Production of SARS-CoV-2 Specific IFN-γ/IL-10 Co-producing CD4 T Cells from Convalescent Donors to Treat COVID-19: A Hypothesis

Alejandro Núñez Nolasco*

Independent Researcher, La Vega, Dominican Republic

Received: February 17, 2021 | Revised: April 27, 2021 | Accepted: June 08, 2021 | Published: June 29, 2021

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), alarmed people worldwide as an emerging coronavirus, which to date remains a major global public health challenge. Patients are being treated with different therapies; however, no evidence of a single therapy has been found to improve the clinical outcomes significantly; therefore, there is currently no single effective treatment against COVID-19. The research related to virus-specific T cell therapy has provided positive results when treating Epstein-Barr virus (EBV) and cytomegalovirus (CMV). Therefore, when facing a new virus, it is necessary to continue innovating the therapeutic strategies that have worked to treat viral infections previously, adapting to the pathogenesis of this new disease, to treat patients infected with SARS-CoV-2 effectively and safely. This proposal presents the research idea of creating SARS-CoV-2 specific interferon-gamma (IFN-γ) and interleukin-10 (IL-10) co-producing CD4 T cells to determine the cytokine secretion and viability of their production for virus-specific T cell therapy.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which began in Wuhan, a central city in China, in December 2019, has alarmed people worldwide as an emerging coronavirus, which to date remains a major global public health challenge.¹ In the first few days, patients that are infected with SARS-CoV-2 might develop the disease in several stages starting from an asymptomatic state. In the following days, the virus travels through the upper airways, where it spreads and migrates along the conductive airways, and a more robust immune and innate response is triggered, in approximately 80% of patients with COVID-19 the disease will be mild and mainly restricted to the upper and conductive airways.²³ Approximately 20% of infected patients will progress to the next stage and develop pulmonary infiltrates, and some of them will develop severe diseases, such as hypoxia and progression to acute respiratory distress syndrome (ARDS). The pathological result of severe acute respiratory syndrome (SARS) and COVID-19 is diffuse alveolar damage with fibrin-rich hyaline membranes and some giant multinucleated cells, and aberrant wound healing could lead to scarring and fibrosis that is more severe than other forms of SARS.⁴⁻⁵ Other typical symptoms of COVID-19 include fever, dry cough, and shortness of breath; gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea have been reported, and neurologically related symptoms, in particular, anosmia, hyposmia, and dysgeusia.⁶

Currently, there is no single effective treatment against COVID-19.⁷ Hydroxychloroquine does not have any benefit, and thera-

Keywords: SARS-CoV-2 specific T cells; IFN-γ/IL-10 co-producing Th1 cells; Living-drug; COVID-19 treatment; Hypothesis.

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ARDS, acute respiratory distress syndrome; SARS, severe acute respiratory syndrome; EBV, Epstein-Barr virus; GrVHD, graft-versus-host disease; CMV, cytomegalovirus; Th1, T-helper type 1; IFN, interferon; IFN-γ, interferon-gamma; TNF, tumor necrosis factor; TNF-α, tumor necrosis factor-alpha; IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin 10; IL-12, interleukin-12; PBMC, peripheral blood mononuclear cell; RT-PCR, reverse-transcription polymerase chain reaction; HIV, human immuno-deficiency virus; HCV, hepatitis C virus; HBV, hepatitis B virus; TCR, T cell receptor; CDR3, complementary-determining region 3; TCRV, T Cell receptor variable; CPT, convalescent plasma therapy; FDA, Food and Drug Administration; TBX21, T-box transcription factor; T-box, T-box expressed on T cells; HLA, human leukocyte antigen; NF-kB, nuclear factor-Kappa B; IKK, I Kappa B kinase; MHC, major histocompatibility complex; VV, vaccinia virus; NK, natural killer cell; STAT-4, signal transducer and activator of transcription 4.

Correspondence to: Alejandro Núñez Nolasco, Guaco, Concepción de La Vega, La Vega 40000, Dominican Republic. ORCID: http://orcid.org/0000-0002-0262-7670. Tel: +1 (809) 218-2781, E-mail: alejan125@hotmail.com

Hypersynergic immune dysregulation in COVID-19, which is known as cytokine storm syndrome, has been described as immune deregulation that is characterized by the continuous activation of immune cells, which are secretors of large amounts of cytokines that lead to overwhelming systemic inflammation and high-mortality multiorgan insufficiency.\(^7\)\(^8\) This could be mediated by interleukin-10 (IL-10), a potent immunomodulator. IL-10 inhibits the production of pro-inflammatory cytokines, such as interferon (IFN), tumor necrosis factor (TNF), interleukin-1 (IL-1), and interleukin-6 (IL-6) in various cell types and it prevents the maturation of dendritic cells by blocking IL-12.\(^9\) IL-10 levels increase in the second week after the onset of symptoms; although they have not associated with the immune drawback, it is an indication of latent immune efforts to control the cytokine storm.\(^10\)\(^11\)

Interferon-gamma (IFN-γ) is a type II interferon that is produced by various cells, such as CD4 T cells. IFN-γ participates in numerous immunological and adaptive functions, promotes macrophage activation and antigen presentation, and is highly involved in antibacterial and antiviral immunity and the transduction of signals.\(^12\)\(^13\) The inflammatory response to COVID-19 results in the formation of fibrosis in patients; it has been suggested that early intervention of antiviral infection using IFN-γ could be substantial in inhibiting fibrosis for a better functional recovery.\(^14\)

Effector memory T cells that co-produce IFN-γ and IL-10 perform an essential role in regulating pulmonary inflammatory development and fatal injury in acute infections that are caused by respiratory viruses.\(^15\) Effector memory CD4 T cells that co-produce IFN-γ/IL-10 accumulate in peripheral tissues in areas where the infection is persistent to prevent local damage; however, despite its IL-10 production, these cells express especially high levels of IFN-γ.\(^16\) In addition, when these cells are cultivated with macrophages that have been infected with Toxoplasma gondii, the pathogen is efficiently eradicated, which indicates that their simultaneous production of IL-10 does not compromise the effector function of these T-helper type 1 (Th1) cells.\(^17\)\(^18\)

By focusing on the capabilities and therapeutic potential of these Th1 cells, it is essential to consider their use to combat the disease that is caused by SARS-CoV-2 (Fig. 1). In addition, it is necessary to determine the viability of its production and analyze the IFN-γ and IL-10 secretion of these cells. Therefore, the meth-
5 µg/mL, in TexMACS medium (Miltenyi Biotec, Germany), with 1% penicillin/streptomycin (Thermo Fisher Scientific, USA), 5% AB serum (Thermo Fisher Scientific), 60 ng/mL IL-12 (Miltenyi Biotec, Germany) at 37°C, 5% CO₂ for 4–6 h. To study the secretion of IL-10, a parallel sample cultured without peptides and IL-12 as control must be performed. After stimulation, the cells will be labeled with the IL-10 Secretion Assay-Detection Kit Capture Reagent, human (Miltenyi Biotec, Germany) composed from antibodies specific for IL-10 secreted by the target cells. Therefore, after the secretion phase, the IL-10 bound to the cell surface could be attacked using the IL-10 PE antibody included in the kit for their respective magnetic separation; therefore, obtaining the target cells.

Cell irradiation

Harvested effector memory IFN-γ/IL-10 co-producing CD4 T Cells will be irradiated by the RS 1800 Q Biological Irradiator (Rad Source Technologies Quastar, USA) at 7.5 Gy, for the inhibition of cell proliferation. A dose of 0 Gy will be used as a control sample.

IFN-γ and IL-10 secretion assay

IFN-γ/IL-10 co-producing Th1 cells will be simultaneously analyzed for the production of two different cytokines by combining two different cytokine secretion assays, using the IFN-γ Secretion Assay Detection Kit (PE) (Miltenyi Biotec, Germany) and the IL-10 Secretion Assay Detection Kit (PE) (Miltenyi Biotec, Germany), following the manufacturer’s protocol (Two-color Cytokine Secretion Assays, Miltenyi Biotec, Germany).

Cell proliferation assay

The CellTrace CFSE Cell Proliferation Kit (Invitrogen) (Thermo Fisher Scientific) will be used for flow cytometry, following the manufacturer’s specifications to analyze cell proliferation.

TCRV/β spectratyping

For evaluation of T cell receptor (TCR) spectra, the complementary-determining region 3 (CDR3) coding region of the T cell receptor variable (TCRV) gene will be expanded using 24 specific primers of the TCRV subfamily and a primer conjugated per carboxyfluorescein region (FAM).12 The PCR products will be denatured with Hi-Di formamide (Applied Biosystems, Carlsbad, CA) and electrophoresed along with the standard size Gene Scan-600 LIZ (Applied Biosystems) on a SeqStudio Genetic Analyzer (Applied Biosystems).12
Flow cytometry panels for immune cell purity and composition

To analyze the cell composition, two antibody panels must be performed with MACSQuant Analyzer (Miltenyi Biotec, Germany) using the express mode. The first panel, CCS Immune Cell Composition h 1, (Panel A) will be used to determine immune cell composition and target cell number with CD45-VioBlue, CD4-VioGreen, CD3-FITC, CD16/CD56-PE, CD19-PEVio770, CD14-APC, CD8-APC-Vio770, and 7-AAD; the second panel, CCS Purity h 01, (Panel B) will be used to determine phenotype and frequency of target cells with CD45-VioBlue, CD3-FITC, IFN-γ-PE, CD45RO-PEVio770, CD62L-APC, and CD8-APC-Vio770.12

Evaluation of the hypothesis and the proposed methods

COVID-19 is a disease that remains a major global public health challenge. Vaccine development and implementation is accelerating; the number of vaccines that are entering phase IV clinical trials is increasing;23 however, there is currently no single effective treatment against COVID-19.7 One of the strategies used to treat patients with COVID-19 has been CPT, which is composed of neutralizing antibodies specific for SARS-CoV-2.7,24 The Food and Drug Administration (FDA) currently approves CPT for use in patients with COVID-19 for research purposes; observational studies have shown treated patients have significantly improved oxygen saturation, CRP, 30-day survival rate, and reduced need for mechanical ventilation.7 However, CPT requires active compatible donors for urgent transfusion, which for some people could be difficult to obtain if a donor is not available at the right time.

T cell therapy might be a promising strategy when treating patients infected by SARS-CoV-2 based on the evidence and positive results of this therapy previously.8,9,25,26 and could give us the possibility to create a repertory of cells samples, because they can be cultured and stored in a biobank.27 Therefore, haploidentical patients might obtain a living drug to be treated quickly and efficiently, an idea that has initiated multinational research into this approach.11–14 The recommended doses are approximately >2.5 × 10^6/kg of the recipient’s body weight for perfusion of virus-specific T cells in incompatible/haploidentical donors.28 The use of third-party virus-specific T cells in biobanks is a feasible and safe method to treat severe viral infections rapidly; previous studies reflect the efficacy of virus-specific cells, even when combined with a single relevant human leukocyte antigen (HLA) allele with the receptor, as long as this allele presents antigens derived from viruses.27

The acute hyperinflammatory response, the phenomenon that has been implicated in critically ill patients that are infected with SARS-CoV-2,15,16,29,30 could be regulated by IL-10; a cytokine that these proposed effector cells secrete. IL-10 is a mediator cytokine of the immune response; this inhibits the secretion of other pro-inflammatory cytokines, such as IL-1, IL-1α, IL-1β, IL-6, IL-8, IFN-γ, and TNF-α, and blocks IL-12.16,31,32 In addition, the modulatory effect of IL-10 in the inflammatory responses is associated with the inhibition of the nuclear factor-kappa B (NF-κB) pathway.33–36 The NF-κB coordinates the activation of numerous genes in response to pathogens and pro-inflammatory cytokines and is; therefore, critical in the development of acute and chronic inflammatory diseases.34,36 In COVID-19, the NF-κB activation in various cells, such as macrophages of the lung, liver, kidney, central nervous system, gastrointestinal system, and cardiovascular system leads to pro-inflammatory cytokines and chemokines production.37 Various authors proposed that the inhibition of the NF-κB pathway as a potential target for therapeutic strategies to treat severe COVID-19.37–39 IL-10 blocks NF-κB activity at two levels; through the suppression of I kappa B kinase (IKK) activity and through the inhibition of NF-κB DNA binding activity.34

These proposed cells secrete IFN-γ, which is an essential antiviral cytokine in the immune response to viral infections and eradication pathogens.16,19 In addition to its antiviral activity, IFN-γ has antifibrotic properties.19 IFN-γ increases the destruction function of CD8 T cells by inducing major histocompatibility complex (MHC) class I; in addition, it improves the immune response by stimulating the MHC class II receptors.40 IFN-γ amplifies antigen presentation through antigen-presenting cells (APCs) by enhancing antigen recognition via cognate T cell interaction.40,41 It has been suggested that early intervention in antiviral infection using IFN-γ could be substantial in inhibiting fibrosis for better functional recovery;19 and a study with results that were limited to a small number of patients obtained data on the positive effect of IFN-γ on the rate of clinical stabilization and recovery of patients with moderate COVID-19.42

IFN-γ/IL-10 coproducing CD4 T cells express T-box transcription factor (TBX21), which is known as T-box expressed on T cells (T-bet),21,22,43 T-bet plays a critical role in defending against Vaccinia virus (V) infection in mice; it is required to control IFN-γ production in CD4 T cells and natural killer (NK) cells.43 NK cells play a central role in maintaining immune homeostasis, which is a critical requirement when facing the challenge of a novel pathogen; SARS-CoV-2 infection impedes NK cell function, and therefore, disrupts this vital balance.42 IL-10 has previously been associated with the inhibition of NK cell production of IFN-γ due to its ability to suppress accessory cell production of pro-inflammatory cytokines.44–46 However, IL-10 increases NK cell production of IFN-γ when combined with interleukin-18 (IL-18),46 which is a cytokine presented in the cytokine storm in COVID-19.47,48 In addition, IL-10 enhanced the ability of IL-18 to stimulate NK cell cytotoxicity and proliferation,46 and plays a role on the stimulation of IFN-γ production by CD8 T cells.46 IL-10 is an influential factor for the growth and differentiation of mastocytes, thymocytes, and B cells;16 IL-10 supports the differentiation of B cells in the complete absence of IL-2.49

In the proposed process (Fig. 2), PBMCs samples will be extracted from convalescent patients (Fig 2.1). Recovered COVID-19 patients consistently generated a substantial CD4 T cell response against SARS-CoV-2.18 After extraction of the PBMCs, lymphocytes will be automatically processed with specific peptides of the SARS-COV-2 for IFN-γ secretion (Fig 2.2), this process takes approximately 12 h, is fully automatic, and it requires limited human input for its development.52 In brief, the cells will be isolated to obtain the effector memory CD4 T cells that secretes IFN-γ (Fig 2.3) along with an automated magnetic cell separation with the autoMACS Pro Separator for fast and gentle isolation; therefore, the target cells will be separated without requiring density gradient centrifugation. In the re-stimulation process (Fig. 2.5), the cells will be re-stimulated with SARS-COV-2 peptides and IL-12, IFN-γ/IL-10 co-producing Th1 cells require a high dose induced phosphorylation of antigen and IL-12 induced signal transducer and activator of transcription 4 (STAT4) activation.50 After re-stimulation (Fig. 2.4), the harvest cells will be irradiated to ensure perfusion and attenuate the alloreactivity to avoid GVH. 7.5 Gy was a safe dose used in previous studies to inhibit cell proliferation in treatments as donor lymphocyte infusion (DLI), 7.5 Gy likewise preserves the cells for their secretion...
Future directions

No data or results exist for the proposed idea; therefore, its development is required to determine its viability and initiate further research to study its therapeutic efficacy. This research idea implementation and therapy’s direct practice will require an interdisciplinary approach, which should include but not be limited to biotechnologists, immunologists, geneticists, hematologists, oncologists, and other biomedical professionals.
Contact of interest

None to declare.

Funding

The manuscript’s quality was improved by valuable comments and suggestions, which helped me improve the experience in the entire editorial process; I sincerely appreciate all the reviewers and editors for taking the time and effort necessary to review the manuscript and provide me with exceptional experience in the entire editorial process; I sincerely appreciate all the reviewers and editors for taking the time and effort necessary to review the manuscript.

Acknowledgments

I would like to thank Dr. Bienvenido A. Veras for his valuable mentorship and his advice when writing this article. Mr. Daniel A. Khoury for supporting me economically when writing it, and help when registering the invention. Ms. Andrea J. Vazquez for helping me drawing the figures presented in it, and Mr. Luis A. Reyes for his help when registering the invention. I also want to thank Mr. Eddyson Núñez, Mr. Tommy Roman, and especially my father, Mr. Silfredo A. Núñez, for supporting me all the time. Moreover, I thank the reviewers and editors for taking the time and effort necessary to review the manuscript and provide me with exceptional experience in the entire editorial process; I sincerely appreciate all the reviewers and editors for taking the time and effort necessary to review the manuscript.

References

Kagk G, Raza M, Tiwari BK. Interleukin-10 interference with natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. PNAS 1993;90(8):3725–3729. doi:10.1073/pnas.90.8.3725.

Irradiation of peripheral blood mononuclear cells with 7.5 Gy X-rays prior to donor lymphocyte infiltration, and interleukin 10 is a physiologic antagonist. PNAS 1993;90(8):3725–3729. doi:10.1073/pnas.90.8.3725.

J ERP. 2021.00004.