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Review Article

Introduction

Alzheimer’s disease (AD) is a progressive, irreversible neurode-

generative disease that commonly affects an aged population. AD 
is the most common cause of dementia worldwide, and accounts 
for over 60% of all confirmed cases.1 The World Health Organiza-
tion (WHO) claims that the total estimated cases of AD exceeds 6 
million in the United States, and over 35 million globally.2,3 The 
American population over 65 years of age is expected to increase 
from 58 million in 2021 to over 85 million by 2050.4 Accord-
ing to the Alzheimer’s Association, the percentage of individuals 
suffering from AD more than doubles from ages 65–54 to 75–54 
(5.3%→13.8%), and more than 34% of people over the age of 85 
years are living with AD.3,4 With the growing global population, 
and advances in medicine allowing individuals to live longer than 
previous decades, the incidence and prevalence of AD is likely to 
increase if no curative measures are established.3

More than 95% of AD cases are sporadic in nature, with only 
1–5% resulting from a genetic disposition.5 The accumulation of 
amyloid plaques or amyloid-B (Aβ) peptides in the extracellu-
lar neural tissue and neurofibrillary tangles (NFT) composed of 
hyper-phosphorylated tau proteins within the intracellular tissue 
of the brain are the main pathological signs of AD.2,6,7 However, 
several other factors have been described as significant contribu-
tors to the pathogenesis of AD. Prolonged activation of the brain’s 
macrophages and other immune cells producing an inflammatory 
reaction have been shown to worsen amyloid and tau pathology.8 
Evidence has been found that the development of AD also cor-
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relates with increased oxidative stress from neural free radical 
production.9 Mitochondrial dysfunction, calcium-mediated exci-
totoxicity, vascular injury, and immuno-dysregulation also appear 
to contribute to the development and/or exacerbation of AD.2,10,11 
These pathologies cause a neuronal cellular insult, resulting in im-
paired synaptic function, as well as an overall reduction in healthy 
functioning neural tissue.12 The resulting chronic neurodegenera-
tive changes produce cognitive, behavioral, and functional abnor-
malities that manifest as memory deterioration, confusion, and 
difficulty understanding visual and spatial relationships amongst 
many other clinical signs and symptoms.2,11–13

It has become an urgent priority within the medical commu-
nity to identify biological markers and blood testing protocols to 
better understand the pathogenesis of AD in order to improve the 
efficiency of diagnosis, reduce associated costs, and prevent the 
occurrence of neurodegenerative diseases. Several methods have 
been previously deployed for aiding in the diagnostic algorithm 
of AD, including positron emission tomography (PET) scans to 
measure amyloid plaque deposits, lumbar punctures directed to-
wards quantifying the degree of tau protein in the cerebrospinal 
fluid (CSF), and analyzing the amount of cortical atrophy via mag-
netic resonance imaging (MRI).14,15 However, imaging to this de-
gree is very costly and measuring protein levels within the CSF is 
an invasive procedure.5,14,15

Herein, we review the contributions made towards the relevance 
in blood testing and biomarker identification in the use for diagnos-
ing AD. We discuss the current roles and propose future uses for 
biomarkers in improving diagnostic accuracy, cost efficiency, pa-
tient stratification, and monitoring disease staging and progression 
to novel treatments for AD. The focus of this review article is to 
improve our overall depth of comprehension of the role biomarkers 
play in understanding the pathogenesis and treatment of AD.

Pathogenesis and pathology

The pathogenesis and pathology of AD is important when discuss-
ing implicated biomarkers. Although the pathogenesis is not clear, 
the leading theory is that there is an accumulation of insoluble 
Aβ peptides.16 Amyloid precursor protein (APP) is a transmem-
brane glycoprotein that is physiologically cleaved by alpha and 
gamma secretases to form two physiologic proteins, one soluble 
and one membrane bound. In the amyloid-producing process, APP 
is enzymatically cleaved by beta and gamma secretases, leading to 
the formation of various isoforms of Aβ peptides. These peptides 
aggregate to form fibrils and oligomers, ultimately leading to Aβ 
plaque formation. This eventually leads to inflammation and neu-
ronal cell death, a process known as the amyloid cascade hypoth-
esis.16–18 Consequently, these neuritic plaques can be observed via 
microscopy of brain tissue from AD patients, along with neuronal 
synapse loss.19–21

Another protein involved in the suggested pathogenesis of AD 
is tau. Tau is an axonal, microtubule-associated protein (MAP) that 
regulates the assembly and function of microtubules, predominantly 
within neurons.22,23 Physiologically, tau is highly soluble and un-
dergoes phosphorylation to regulate its microtubule binding affinity. 
In AD, tau is hyper-phosphorylated, forming an insoluble protein 
that aggregates into toxic NFTs within neurons.21,23 These NFTs are 
another characteristic pathological feature found in the brains of AD 
patients.21 Furthermore, it is thought that tau has a role in mediating 
Aβ toxicity in AD, though this mechanism is unclear.20

Additionally, there are several genes implicated in the devel-
opment of AD, one of the most notable being the e4 allele of the 

apolipoprotein E gene (APOE).24 APOE plays a role in Aβ peptide 
clearance, and individuals with the e4 allele are at an increased 
risk of AD, most likely due to Aβ accumulation through unclear 
mechanisms.25 In rare cases, genetic mutations of APP or preseni-
lin (PSEN) genes can be inherited in an autosomal dominant pat-
tern that results in an early onset AD. PSEN is a protein in the 
enzymatic gamma secretase complex that is responsible for patho-
logical cleavage of APP in the development of AD.24,26

Biological markers (biomarkers)

A biomarker is a metric of a particular biological state that can be 
quantified or measured.27 A biomarker may be used to evaluate nor-
mal physiological processes within the body, pathological processes, 
or a pharmacological response to medical intervention. Biomarkers 
have played valuable roles in the diagnostic algorithm of many dis-
eases, as well as the assessment of disease progression and potential 
recurrence. What makes a biomarker such a useful tool for research-
ers and clinicians is the ability to detect a fundamental neuropatho-
logic feature of AD and with a relatively high sensitivity and speci-
ficity (ability of a test to accurately identify individuals with versus 
without a disease).28 There have been many biomarkers identified 
within the human body that serve as valuable tools in diagnosing and 
monitoring AD progression. Table 1 summaries the biomarkers that 
are covered in this review and demonstrates the relevant changes as-
sociated in AD. Below is a comprehensive review of the biomarkers 
that have been identified and used in the diagnosis and treatment of 
AD. An illustrative overview of the pathological mechanisms cov-
ered in this paper are presented in Figure 1.

Cerebrospinal fluid (CSF) biomarkers

The most widely studied CSF biomarkers related to neurodegen-
erative diseases are Aβ peptides, and in particular the Aβ42 pro-
tein, total tau (t-tau), and tau phosphorylated at threonine 181 
(p-tau181). These biomarkers exhibit greater than 95% sensitivity 
and 85% specificity in regards to diagnosing AD.2 Low quantities 
of Aβ42 in the CSF are observed in AD individuals compared to 
controls,29 while elevated levels of hyper-phosphorylated tau and 
t-tau have been identified in the CSF in AD patients.2,30 Previous 
literature has shown that high t-tau and/or p-tau181 along with low 
Aβ42 in the CSF can be detected before patients with AD become 
symptomatic, and offer improved diagnostic accuracy of AD from 
other causes of dementia.31 The ratio of t-tau/Aβ42 or p-tau181/
Aβ42 within the CSF are reliable predictors in the progression of 
AD and in determining future cognitive impairment in individu-
als without a current neurological deficit over a 10-year follow-up 
period.2,32,33

Amyloid (Aβ) peptides

Aβ peptides are formed after being cleaved from amyloid precur-
sor proteins. The Aβ peptides are then released into the CSF. This 
biological process allows for the level of Aβ peptides to be meas-
ured fairly easily. It has been well documented that a low level of 
Aβ42 peptides in the CSF and a high amyloid plaque concentration 
in the brain are highly suggestive of AD.2,34,35 The pathogenesis of 
the diminished Aβ42 peptides in the CSF is a result of the aggrega-
tion of hydrophobic peptide-forming plaques.34–47 A reduced level 
of Aβ42 has also been noted in patients with Lewy body demen-
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tia.24,36 Enzyme-linked immunosorbent assay (ELISA) and mass 
spectrometry have been utilized for accurately measuring CSF lev-
els of Aβ42 peptides.34,38

Measuring the CSF level of shortened Aβ peptides (Aβ38 and 

Aβ40) has proven to be of minimal reliability when diagnosing 
AD.2,35 It has been identified that measuring Aβ peptide ratios 
may be advantageous over measuring the total Aβ42 peptide lev-
els within the CSF. CSF measurements of Aβ42/Aβ40 and Aβ42/

Table 1.  Comprehensive list of the biomarkers identified within the CSF and blood plasma, noting the relative changes in AD patients

Pathological mechanism Biomarker Elevated 
levels in CSF

Reduced 
levels in CSF

Elevated lev-
els in plasma

Reduced levels 
in plasma

Amyloid Aβ42 X X

Aβ40 X X

Aβ38 X

Tau p-tau X X

t-tau X

Amyloid precursor BACE1 X

Synapse Ng X

SNAP25 X

Syt1 X

GAP43 X

NPTX/NP X

Neuronal NfL X X

VILIP1 X

Vascular VCAM1 X X

ICAM1 X

Flt1 X

ANP X

ADM X

ET1 X

Inflammatory IL6 X

IL15 X

IL18 X

sIL1R2 X

hFABP X

TNFa X

TREM2 X

YKL40 X

GFAP X

S100B X

DNA binding TDP43 X

Metabolites PUFA X

Bile acids X

Tryptophan X

Iron Ferritin X

Aβ, Amyloid beta; ADM, Adrenomedullin; ANP, Atrial natriuretic peptide; BACE1, β-secretase 1; ET1, Endothelin-1; Flt1, fms-related receptor tyrosine kinase; GAP43, Growth-
associated protein-43; GFAP, Glial fibrillary acidic protein; hFABP, heart-type fatty acid-binding protein; ICAM1, Intercellular adhesion molecule 1; IL, Interleukin; NfL, Neurofila-
ment-light chain; Ng, Neurogranin; NP/NPTX, Neuronal pentraxins; p-tau, Phosphorylated tau; PUFA, Polyunsaturated fatty acid; S100B, S100 calcium-binding protein B; sIL1R2, 
Soluble interleukin-1 receptor 2; SNAP25, Synaptosome–associated protein-25; Syt1, synaptotagmin-1; TDP, TAR-DNA binding protein; TNFa, Tumor necrosis factor alpha; TREM2, 
Triggering receptor expressed on myeloid cells 2; t-tau, Total tau; VCAM1, Vascular cell adhesion protein 1; VILIP1, Visinin-like protein 1; YKL40, Chitinase-3-like protein 1.
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Aβ38 ratios were shown to better differentiate AD from dementia 
of a non-AD cause. The ratios are more closely associated with 
overall amyloid plaque deposition on PET scans and may be a 
superior target measure for newly implemented clinical trials of 
amyloid-based treatments than of CSF Aβ42 alone.2,39,40 A limit-
ing factor of measuring only Aβ42 is the potentially confounding 
effect that results from differences in CSF subtleties or the vari-
able rate of amyloid production from person to person. Impor-
tantly, this limitation is corrected when using the CSF Aβ42/Aβ40 
ratio instead.2,41 When CSF Aβ42 is measured in conjunction with 
CSF Aβ40, it provides a useful measure for target engagement of 
β-secretase (BACE1) modulators to inhibit Aβ peptide production 
and deposition.42 There have also been promising results in track-
ing the physiological response to treatment with γ-secretase inhibi-
tors when low CSF Aβ42 and Aβ40 levels are found with increased 
amounts of shortened fragments of CSF Aβ37 and Aβ38.43

Phosphorylated Tau (p-tau)

NFTs are composed of aggregates of abnormally hyper-phospho-
rylated p-tau.2,34,44 Excessive amounts of p-tau in the CSF have 
been widely documented in AD patients, and are associated with 
an increased rate of disease progression.34,45,46 The hyper-phos-
phorylation of these proteins results in the dysfunction of axonal 
transport in the brain.47 ELISA offers an effective way to measure 

p-tau by recognizing specific epitopes.45 Tau proteins phosphoryl-
ated at threonine 181 (p-tau181) have been the most thoroughly 
studied form of tau in conjunction with neurodegenerative dis-
ease.2,34,44,45 However, recent literature that has studied p-tau231 
and p-tau199 levels in the CSF confirmed a similar specificity to p-
tau181 in differentiating AD from healthy controls.48 Furthermore, 
p-tau231 demonstrated high sensitivity and specificity as a reliable 
biomarker for differentiating AD from non-AD dementias.48

A study completed in 2020, found elevated levels of tau phos-
phorylated at threonine 217 (p-tau217) in the CSF in patients with 
AD and proved to more accurately differentiate AD from non-AD 
dementias than CSF p-tau181.49 In the same study, a higher level 
of p-tau217 in the CSF demonstrated a closer correlation with the 
measured amount of cortical amyloid present on PET scans and in 
the CSF compared to that of p-tau181.49 Lastly, baseline and longi-
tudinal measurements of CSF p-tau217 correlated with cortical tau 
deposition to a better extent than CSF p-tau181 when measured by 
the PET tau tracer [18F] flortaucipir.49 Several other p-tau proteins 
have also been studied (235, 396, and 404) that may be of value as 
potential biomarkers after further research is performed to identify 
neurodegenerative disease states in the future.50

Total Tau (t-tau)

T-tau is utilized as an indicator for overall neurodegeneration.51 

Fig. 1. Relevant physiological biomarkers and the proposed pathological mechanisms associated with AD. In this figure, the three-dimensional images re-
flect hypothetical relationships rather than direct causal links or specific cortical/subcortical locations of pathological mechanisms and neurodegeneration. 
This is not an all-inclusive list of pathophysiological mechanisms and/or implicated biomarkers in AD. Only the most relevant ones that are covered within 
this article are presented. Aβ, Amyloid beta; Flt1, fms-related receptor tyrosine kinase; hFABP, heart-type fatty acid-binding protein; IL, Interleukin; p-tau, 
Phosphorylated tau; S100B, S100 calcium-binding protein B; TNFa, Tumor necrosis factor alpha; TREM2, Triggering receptor expressed on myeloid cells 2; 
t-tau, Total tau.
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In healthy individuals, CSF t-tau increases with age: <300 pg/ml 
(21–10 yrs), <450 pg/ml (51–10 yrs), and <500 pg/ml (>70 yrs).52 
CSF t-tau has also been found to be significantly elevated in AD 
patients when compared to age-matched controls (>600 pg/ml in 
AD patients >70 yrs).52,53 The t-tau level in the CSF is also potenti-
ated as a prognostic marker for the conversion of mild cognitive 
impairment (MCI) to AD.52 High CSF t-tau levels have been found 
in over 90 % of patients diagnosed with MCI that progressed to 
AD.54 Interestingly, patients with stable MCI did not go on to de-
velop AD.54 CSF levels of t-tau can be accurately measured by 
ELISA.55

Beta site-amyloid precursor protein (APP)-cleaving enzyme 1 
(BACE1)

BACE1 is a major β-secretase involved in plaque formation in 
the brain.34 BACE1 expression is influenced by an inflammatory 
state, and in AD, the upregulation of neuritic cytokines reduces the 
peroxisome proliferator-activated receptors (PPAR1) which acts as 
an inhibitor of BACE1.56 CSF levels of BACE1 have been previ-
ously measured by Western blot and ELISA in both MCI and AD 
patients, as well as healthy controls.57 Along these lines, a signifi-
cantly increased level of CSF BACE1 was found in MCI subjects 
versus AD and healthy controls.57 The high BACE1 level in the 
CSF of MCI patients may reflect an overproduction of BACE1 by 
stressed neurons and/or glial cells in MCI, which then decreases 
while cells die during the progression to AD.57,58 Nevertheless, 
further analysis is needed before BACE1 can be considered a reli-
able CSF biomarker for AD.

Synaptic biomarkers

A synapse or neuronal junction is the site of transmission of elec-
tric impulses between neurons (nerve cells) or between a neuron 
and a gland or muscle cell.59 A synapse functions by storing neuro-
transmitters in presynaptic vesicles that are then released into the 
inter-neural space or synaptic cleft. This process allows communi-
cation via postsynaptic receptors with an adjacent cell or neuron 
after a cascade of electric stimuli traverses the nerve.60 Significant 
loss of synaptic volume and degeneration within the grey matter 
of the brain are hallmarks of the early stages AD and produce cer-
ebral impairment.61 Numerous CSF biomarkers have been studied 
in regard to synaptic dysfunction in AD patients that may be useful 
for further advancing our understanding of the pathogenesis and 
treatment of AD.

The most promising biomarkers associated with synaptic dys-
function in AD patients are the postsynaptic protein neurogra-
nin (Ng) and the presynaptic proteins synaptosome–associated 
protein-25 (SNAP25) and synaptotagmin-1 (Syt1).2 The overall 
neuronal specificity and abundant expression of Ng, SNAP25, 
and Syt1 allow these biomarkers to accurately reflect the degree 
of neuronal and synaptic injury. This is because the CSF level of 
these biomarkers correlate with damage to neuronal and synap-
tic structures, as well as with the release of neuronal or synaptic 
components into the extracellular compartment as neurodegenera-
tion progresses.2,62,63 Cortical and hippocampal synaptic density 
is reduced by nearly 50 % in patients suffering from AD.64 This 
significant loss in brain volume is attributed to global neuronal loss 
and a reduction in synaptic density.64,65

Ng is a calmodulin-binding neuronal protein that is largely 
found in postsynaptic membranes of the hippocampus and basal 
forebrain.66 This protein plays a key role in the brain’s adaptabil-

ity to learning and memory function, as well as long-term po-
tentiation (LTP).2,62 Prior literature has discovered that baseline 
Ng levels in the CSF strongly correlate with neurodegeneration 
and cortical atrophy in AD patients.2,62,67 Research has shown that 
measuring CSF Ng levels can serve as a reliable marker for future 
impairment to a similar degree as CSF t-tau and Aβ42 in patients 
who are presently cognitively normal.2,62 Additionally, the abun-
dance of CSF Ng may provide another way for researchers to dif-
ferentiate AD from other neurodegenerative disorders with high 
reliability.68

The pre-synaptic protein SNAP25 is essential for exocytosis of 
synaptic vesicles via vesicle docking, neurotransmitter release, and 
neurite outgrowth.2,34,69 Elevated levels of fragmented SNAP25 
have been found in the CSF of AD patients when compared to 
healthy controls.70 Also, the amount of CSF SNAP25 may be as-
sociated with cortical atrophy and the overall risk of cognitive de-
terioration over time.70,71 Two distinct variants of SNAP25 have 
been isolated; SNAP25a and SNAP25b.34,69 Further investigation 
is needed before either isoform can be credited as a reliable marker 
for AD and neurodegeneration.72

Another important pre-synaptic biomarker found in the CSF 
of AD patients is Syt1. This protein acts as a calcium sensor to 
allow neurotransmitter release into the synaptic cleft.73 Increased 
amounts of Syt1 levels were identified in the CSF in the early 
stages of AD and MCI compared to healthy controls when using 
mass spectrometry.2,74 A similar study concerning CSF biomarkers 
found low reliability in differentiating MCI due to AD and AD 
dementia when CSF Syt1 was compared to CSF levels of Ng and 
SNAP25a.75 The use of Syt1 needs more validation through future 
studies before being considered a reliable CSF biomarker for neu-
rodegenerative diseases.

A lesser-studied CSF biomarker in AD is growth-associated pro-
tein-43 (GAP43, neuromodulin). GAP43 is a crucial component 
of the neuronal axon and presynaptic terminal, and is primarily 
responsible for growth or “synaptic plasticity”.76 This protein also 
functions in pre-synaptic vesicle recycling through communica-
tion with synaptophysin and SNAP25.2,77 A strong association has 
been found with increased GAP43 levels in the CSF with amyloid 
and p-tau/t-tau in AD patients, as well as most other neurodegen-
erative conditions.2 This biomarker may have strong potential for 
use in the diagnostic algorithm of neurodegenerative disease.2,78

Pre-synaptic glycoproteins, often referred to as neuronal pen-
traxins (NPTX, NP) are involved in excitatory synapse forma-
tion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) and are responsible for apoptotic neuronal death.79 Aβ 
amyloid oligomers induce the pre-synaptic release of NP1, which 
is partially responsible for the synaptic and mitochondrial insult 
seen in the amyloid pathology of neurodegeneration.80 Previous 
studies have correlated higher CSF levels of the pentraxin recep-
tor, with increased severity of dementia in patients suffering from 
early-onset AD symptoms.81 Current information available regard-
ing the usefulness of neuronal pentraxins as CSF biomarkers of 
synaptic injury is inadequate, and further research is necessary.

Neuronal biomarkers

A neuron is a highly specialized cell within the nervous system that 
is composed of several unique structures that include dendrites, a 
cell body and an axon. Few neuron-specific biomarkers have been 
studied in depth, however, the most relevant neuronal biomark-
ers found in the CSF include neurofilament-light chain (NfL) and 
visinin-like protein 1 (VILIP1).82

NfL is a measurable component of the CSF when using immu-
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noassay.83 This marker is largely found within neuron axons and 
can be used to evaluate axonal damage in many neurological disor-
ders.82 Elevated levels of CSF NfL may offer another reliable bio-
marker for grading AD severity and progression.2,82 Research has 
revealed elevated levels of NfL in the CSF during the early stages 
of symptom onset in AD.82 Furthermore, rising levels of CSF NfL 
have been associated with the degree of cortical atrophy, cognitive 
impairment, and overall death rate of AD.82

VILIP1 is a protein that is expressed in abundance within the 
cerebellum and functions as a calcium-sensing receptor that is re-
sponsible for controlling intracellular signaling pathways through 
that regulation of adenylyl cyclase.84 Previous literature has found 
a strong correlation between the level of VILIP1 in the CSF and 
overall cortical atrophy, as well as with amyloid/t-tau levels in 
patients displaying varying degrees of AD progression.32,85 Simi-
lar to other CSF biomarkers, VILIP1 levels were increased in pa-
tients with MCI as a result of AD, in addition to individuals with 
AD dementia, when compared to healthy controls.32 The ratio of 
CSF VILIP1/Aβ42 may serve as a better marker for determining 
whole-brain or regional cortical atrophy and cognitive deteriora-
tion when evaluated against some of the most widely studied CSF 
biomarkers that include t-tau, p-tau181, Aβ42 and t-tau/Aβ42 or 
p-tau181/Aβ42.85 CSF VILIP1 has been determined to be a prom-
ising marker for not only neuronal injury in AD, but also as a 
reliable marker of future impairment in patients who are intel-
lectually normal.85,86

Vascular markers of the CSF

Vascular injury and insult have provided some promising potential 
CSF biomarkers regarding neurodegenerative disease. Some of 
the previously identified vascular CSF biomarkers include vascu-
lar cell adhesion protein 1 (VCAM1), which mediates the binding 
of immune cells when endothelial damage occurs inside of blood 
vessels,87 intercellular adhesion molecule 1 (ICAM1), a protein 
present on the surface of leukocytes that is responsible for cellular-
vessel wall adhesion,88 interleukin-15 (IL15), a pro-inflammatory 
cytokine,89 and fms-related receptor tyrosine kinase (Flt1), a trans-
membrane domain responsible for angiogenic growth factor bind-
ing.90 A 2018 study demonstrated increased CSF level of VCAM1, 
ICAM1, IL15 and Flt1 in patients diagnosed with AD in sympto-
matic and pre-symptomatic states when compared to healthy con-
trols.91 Adhesion proteins (ICAM1 and VCAM1) were also found 
to be strongly associated with future cognitive decline.91

A cytoplasmic cardiac protein called heart-type fatty acid-bind-
ing protein (hFABP), which is released during periods of myocar-
dial ischemia,92 has been isolated in the CSF at elevated levels in 
patients with AD and vascular dementia.93 An increased level of 
hFABP in the CSF is also correlated with lower CSF Aβ42,94 as 
well as cortical deterioration in patients who displayed amyloid 
plaque accumulation.95 This may therefore be a potentially useful 
marker in distinguishing characteristics between vascular demen-
tia, AD and other forms of neurodegeneration.

Cytokines and Inflammatory mediators

Neuro-inflammation is recognized as a fundamental component 
in the pathological process observed in AD. For over forty years, 
literature has indicated protective effects against AD when patients 
take anti-inflammatory agents for various other unrelated diseas-
es.8,96 Research hypothesizes the overwhelmingly increased depo-
sition of Aβ plaques and a prolonged inflammatory response in an 

attempt to combat this pathology. The results indicate a sustained 
activation of microglia in a feed-forward loop that causes inevita-
ble progression of the disease.97,98

Tumor necrosis factor-alpha (TNFa) is a small signaling protein 
(cytokine) released from microglial cells and astrocytes in the brain 
in response to an inflammatory reaction.99 CSF levels of TNFa, as 
well as TNFa converting enzyme (TACE), have been found to be 
higher in AD patients when compared to healthy controls.2,100,101 
Another well-studied inflammatory biomarker is triggering recep-
tor expressed on myeloid cells 2 (TREM2). Research has described 
missense mutations of TREM2, which induces phagocytosis of 
amyloid plaques, as a significant risk for the development of AD 
and other neurodegenerative diseases.102 There have been similar 
reports from animal studies and human models that have identified 
elevated CSF levels of TREM2 in pre-symptomatic stages of AD 
patients.2,8 Recent literature also suggests that CSF TREM2 levels 
may be directly associated with the degree of tau and/or amyloid 
pathology present.2,8 An astrocytic pro-inflammatory biomarker 
called chitinase-3-like protein 1 (YKL40) has been studied to as-
sess the diagnostic accuracy in the CSF of AD patients.103,104 In 
a study focusing on CSF YKL40 levels, researchers were able to 
positively discriminate AD from cognitively normal controls and 
patients with frontotemporal dementia (FTD).104 Furthermore, this 
same study found that the CSF level of YKL40 appropriately iden-
tified tau-positive individuals and AD pathophysiology-positive 
individuals from healthy controls and FTD patients.104 Increased 
levels of CSF YKL40 have shown a positive correlation with corti-
cal thinning in AD patients who displayed the APOE4 mutation.105 
CSF YKL40 has been positively associated with tau protein dur-
ing the asymptomatic and preclinical stages of AD.106 YKL40 may 
also serve as a reliable biomarker for future cognitive decline.106 
The utilization of CSF YKL40 as a biomarker in neurodegenera-
tive diseases adds to the growing array of markers used for under-
standing and treating these diseases.

Glial fibrillary acidic protein (GFAP) is an intermediate fila-
ment expressed in astrocytes and ependymal cells throughout the 
central nervous system.107 Increased CSF levels of GFAP have 
been identified in several neurodegenerative diseases, including 
AD, FTD and Lewy body dementia.108 Another potentially use-
ful biomarker is S100 calcium-binding protein B (S100B). This 
protein is exclusively expressed in astrocytes and has several theo-
rized functions, such as neurite expansion and growth.109 Elevated 
CSF S100B levels may offer diagnostic value during the initial 
stages of AD, especially when evaluating short-term memory re-
call.110

Blood and Plasma Biomarkers

Amyloid (Aβ) peptides

Detecting Aβ in plasma and accurately using it as a biomarker 
for amyloid pathology has been difficult using ELISA.111 Not 
only are plasma Aβ levels much lower than in the CSF, but there 
is also a poor correlation between CSF and plasma levels of Aβ 
alone.111,112 For this reason, and due to the contribution of Aβ from 
other peripheral sources, there has been inconsistency in plasma 
measurements of Aβ in different laboratories using ELISA.111,113 
This aside, one study showed that decreasing levels of Aβ42, an 
Aβ peptide with 42 residues that contributes to plaque formation, 
and decreasing ratios of Aβ42/Aβ40 in serial measurements using 
ELISA were associated with cognitive decline and the develop-
ment of AD.114,115
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The past decade has exhibited improvements in accurate meas-
urements of Aβ using immunoaffinity-based assays, including 
single-molecule arrays (SIMOA) and mass spectrometry.116 Spe-
cifically, studies using these methods to measure Aβ42/Aβ40 or 
Aβ40/Aβ42 ratios in plasma have shown a correlation with AD 
pathology, suggesting that it can serve as a prognostic indica-
tor.117–119 Plasma levels of Aβ42/Aβ40 were additionally able to 
predict amyloid pathology in patients without cognitive decline 
who were at risk for AD.118,119 Recent studies have used immuno-
precipitation and mass spectrometry to test for plasma biomarkers 
in both cognitively normal and abnormal patients. These works 
showed that there is a strong correlation between both APP/Aβ42 
and Aβ42/40 plasma levels with Aβ-PET scan burden and CSF 
levels of Aβ42, which are more established markers of amyloidosis 
seen in AD.2,117,118 The use of SIMOA to detect the plasma level 
of Aβ42/Aβ40 also showed a positive correlation with abnormal 
CSF level of Aβ42.120 In terms of prognosis, a lower plasma level 
of Aβ42/Aβ40 has been shown to be associated with a more rapid 
decline in cognitive function in patients with subjective cognitive 
decline.119

Another Aβ related plasma biomarker that has shown prognos-
tic value in AD is the detection of Aβ mis-folding using immune-
infrared-sensor technology.121 In one cohort study, the presence 
of Aβ mis-folding and Aβ42/Aβ40 plasma levels were tracked in 
patients with only subjective cognitive decline. The presence of 
mis-folding and positive Aβ ratios were strongly correlated with 
the progression to MCI and dementia due to AD.121

Tau

Detecting tau in plasma using immunoassay techniques and using 
it as a biomarker for AD pathology has shown promise in numer-
ous studies.122–125 Several cohorts showed that an increased level 
of p-tau181 in plasma, as measured by SIMOA and solid-phase 
enzyme immunoassay, is highly accurate in confirming AD pa-
thology and in differentiating it from other non-AD pathologies 
in dementia patients.122,123 Furthermore, a high plasma p-tau181 
level more accurately predicted AD neuropathology compared to 
clinical diagnosis up to 8 years prior to postmortem examination 
of brain tissue.122 An association also exists between a high plasma 
p-tau181 level and the development of AD dementia in unimpaired 
patients and those with MCI. This correlates with CSF p-tau181 
and is predictive of positive PET scans.124 Nevertheless, the plas-
ma measurement of p-tau217 shows even more promise. Elevated 
plasma levels of p-tau217 discriminated AD dementia from other 
non-AD pathologies with greater accuracy than plasma p-tau181, 
plasma NfL and the detection of brain atrophy on MRI.125

Neurofilament Light Chain (NfL)

NfLs are components of axons that are another potential biomarker 
of use in AD.82,126,127 High plasma NfL levels, measured using SI-
MOA, have been associated with the diagnoses of MCI and AD 
with Aβ pathology, and are correlated with brain atrophy on neu-
roimaging scans associated with AD.126,127 Additionally, plasma 
NfL has been predictive of the rate of MRI brain atrophy in AD 
patients when using the Mini-Mental State Examination and Logi-
cal Memory Test for assessment.127 In that same study, serial NfL 
measurements showed a high rate of change in AD patients when 
changing from a pre-symptomatic to symptomatic alteration, dem-
onstrating utility in predicting the progression of AD.127

Inflammatory markers

Due to the inflammation involved in the pathogenesis of AD, there 
are numerous changes in the level of peripheral inflammatory 
markers, especially IL1-related cytokines and receptors.128,129 Us-
ing ELISA, one study found an increase in serum sIL1R2 (soluble 
interleukin-1 receptor 2) and free IL18 in MCI, which also disap-
peared in AD.128 They also found an increase in IL1Ra (interleu-
kin-1 receptor antagonist), sIL1R1, sIL1R4, and IL18BP (inter-
leukin-18 binding protein) in patients with AD but not with MCI, 
which may aid in showing the progression from MCI to AD.128 
Another peripheral cytokine of possible importance is interleu-
kin-6 (IL6) which was found to be elevated in AD patients com-
pared with healthy controls and showed an inverse correlation with 
Mini-Mental Status Examination Scores.129

Additionally, there are reported changes in peripheral T-cell 
presence and receptor expression in AD patients.130–132 One study 
found an “immune signature” consisting of an increase in CD8+T 
effector memory CD45RA+ (TEMRA) cells, which additionally 
showed a negative correlation with cognition.130 It has also been 
found that there are lower levels of CD45RA on CD4+T cells in 
AD patients compared to patients with other forms of dementia. In 
addition, the sensitivity and predictive value increased for classify-
ing AD when combining CD45RA with the APOE genotype.131

Vascular markers

Vascular and microvascular dysregulation has been suggested as 
a causal role for AD and may precede neurodegeneration with 
up to 30 % of AD cases presenting with cerebrovascular pathol-
ogy.93,133,134 One study showed elevated levels of soluble E-selec-
tins and VCAM1 in patients with AD compared to healthy con-
trols.135 Additionally, altered levels of the endothelin regulator and 
vasodilators endothelin-1 (ET1), atrial natriuretic peptide (ANP), 
and adrenomedullin (ADM) have been found in AD patients us-
ing special immunoassays to detect their precursors.133,136 These 
assays measured C-terminal endothelin-1 precursor fragment 
(CT-proET1), mid-regional pro-adrenomedullin (MR-proADM), 
and mid-regional pro-atrial natriuretic peptide (MR-proANP) in 
the plasma since their final products have short half-lives.133,136 
In patients with AD, there were increased blood levels of MR-
proADM and MR-proANP with decreased levels of CT-proET1. 
Additionally, both the sensitivity and specificity were increased 
when measuring the MR-proANP/CT-proET1 ratio.136 Further-
more, increased plasma levels of MR-proANP and MR-proADM 
showed predictive value for progression from MCI to AD.137 It 
is important to note that these markers might represent systemic 
microvascular or inflammatory changes, and may warrant further 
investigation for their clinical utility in diagnosing and predicting 
AD.133

TAR-DNA binding protein (TDP43)

TDP43 is an RNA and DNA binding protein that is involved in reg-
ulating splicing and transcriptional repression, and is a major com-
ponent of cytoplasmic inclusions within neurons in amyotrophic 
lateral sclerosis (ALS) and frontotemporal lobar degeneration 
(FTLD).138 It has recently been shown that 25–50 % of AD cases 
present with TDP43 pathological changes, which may be a factor 
in the development of AD, especially in more severe cases.139–142 
Increased plasma levels of TDP43 and TDP43 variants have been 
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detected in both AD and MCI before conversion to AD.141,143 Due 
to increased levels of TDP43 in other neurodegenerative disorders, 
its clinical utility may be limited in distinguishing between vari-
ous disorders, but it could still be used to narrow-down potential 
diagnoses.141

Metabolites

Dysregulation of several metabolic pathways with changes in plas-
ma metabolites has been associated with and may contribute to AD 
pathology and impairment.5 Cholesterol metabolism, fatty acid 
(FA) metabolism, bile acid synthesis, and amino acid metabolism 
may be the most associated with AD. Therefore, changes in plasma 
FAs, bile acids, and amino acids are some of the most apparent 
alterations reported in previous studies.5,144–146

The reduction in the level of polyunsaturated fatty acids 
(PUFA), particularly docosahexaenoic acid (DHA), has been as-
sociated with cognitive impairment due to AD and may be due to 
impaired FA metabolism in the liver.5,147,148 One study showed that 
cognitive performance improved with dietary supplementation of 
DHA in AD patients, which could have been due to neuroprotec-
tive properties of PUFAs.148,149 To further implicated liver dys-
function, the level of the bile acids cholic acid, chenodeoxycholic 
acid, and allocholic acid all increased with disease severity in AD.5 
The role of bile acids as biomarkers in AD is further propounded 
by evidence of association between the traditional AD biomarkers, 
Aβ and tau, and bile acid profiles.5,150

Regarding alterations in FA metabolism, studies have shown 
declining acyl-carnitines across subjects from healthy individu-
als to those with MCI and AD, with significantly reduced levels 
of medium- and long-chain acyl-carnitines in those with AD.5,151 
Impaired energy metabolism is further indicated by one study that 
analyzed RNA transcripts to find decreased beta-oxidation, mito-
chondrial transport, and carnitine shuttle activity in patients with 
AD.152

Amino acid metabolism may also play a role in the use of meta-
bolic profiles as biomarkers of AD, as reduced levels of trypto-
phan have been found in AD subjects, along with its derivatives 
of serotonin and indole-3-lactic acid.5 The decrease in tryptophan 
and indole-3-lactic acid levels were further associated with disease 
severity of AD, which may serve as a biomarker for AD disease 
progression.5 This follows our physiologic understanding of tryp-
tophan’s role as a precursor for neurotransmitters and their role in 
neuronal activity.153

Noninvasive biomarkers

Saliva is an extracellular fluid that functions primarily to aid in the 
digestion of food and maintain appropriate oral hygiene.154 It is 
composed largely of water, and a very minuscule amount of elec-
trolytes, mucus, antibacterial compounds and various enzymes.154 
Salivary testing offers an excellent alternative to expensive labora-
tory blood tests and invasive CSF measures via lumbar puncture. 
The most relevant finding has been the elevated salivary cortisol 
level in AD patients compared to healthy controls.155 In the same 
study, the level of evening cortisol was lower in AD patients than in 
control subjects.155 Despite these results, more research is needed 
before any salivary components can be reliably used as biomarkers 
in AD and neurodegeneration.

Another potential low-cost biomarker that can be easily collect-
ed and stored is a hair sample. Hair is a protein filament composed 

of keratin that grows from the dermis of the skin.156 What makes 
hair follicles a potential biomarker for neurodegenerative disease 
is the fact that elemental components in its structure can be main-
tained for extended periods of time.2,157 Several elemental metals 
have been shown to be elevated in AD patients’ hair samples, in-
cluding Br, K, Na and Zn. By contrast, Al, Ca, Co, Cu, Fe, Hg and 
Pb levels were reduced in the same hair samples.2,157

Nails are a keratinous plate at the fingertips and toe-tips, and 
similar to hair, are able to store elemental components for an 
extended amount of time.158 Zinc is an abundant element within 
the brain and may play a role in several pathways relevant to 
the pathogenesis of AD, most importantly the processing of APP 
and aggregation of Aβ.159 The level of zinc and numerous other 
metal chelators were shown to be decreased in nail samples of 
patients with AD.2,159 However, there is no reliable literature 
that has consistently linked the use of elemental findings from 
nail samples as biomarkers in AD, and therefore further analysis 
is indicated.

The urinary tract may offer the most promise in identifying 
biomarkers that may distinguish neurodegeneration. Testing urine 
samples from AD patients is thought to recognize markers or pat-
terns of free radical damage, or oxidative stress that may point 
to a pathological process of AD.2 8-hydroxy-2-deoxy-guanosine 
(8OHdG) is a major product of DNA oxidative damage160 and 
serves as a widely studied biomarker. Previous literature has found 
elevated 8OHdG levels in the urine by more than ten-fold in AD 
patients when compared to cognitively normal controls.161 Iso-
prostanes and neuroprostanes are prostaglandin-like compounds 
formed from free radical-catalyzed peroxidation of fatty acids,162 
and are excreted in the urine and may be reliable biomarkers for 
AD. The level of isoprostanes was shown to be elevated in patients 
with MCI compared to healthy controls and elevated to a higher 
extent in AD compared to MCI.2 Lastly, urinary levels of amino 
acids are also theorized to be potential biomarkers of AD.2,163 El-
evated levels of glycine, histidine, 3-methyl histidine and carno-
sine were isolated in urinary samples of AD patients.2,164 While 
these results demonstrate the increasing use of urine components 
as biomarkers, the reliability of these components needs further 
development.

Iron overload

Iron plays several important roles within the brain to maintain 
homeostatic function. Iron is responsible for neuronal oxygen 
transportation, DNA and myelin synthesis and appropriate mito-
chondrial functioning.165,166 However, iron overload may be det-
rimental to neuronal health. Previous research has found an in-
creased amount of iron deposits within the brain of patients with 
AD167 and MCI.168 Interestingly, iron facilitated the aggregation 
of Aβ plaques and p-tau by influencing the function of APP.169 
The utilization of brain imaging (MRI and PET scans) confirmed 
increased levels of iron in the brain in patients with elevated Aβ 
deposits, suggesting that iron may accelerate the aggregation of 
amyloid pathology in this population.170 Research also points in 
favor of ferritin as a potential biomarker of AD.165,169 Elevated fer-
ritin levels in the CSF have been previously documented in APOE-
e4 carriers and reflect a faster cognitive decline in MCI patients as 
they progress to AD.171 However, plasma levels of ferritin have 
not demonstrated a strong correlation with CSF findings in AD and 
MCI patients.171 While data is limited on ferritin as a biomarker, 
it may be more useful as a prognostic marker in the CSF when 
evaluating AD.
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Prospect

Medical advancements and drug therapy trials targeting neurode-
generation have largely failed to provide any significant advance-
ment in the detection, treatment, and prevention of neurodegen-
eration.165,172,173 AD treatment is trending in the direction of a 
precision-based model to individualize diagnostic algorithms and 
treatment plans. By incorporating the accuracy and reliability of 
more physiological biomarkers, we may be able to better under-
stand the patient population at higher risk for neurodegeneration 
and slow disease progression. Individualized biomarkers in AD 
and other neurodegenerative diseases may provide a path towards 
prevention and potential curative measures.

Conclusions

Biomarkers have played a crucial role in improving the diagnostic 
efficiency, cost analysis, and overall enhancement of our under-
standing of the pathophysiology in neurodegeneration. Biomarker 
inclusion has remained an overwhelming target in AD research, 
with the most reliable and widely studied ones comprising amyloid 
and tau pathology. More data is needed to standardize and stratify 
biomarkers indicating vascular pathology, neuro-inflammatory re-
sponse, and reliable noninvasive markers outside of the blood and 
CSF.
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