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Runx2 is a well-known transcription factor for bone development. 
The current understanding of the other aspects of Runx2 functions 
is at an early stage. The roles of Runx2 in nonosseous tissues are 
gradually discovered. Of interest, Xiao et al. showed the value of 
Runx2 as a novel prognostic biomarker and as a potential thera-
peutic target for lung cancer through bioinformatic analysis.1 This 
is an interesting and valuable study.

Lung cancer is one of the most common malignancies, which 
leads to substantial mortality globally.2 Xiao et al. explored the 
expression levels, functions, and prognostic values of Runx2 in 
lung cancer via bioinformatics analysis.1 Bioinformatics is pre-
dominantly a discipline that handles genetic information.3,4 Easy 
access to bioinformatics tools and the efficient analyses of bio-
informatics data are of vital importance to integrate distributed 
studies and to establish new hypotheses. The contribution of the 
internet to this integration is significant. Some limitations in the 
study of Xiao et al. should be mentioned.1 First, more analysis 
of the online data on Runx2 in lung cancer, which excludes con-
founders, such as age, tumor stage, and recurrence status should 
be refined. In addition, large scale experiments and multicenter 
clinical trials are required to confirm the role of Runx2 in lung 
cancer.

Studies have reported that Runx2 could participate in disorders 
of bone metabolism, ectopic calcification of the cardiovascular 
system, the abnormal development of teeth, tumorigenesis, and 
organ fibrosis. Osteoblast’s proliferation and differentiation are 
probably regulated by Runx2. Sun et al. defined the functional 
role of VSMC-derived Runx2 in regulating vascular calcification 
and promoting infiltration of macrophages into calcified lesions 
to form osteoclast-like cells.5 Elevated Runx2 could transcription-
ally activate genes mediating tumor progression and metastasis, 
which includes the Runx2 target gene osteopontin (OPN). Stud-
ies had shown that Runx2 control OPN levels.6 In addition, the 
Runx2/OPN axis could regulate the ability of osteosarcoma cells 
to attach to pulmonary endothelial cells as a key step in the metas-
tasis of osteosarcoma cells to the lung.6 The detailed information 
on Runx2 in the regulation of pathogenicity are summarized in 

Table 1.7–25

Of interest, some factors could influence the expression of 
Runx2, which include: (1) microRNAs. The deletion of the micro-
RNA processing enzyme Dicer leads to decreased expression of 
miRNAs and Runx2, which suggests a critical role for microRNA 
in the regulation of Runx2. A regulatory effect of Runx2-related 
microRNAs in the skeleton has been described, such as miR-23a, 
miR-30a, miR-449a, and miR-22.26 The biogenesis and activity 
of microRNAs are under sophisticated control at transcriptional 
and post-transcriptional levels, which restricts miRNA expres-
sion to particular tissues or developmental stages; (2) some tra-
ditional Chinese medicines have been reported to influence the 
expression of Runx2.27,28 Icariin, a flavonoid isolated from the 
herb Epimedium pubescens, could induce osteogenic differentia-
tion in vitro in a Runx2-dependent manner;29 and (3) the changes 
in the internal environment. Hyperglycemia, hyperphosphate, and 
oxidative stress could affect the expression of Runx2.30–32 A better 
understanding of the regulation mechanism of Runx2 contributed 
to the development of target drugs. The factors that affect Runx2 
expression should be studied further.

The term bioinformatics has been established for two dec-
ades. With the advancement of bioinformatics concepts, data 
can be accessed and collected on a global scale. As discussed 
previously, the role of Runx2 as a transcription factor in skeletal 
system, ectopic calcification, abnormal development of teeth, 
tumorigenesis, and organ fibrosis has attracted the attention 
or researchers (Fig. 1). The mechanism of how Runx2 could 
regulate these diseases requires further research. Strategies that 
target Runx2 could be potentials for the treatment of related dis-
eases.
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Fig. 1. Pathogenic potential of Runx2 The expression of Runx2 is regulated by several factors, such as microRNAs, traditional Chinese medicine, hypergly-
cemia, hyperphosphate, and oxidative stress. The dysregulated expression of Runx2 contributes to disorders of bone metabolism, ectopic calcification of 
cardiovascular system, abnormal development of teeth, tumorigenesis, and organ fibrosis.

Table 1.  Effects and mechanism of Runx2 in multiple systems

Target sites Effects Mechanisms References

Bone Promote bone formation 1. Enhance the proliferation of osteoblast progenitors
2. Enhance the proliferation of suture mesenchymal cells 
and induce their commitment into osteoblast lineage cells

7–10

Cardiovascular Induce vascular and aortic 
valve calcification

1. VSMC-derived Runx2 promote the calfication of 
VSMC and formation of vascular osteoclasts
2. Promotes osteoblasts differentiation of 
human aortic valve interstitial cells

5,11

Teeth Tooth formation and eruption 1. Form calcified tooth tissue
2. Regulate proliferation of the dental lamina
3. Regulates the alveolar remodeling process

12–14

Tumorigenesis Osteosarcoma, none-small cell 
lung cancer, breast cancer, prostate 
cancer, and renal cell carcinomas

1. Regulate epithelial-mesenchymal transition
2. Affects tumor microenvironment remodeling
3. Regulates tumor growth, invasion, and metastasis

6,15–20

Organ fibrosis 1. Aortic fibrosis
2. Renal fibrosis
3. Pulmonary fibrosis
4. Myocardial fibrosis

1. Increased TGF-beta signaling pathway
2. Increased ECM expression
3. Contributes to profibrotic cell function

21–25

VSMC, vascular smooth muscle cell; ECM, extracellular matrix.
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