression level of AQP-4 after I/R, minimize 
cerebral edema and maintain the BBB, and identify the possible 
mechanism that controls the anti-I/R effects of BC/GD (Fig. 1).

Materials and methods

Animals and groups
The Experimental Animal Center of Xi’an Jiaotong University 
Health Science Center (Xi’an, China) furnished 150 male Sprague 
Dawley rats (weight: 220–260 g). These rats were randomly al-
located into five groups: sham, I/R, allyl chloride (AC; 187.8 mg/
kg, AQP-4 inhibitor), 60 mg/kg BC/GD, and 30 mg/kg BC/GD 
groups. The National Institute for the Control of Pharmaceutical and 
Biological Products provided the BC and GD (Lot nos.: 110715-
201821 and 110749-201919; Jilin, China,). The AC was supplied by 
Shanghai Adamas Reagent Co. Ltd. (Lot no.: TBH05342; Shanghai, 
China). The MCAO/R method19 was used to establish the animal 
models for the I/R group, AC group, and both BC/GD groups. The 
appropriate drug dose was administered during stomach lavage prior 
to molding, and the model group received normal saline for seven 
days. Rats in the sham group underwent the same treatment as the 
I/R group, with the exception of the line plug insertion (Lot no.: 907-
00019-01; Shenzhen Rayward, China), and received equal amounts 
of normal saline prior to stomach lavage for seven days. The animal 
handling procedures and experimental protocols were consistent 
with the guidelines for the management of laboratory animals, and 
approved by the Animal Ethics Committee of Shaanxi University 
of Chinese Medicine, Ethics approval no.: SUCMDL20220401004. 
All surgery was performed under sodium pentobarbital anesthesia, 
and all efforts were made to minimize suffering.

Establishment of the cerebral I/R model in rats
The modified Longa line embolism method was used to create a 
model of focal infarction of the middle cerebral artery occlusion 
(MCAO) after the intraperitoneal injection of 3% pentobarbital 
sodium (1 ml/kg) to induce anesthesia. The procedure involved 

Fig. 1. Design and work-up of the experiment. AC, allyl chloride; AQP-4, aquaporin-4; BBB, blood-brain barrier; BC, baicalin; GD, gardenoside; GLU, glucose; 
I/R, cerebral ischemia reperfusion; LA, lactic acid; MCAO, the middle cerebral artery occlusion; PA, pyruvic acid; RT-PCR, reverse transcription polymerase 
chain reaction.
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fixing rats to the surgical table, cleaning the neck skin, performing 
an incision in the middle of the neck, bluntly separating the subcu-
taneous tissue, exposing the right common carotid artery, external 
carotid artery and internal carotid artery, and inserting a thread. 
After two hours of ischemia, the suppository was removed, the tie 
around the common carotid artery was loosened, and reperfusion 
was allowed to occur. Then, the rats were housed in a feeding box 
with clean bedding, and allowed access to food and water ad libi-
tum. During the procedure, care was taken to keep the rats warm at 
a temperature of 37 °C.

Neurobehavioral scoring of rats
The Longa scoring criteria were used to assess the neurobehavioral 
performance of rats at 24 hours after I/R: 0 point, no neurological 
deficit; 1 point, mild focal neurological deficit; 2 points, moder-
ate focal neurological deficit, 3 points, severe focal deficit, and 4 
points, total neurological deficit (inability to spontaneously walk 
and a depressed level of consciousness). In order to exclude inter-
ferences from operative failures, these rats were subjected to I/R, 
and no detectable neurological deficits were eliminated from the 
subsequent researches and analyses.

BBB permeability detection
Evans blue (EB; Sigma, USA) was used to detect the BBB per-
meability. The caudal vein was injected with 20 g/L of EB saline 
solution (20 mg/kg) until the eyes and soles of the paws turned 
blue. After one hour, the rats were euthanatized, and the brain was 
extracted. Then, the extracted brain was weighed and placed in a 
test tube, and 5 ml of formamide was added. Afterwards, the sam-
ple was incubated in water bath at 37 °C for 72 hours. Next, spec-
trophotometry was performed to identify the absorbance. Then, the 
EB content was calculated from the sample. The outcomes were 
presented as the amount of EB in the moist brain tissue (g/g).

Determination of the water content
After the rats were deeply anesthetized, decapitation was per-
formed, eight brain tissues were extracted from each group, and 
the brain tissue water content was determined using the dry and 
wet weight method. Next, the obtained brain tissue was weighed 
to measure the moist weight. Then, the brain tissue was dried for 
24 hours before weighing again to determine the dry weight. The 
following formula was used to determine the brain tissue water 
content: brain water content = wet weight − dry weight.

Detection of glucose (GLU), pyruvic acid (PA) and lactic acid (LA)
After anesthesia, blood samples were collected, and fluid from the 
centrifuged supernatant was obtained. Then, commercial kits (Lot 
nos.: F006-1-1, 20181023B and 20180913C; Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) were used to detect the 
GLU, PA and LA. The assays were conducted according to manu-
facturer’s protocols.

Histopathology
Brain tissues were collected from four rats in each group. Then, 
the samples were fixed in formalin (10%), embedded in paraffin, 
and sectioned at a thickness of 5 µm. Afterwards, the sections were 
mounted on a glass slide, and hematoxylin and eosin were used for 
the staining.

Transmission electron microscopy
The technique outlined below was performed to identify the brain 
tissue’s ultrastructure using a transmission electron microscope 

(Hitachi, Tokyo, Japan). One rat from each group was sedated at 
24 hours after I/R using 1% pentobarbital sodium, followed by in-
travenous injection of pre-cooled normal saline to flush the excess 
blood. Then, the brain was quickly decapitated and fixed in 4% 
paraformaldehyde at 4 °C. Afterwards, the ischemic brain tissues 
were cut into sections (1 × 3 mm), and preserved at 4 °C in 2.5% 
glutaraldehyde. Uranyl acetate and citric acid lead were used to 
stain the ultrathin sections, and transmission electron microscopy 
was performed to observe the specimens.

Immunohistochemical staining
The localization and expression of AQP-4 in the CA1 area of hip-
pocampus microvessels were investigated using immunohisto-
chemical labeling. The brains were quickly removed, segmented 
below the optic chiasma, fixed in 4% paraformaldehyde overnight, 
and routinely dehydrated and transparentized. Then, the sections 
were embedded in paraffin, cut into 5-µm sections, dewaxed, 
baked, and maintained in a 4 °C refrigerator. The immunohisto-
chemistry procedures were performed strictly according to manu-
facturer instructions (Beijing Zhongshan Biotechnology Co., Ltd., 
Beijing, China). The AQP-4 protein was expressed in positive 
cells, and was visible as brown granules in the cytoplasm by light 
microscopy at 200× magnification. The image analysis system was 
used to calculate the average optical density.

Western blot analysis of AQP-4 protein expression levels
Western blot was performed to determine the AQP-4 protein lev-
els. At 24 hours after reperfusion, the rats were decapitated, and the 
brains were extracted and chilled. Then, a portion of the hippocam-
pus was analyzed for the protein content. Afterwards, the protein 
lysates were prepared and centrifuged, and the total protein was 
quantified in the supernatant. Subsequently, the assay was carried 
out according to manufacturer’s guidelines. After the samples were 
electrophoresed, these were transferred onto membranes that were 
sequentially treated with the primary antibody (Lot no: ab259318; 
Abcam, USA) and secondary antibody (Lot no.: BA1560; Chemi-
con, USA), and a coloring agent was applied. Image J was used 
to quantitatively assess the optical density data, and the target and 
reference protein bands were used to indicate the relative content. 
GAPDH was used as the internal control.

Total RNA extraction and RT-PCR
Total RNA was extracted from rat hippocampal tissues using Tri-
zol reagent (Invitrogen, Carlsbad, CA, USA), according to manu-
facturer’s instructions. The extracted RNA was treated using the 
RNase-free DNase kit (Qiagen GmbH, Germany). Then, the cDNA 
(1 µg) was obtained by reverse transcription using the PrimeScript 
RT-PCR kit (Takara Bio Inc., Otsu, Japan). The sequences for the 
primer pairs were, as follows: AQP-4 (141 bp): forward, 5′-TGG 
TCC TCA TCT CCC TCT GCT TTG G-3′; reverse, 5′-AGA AGA 
CGG ACT TGG CGA TGC TGA T-3′. Β-actin served as the inter-
nal control (forward: 5′-GAA GAT CAA GAT CAT TGC TCC-3′, 
reverse: 5′-TAC TCC TGC TTG CTG ATC CA-3′). The efficiency 
of the reaction was measured using the 2−ΔΔCT method.

Statistical analysis
The SPSS 22.0 statistical software (IBM, Armonk, NY, USA) was 
used to process and analyze all data. The data was presented as 
mean ± standard deviation (SD). All results were reported as mean 
± SD. One-way analysis of variance was performed to compare 
the differences between groups. Statistical significance was set at 
p < 0.05.
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Results

Neurobehavioral scores of rats
Rats in the sham group presented without overt abnormalities, and 
had a neurological deficit score of 0, while neurobehavioral scores 
in the I/R group, AC group, 60 mg/kg BC/GD group, and 30 mg/kg 
BC/GD group presented with varying degrees of impairment based 
on the Longa grading standards. As shown in Table 1, the neuro-
logical deficit score significantly increased for rats in the I/R group 
(p < 0.01), when compared to the sham group. Furthermore, rats in 
all treatment groups (AC group, 60 mg/kg BC/GD group, and 30 
mg/kg BC/GD group) presented with significant improvement in 
brain damage induced by I/R (p < 0.05), when compared to rats in 
the I/R group. At the same time, the AC, as an inhibitor of AQP-
4, decreased the behavioral scores of rats, indicating that AQP-4 
plays a role in brain damage at 24 hours after I/R. Compared to the 
I/R group, the decrease in BC/GD score suggests that the inhibi-
tion of the AQP-4 expression may play a role in brain protection.

BBB permeability
The effects of BC/GD on BBB permeability were assessed by EB 
staining. The exudation of EB significantly decreased in the AC 
group (p < 0.05), when compared to the I/R group, and the EB 
content significantly decreased, when compared to the I/R group 
and 60 mg/kg BC/GD group (p < 0.05). Furthermore, the EB con-
tent significantly increased in the I/R group, when compared to 

the sham group (p < 0.05, Fig. 2a). These findings indicate that 
the BBB was destroyed after I/R, causing vasogenic brain edema. 
Furthermore, these results show that although there may be various 
ways to induce brain edema after I/R, the treatment groups all had 
substantial protection for the BBB, suggesting that BC/GD plays a 
role in brain protection by protecting the BBB.

Brain water content
The results revealed that rats had significantly higher levels of 
brain tissue moisture in the I/R group, when compared to the sham 
group (p < 0.01), while rats had significantly lower levels of brain 
tissue moisture in the AC group and 60 mg/kg BC/GD group (p < 
0.01). The difference in brain tissue moisture between the 30 mg/
kg BC/GD group and I/R group was significant (p < 0.05). There-
fore, I/R may increase the amount of water in the brain of rats, 
resulting in cerebral edema, while the 60 mg/kg BC/GD treatment 
can significantly lessen the I/R-induced cerebral edema (Fig. 2b).

Detection of GLU, PA and LA
Energy metabolism failure is one of the main factors that cause mi-
tochondrial dysfunction and oxidative stress damage in the patho-
genesis of cerebral ischemia, which produces a considerable number 
of reactive oxygen species and opens the BBB.20 Figure 3 presents 
the GLU, PA and LA concentrations for each group. After I/R for 24 
hours, the GLU, PA and LA levels in rat serum were significantly 
higher, when compared to the sham group (p < 0.05, p < 0.01 and 
p < 0.01, respectively). This suggests that after I/R, the microen-
vironment in the brain becomes damaged, mitochondrial function 
becomes disordered, and the hypoxia induces changes in the glucose 
metabolism pathway. Furthermore, there was a risk of hyperglyce-
mia, which could further accelerate the opening of the BBB, and this 
is consistent with the above results. When oxygen is insufficient, 
the original glycolysis pathway of the mitochondria, namely, the ab-
sorption of pyruvate to promote glucose oxidation, is broken. In or-
der to meet the energy supply, compensatory lactic acid is generated, 
leading to its accumulation. However, compared to the I/R group, 
the GLU and LA indicators significantly decreased in the AC group 
and 60 mg/kg BC/GD group (p < 0.05), and this was similar with the 
PA levels (p < 0.01). In contrast, the LA levels did not significantly 
differ in the 30 mg/kg BC/GD group, when compared to the I/R 

Fig. 2. Effect of the BC/GD treatment on the brain water content and BBB permeability. (a) The BBB permeability for each group (n = 8). (b) The brain water 
content for each group (n = 8). #p < 0.05, ##p < 0.01, compared to the sham group; *p < 0.05, **p < 0.01, compared to the I/R group. AC, allyl chloride; BBB, 
blood-brain barrier; BC, baicalin; GD, gardenoside; I/R, cerebral ischemia reperfusion.

Table 1.  Neurobehavioral scores of rats (x ± SD, n = 24)

Group Dose (mg/kg) Neurobehavioral score

Sham – 0.00 ± 0.00

I/R – 2.20 ± 0.84##

AC 187.8 1.20 ± 0.45*

60 mg/kg BC/GD 60 1.33 ± 0.55*

30 mg/kg BC/GD 30 1.50 ± 0.55*

Note: #p < 0.05, ##p < 0.01, compared to the sham group; *p < 0.05, compared to the 
I/R group. AC, allyl chloride; BC, baicalin; GD, gardenoside; I/R, cerebral ischemia 
reperfusion; SD, standard deviation.
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group. These results suggest that brain protection by BC/GD can be 
achieved by protecting mitochondrial function.

Histological changes
The neurocyte bodies in the hippocampus of rats in the sham group 
were larger, and the hematoxylin and eosin staining revealed an 
unclear basophilic blue staining, while the cytoplasm was stained 
acidophilic red. Furthermore, the nerve cells were well-aligned, and 
presented with a normal structure and uniform color. In the I/R group, 
the nerve cells were disorganized, the nuclei were heavily stained and 
condensed, and the bulk of the nerve cells underwent necrosis and de-

generation to become vacuoles. In addition, the nerve cell destruction 
was less severe, and the structure of the remaining neurons improved 
in the AC group and BC/GD treatment groups (Fig. 4).

Effects of BC/GD on the ultrastructure
Transmission electron microscopy was used to examine the micro-
scopic organization of neurons in brain tissues (Fig. 5). The neuronal 
mitochondria and endoplasmic reticulum were both normal in the 
sham group. In the I/R group, karyolitic cavitation, cytoplasmic cavi-
tation, and dilated endoplasmic reticulum were observed. In general, 
the neurons appeared normal. In the AC group, there was minimal, 

Fig. 3. Effect of the BC/GD treatment on brain energy metabolism in rats in each group (n = 22): GLU (a), PA (b) and LC (c) levels in plasma. #p < 0.05, ##p 
< 0.01, compared to the sham group; *p < 0.05, **p < 0.01, compared to the I/R group. AC, allyl chloride; AQP-4, aquaporin-4; BC, baicalin; GD, gardenoside; 
GLU, glucose; I/R, cerebral ischemia reperfusion; LA, lactic acid; PA, pyruvic acid.

Fig. 4. H&E staining of hippocampus tissues in each group. The microscopic structures of the cerebral cortex were observed (bar: 20 µm, n = 6). AC, allyl 
chloride; BC, baicalin; GD, gardenoside; I/R, cerebral ischemia reperfusion.
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if any, neuronal damage, and the neurons appeared nearly normal. 
In the 60 mg/kg BC/GD group, the cell nuclear and endoplasmic re-
ticulum were slightly dilated, but the mitochondria were normal. In 
the 30 mg/kg BC/GD group, endoplasmic reticulum dilation, nuclear 
irregularity and Golgi expansion were observed (Fig. 5).

Effects of BC/GD on the expression of AQP-4 in I/R rats
The immunohistochemistry, western blot and RT-PCR results re-
vealed that the AQP-4 expression in rat brain tissues obtained from 
the hippocampal region was significantly higher in the I/R group, 
when compared to the sham group (p < 0.01), In contrast, the AQP-
4 expression was significantly lower in the AC group and 60 mg/
kg BC/GD group, when compared to the I/R group (p < 0.05), but 
this was not significantly different when compared to the 30 mg/
kg BC/GD group (Fig. 6).

Discussion
Accumulating research has revealed that BC exhibits neuroprotec-
tive benefits against cerebral ischemia injury in rats. In the study 
conducted by Cao et al.,21 BC reduced the damage caused by glob-
al cerebral I/R in gerbils through anti-oxidative and anti-apoptotic 
pathways. In the study conducted by Wang et al.,6 BC improved 

the ischemia-related memory impairment by preventing CaMKII 
phosphorylation in the hippocampus. In addition, neuroprotective 
effects of BC may be correlated to NF-κB suppression,14 protease-
activated receptor-1 expression15 and apoptosis,16 which all pre-
sent after I/R injury. GD is the dried ripe fruit of Gardenia jasmi-
noides Ellis of the Rubiaceae family. A typical iridoid compound 
of the genus Gardenia is geniposide. This has been demonstrated 
to have the ability to improve rat performance by stimulating the 
GLP-1R/Akt signaling pathway, decreasing the production of IL6, 
TNFα and IL1β, and decreasing neuronal death after I/R.22 You et 
al.23 reported that geniposide can inhibit caspase1 cell pyrolysis, 
and downregulate the expression of NLRP3, caspase1, IL1 and 
IL18. Furthermore, a previous study reported that geniposide is 
converted to genipin by intestinal microbial enzymes, suggesting 
that the primary form of geniposide in circulating blood may be 
genipin.24 The activation of the apoptotic signaling pathway can 
lower the inflammatory response. A study reported that genipin 
can protect neurons by boosting the expression of transforming 
growth factor β and reducing the expression of TNFα, which in 
turn, prevents the microglia from becoming hyperpolarized.25 
Although numerous studies have revealed that BC and GD have 
neuroprotective effects against cerebral I/R injury, the mechanism 
of ischemic cerebrovascular illness remains not fully understood. 
The previous study conducted by the investigators revealed that 

Fig. 5. Ultrastructure of hippocampus tissues in each group (10,000×, n = 8). I/R, cerebral ischemia reperfusion; AC, allyl chloride; AQP-4, aquaporin-4; BC, 
baicalin; GD, gardenoside.
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BC/GD therapy has a neuroprotective effect against cerebral is-
chemia.14 However, it remains unclear whether AQP-4 contributes 
to the neuroprotective benefits of BC/GD.

The present study investigated the neuroprotective effects of 
BC/GD in I/R rats, and the main conclusions are presented below. 
First, the BC/GD treatment may enhance neurobehavioral capa-
bilities. In addition, the BC/GD treatment may lessen the BBB 
damage and reduce BBB permeability. Third, the BC/GD treat-
ment may improve energy metabolism. Fourth, the BC/GD treat-
ment may lessen the brain edema. Fifth, the BC/GD treatment may 
drastically weaken the histology of nerve cells. Finally, the BC/GD 
treatment can suppress the AQP-4 expression in I/R rats.

A water channel, which is known as AQP-4, is prevalent through-
out the central nervous system, which mediates the water molecule 
flow in brain tissues, and is involved in the control of water channel 
activity. AQP-4 is expressed in astrocyte end-feet.5,26 The balance 

of brain water is critical for maintaining physiological conditions. 
However, in pathological circumstances, AQP-4 overexpression 
may induce cerebral edema by increasing BBB permeability.27 Nu-
merous studies have revealed that after I/R, rats presented with sig-
nificantly higher AQP-4 expression levels in the brain.28–30 There-
fore, the possible mechanism for providing neuroprotection against 
cerebral ischemia is the reduction in AQP-4 expression. The western 
blot results in the present study revealed that rats in the I/R group had 
significantly higher AQP-4 expression levels. However, there was a 
decrease in AQP-4 expression in groups that received medication 
treatment. In addition, the RT-PCR results revealed that the AQP-4 
mRNA levels were lower in the medication treatment groups, when 
compared to the I/R group. Although further studies are still required 
to fully understand the mechanisms underlying the neuroprotective 
benefits of BC/GD, the recent results reported by the investigators 
appear to be a significant step to that direction.

Fig. 6. The expression of AQP-4 in hippocampus tissues in each group. (a) The protein expression of AQP-4 was confirmed by immunohistochemical stain-
ing (400× magnification, n = 6). (b) The histogram depicts the AQP-4-positive cells detected by immunohistochemical staining. (c) The histogram depicts the 
AQP-4 protein expression in the hippocampus of rats in each group (n = 3). (d) The histogram depicts the AQP-4 mRNA expression in the hippocampus of 
rats in each group (n = 3). ##p < 0.01, compared to the sham group; *p < 0.05, **p < 0.01, compared to the I/R group. I/R, cerebral ischemia reperfusion; AC, 
allyl chloride; AQP-4, aquaporin-4; BC, baicalin; GD, gardenoside.
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Finally, the findings of the present study revealed that the ad-
ministration of BC/GD may ameliorate the inflammatory damage 
to nerve cells and alteration in cell structure produced by I/R, pre-
serve the BBB and brain water content, and suppress the AQP-4 
expression.

Conclusions
The findings revealed that BC/GD can improve neurobehavioral 
function and the structure of remaining neurons in brain tissue, 
while reducing edema and BBB damage induced by cerebral I/R 
injury. The suppression of AQP-4 may be connected to the neuro-
protective effects of BC/GD.
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