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Review Article

Introduction

Alzheimer disease (AD) is the pre-eminent enigma in clinical neu-
roscience. The disorder was first described in 1907 by the German 
psychiatrist and neuropathologist Alois Alzheimer.1,2 To date, AD 
has resisted sustained efforts to develop effective disease-modi-
fying therapies. From the first-generation cholinesterase inhibitor, 
tacrine,3 to second-generation agents, including donepezil4 and 
memantine,5 to the development of monoclonal antibodies, such 
as solanezumab6 and aducanumab,7 investigators have failed 
to achieve satisfactory clinical endpoints. Some therapies have 
proved to be dangerous and serious adverse events have been 
observed, such as hepatotoxicity,8 meningoencephalitis,9 and cer-

ebral edema.10

From its initial description, AD has been conceptualized as 
representing the quintessential, pure neurodegenerative disorder. 
However, this perspective of AD belies its complexities and repre-
sents one of the false dichotomies that remain in the neurosciences. 
The most notable of these might be the outdated (yet still widely 
taught in medical schools and residency programs) distinction be-
tween “organic” versus “functional” disorders in neurology and 
psychiatry. As neuroscience researchers have expanded the knowl-
edge base, the array of disordered functions at the molecular, cel-
lular, behavioral, and cognitive levels has been revealed.

The previous view of AD pits it against vascular dementia 
(VD). Diagnostic classification systems of dementia syndromes 
have traditionally assumed that a clear and reliable distinction ex-
ists between AD and VD. In recognition of its own complexities, 
the conceptualization of VD has undergone revision. The origi-
nal terminology—multi-infarct dementia11—was changed to its 
current and more inclusive nosology, which reflects the fact that 
small-vessel disease contributes more frequently to cognitive de-
cline than the accrual of large-vessel infarctions.12 Throughout 
these changes in thinking and terminology, VD has continued to 
be viewed as the prime example of dementia caused by vascular 
pathology.

Accumulating evidence has compelled researchers and clini-
cians to reconcile these findings and develop more refined and 
comprehensive hypotheses. It is now understood that the patho-
physiology of AD is not limited to the classical view of neuronal 
degeneration. It also involves the full complement of glia, and cells 
that comprise the cerebral vasculature and other structural compo-
nents, which are collectively referred to as the neurovascular unit 
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(NVU). This review presents the evolution of knowledge on AD 
pathogenesis, beginning with the initial identification of the prin-
cipal risk factor for sporadic AD, the discovery of a range of auto-
somal dominant mutations that cause familial AD, and the insights 
obtained from those rare cases. Then, it will discuss the increased 
prominence of the role of vascular mediators for AD and consider 
the specific processes through which the new data on the blood-
brain barrier (BBB), pericytes, and other components of the NVU 
could provide a basis to integrate previously disparate factors into 
a comprehensive modern viewpoint.

The classical view of Alzheimer disease pathophysiology: back-
ground and context

Factors that were initially identified as principal contributors to AD 
pathophysiology were amyloid-beta (Aβ) protein, tau protein, and 
apolipoprotein E (APOE). Each will be considered individually. 
APOE was the first established risk-mediating variable associated 
with sporadic AD.13 In particular, the ε4 allele of APOE (APOE4) 
confers an elevated risk of sporadic AD. APOE4 operates dose-
dependently. Heterozygosity for ε4 results in a 2–5 fold increased 
risk for the development of AD; ε4 homozygosity increases AD 
risk by approximately 5–10 fold.13–15 In contrast, the APOE ε2 al-
lele is protective, whereas the ε3 allele is neutral for AD risk.

Despite the evidence that APOE confers substantial risk of AD, 
questions remained regarding the nature of its contribution to AD 
pathogenesis until recently. Ultimately, investigators determined 
that APOE interacts with Aβ by functioning as a chaperone or cata-
lytic protein. APOE2 inhibits the polymerization of Aβ monomers 
to form toxic oligomeric species but APOE4 promotes β polym-
erization,16,17 findings that are consistent with epidemiological 
studies of AD risk. In addition, APOE is an important component 
that regulates the clearance of Aβ from the extracellular space. The 
APOE4 variant is the least efficient at clearing Aβ.18

Around the time that the importance of APOE was recognized, 
advances in genetic sequencing analyses allowed for the rapid 
identification and characterization of mutations associated with 
clinical presentations of early-onset familial AD (EOFAD). The 
first was identified in 1991, affecting amyloid precursor protein 
(APP), and accounts for approximately 15%–20% of all EOFAD 
cases.19 The gene for APP resides on chromosome 21. Overexpres-
sion of APP explains the high incidence of AD among individu-
als with trisomy 21—Down syndrome—due to the extra chromo-
some.20 Symptom onset typically occurs in the late fourth to fifth 
decade of life among people affected by Down syndrome, which 
reflects the dose-dependent nature of APP translation.

APP is a single-pass transmembrane protein that is involved in 
synapse production and maintenance and cellular signaling.21 APP 
undergoes sequential cleavage by the gamma (γ)-secretase com-
plex, which yields a specific set of polypeptide products.22 The 
most important is Aβ, one of the principal markers of AD pathol-
ogy. When APP undergoes γ-secretase processing, Aβ monomers 
are released primarily into the extracellular space. Aggregation of 
Aβ begins when amyloidogenic monomers attract and attach to ad-
ditional colocated Aβ monomers to form oligomers. Aβ oligomers 
appear to be the most toxic form of Aβ, particularly the production 
of 40- and 42-residue isoforms via the amyloidogenic pathway. In 
addition to their propensity to aggregate, Aβ oligomers exert direct 
neurotoxic effects.23

Accumulation of oligomers leads progressively to the produc-
tion of insoluble Aβ fibrils, which self-propagate to form plaques24 
that are highly resistant to proteolysis and clearance. Regions of 
Aβ seeding then continue to propagate along interconnected neu-

roanatomic pathways,25 in a manner similar to the process that 
occurs in prion diseases.26 Aβ fibrils and mature plaques induce 
an inflammatory response that is mediated by astrocytes and ac-
tivated microglia, which generate reactive oxygen species (ROS) 
and leads to oxidative stress and apoptosis.27 In addition to in-
creased production, dysfunctional clearance of Aβ has been im-
plicated in AD pathophysiology.28 Aβ clearance occurs via several 
mechanisms: glial endocytosis, proteolytic enzymatic degradation, 
transport across the BBB mediated by low-density lipoprotein 
family receptors, activation of the complement arm of the im-
mune response, and passive drainage through interstitial perivas-
cular spaces and specialized lymphatic vessels, referred to as the 
glymphatic system.29,30 Events subsequent to Aβ deposition and 
aggregation—neuroinflammation, generation of ROS, excitotox-
icity, tau hyperphosphorylation, microtubule disruption, and ulti-
mately neuronal apoptosis—are referred to as the amyloid cascade 
hypothesis (ACH).

The ACH initially came under criticism when studies showed 
that the correlation between cerebral Aβ burden and cognitive 
function was weak31 and when evidence of neuronal injury was 
observed to precede Aβ deposition, such as in a murine model that 
over-expresses Aβ.32 These findings raised doubts that the ACH 
was sufficient to account for AD pathophysiology. Accordingly, 
increased attention turned toward the other major marker of neuro-
pathology in AD, tau protein. Microtubules are composed princi-
pally of the protein tubulin; together with tau, these proteins form a 
critical structural component of neurons. Tau is a soluble phospho-
protein that acts to stabilize microtubules,33 and performs several 
other important functions which include providing intracellular 
axonal transport, regulating synaptic plasticity, and supporting the 
structural integrity of intraneuronal signaling pathways.34

Under pathological conditions, tau becomes hyperphosphoryl-
ated, which decreases the affinity of tau toward tubulin and leads 
to the dissociation of tau from microtubules, thereby resulting in 
their destabilization and the formation of insoluble tau aggregates. 
These events contribute to structural degradation and lead to neu-
ronal death.35 The characteristic pathological marker of tau dys-
function is the flame-shaped neurofibrillary tangle that, when co-
located with aggregations of Aβ, are referred to as neuritic plaques. 
In contrast to the weak relationship between Aβ levels and cogni-
tive impairment, tau density is strongly correlated with dementia 
staging.36

Subsequent research revealed that, although tau protein is an 
important mediator of AD pathogenesis, Aβ was a necessary con-
dition for the development of the cognitive syndrome of AD.37 For 
example, when Aβ was absent, there was no association between 
tau binding and hippocampal volume. In contrast, in the presence 
of Aβ, tau binding was greater and was associated with lower hip-
pocampal volume.38 Apart from modifications to the ACH, investi-
gators believed that other more fundamental factors contributing to 
AD pathogenesis were likely to play an important role.

Relationships between Alzheimer disease and vascular risk

The early conceptualization of AD focused heavily on the neu-
rodegenerative aspects of its pathophysiology. In addition, cer-
ebrovascular disease (CVD) and related dementia syndromes, as 
exemplified by VD, were viewed as occupying two poles of a 
single spectrum, with neurodegeneration at one end and vascular 
pathology at the other. However, overlaps between AD and CVD 
have been uncovered; among the earliest research to demonstrate 
an overlap was the Rotterdam study.39 Of note, Alois Alzheimer 
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found1 that neurofibrillary tangles co-existed with cerebral mi-
crovascular arteriosclerotic disease,40 the first clue into the role of 
vascular pathology in neurodegeneration.

Several factors identified as promoting risk for CVD have been 
shown to confer risk for AD. These include hypertension, hyperlip-
idemia, type 2 diabetes, and cigarette smoking.41–45 These shared 
risk variables raised new questions about the processes that under-
lie the generation of AD pathology. This view coincided with an 
increased awareness of the relevance of changes that involve the 
cerebral microvasculature in AD,42,46–47 and suggested that rather 
than existing as discrete entities, neurodegeneration and micro-
vascular disease constituted two ends of a common spectrum of 
pathology.48 Therefore, research into factors that mediate vascular 
damage in AD began.

The most direct relationship between AD-type pathology and 
CVD manifests as an intramural deposition of Aβ within cerebral 
arteries, arterioles, and capillaries, as well as meninges, a condition 
that is called cerebral amyloid angiopathy (CAA).49 The function-
al effect of Aβ infiltration is a weakening of vessel walls, which 
makes them susceptible to leakage, results in microhemorrhage,50 
and less frequently, rupture causing large-vessel hemorrhage. Ac-
cordingly, CAA is a major risk factor for stroke.51 Although CAA 
and AD have overlapping features, they are considered distinct 
diagnostic entities. As with AD, most CAA cases are sporadic. In-
creased production and diminished clearance of Aβ have been im-
plicated as underlying mechanisms of sporadic CAA.29 CAA and 
AD share APOE4 as the primary risk factor for sporadic disease.

However, there are important distinctions between these dis-
eases.52 Aβ40 is the predominant species deposited in CAA as 
opposed to Aβ42, which dominates in AD. In addition, APOE2 
is protective in AD, but it is associated with an enhanced risk of 
blood vessel breakdown in CAA. Familial, or hereditary CAA 
(HCAA) is caused by a variety of rare autosomal dominant muta-
tions. Six HCAA variants have been identified to date, and only the 
Dutch-type is caused by a mutation to APP on chromosome 21, as 
in familial AD. All other HCAA variants consist of mutations that 
code for amyloid proteins other than Aβ.

The BBB and neuroinflammation

The BBB is composed of specialized endothelial cells that form the 
walls of all cerebral vessels. These cells are interconnected by tight 
junctions that strictly limit permeability bidirectionally and serve 
to compartmentalize the parenchyma from the blood. The BBB is a 
component of a larger, integrated set of elements that comprise the 
NVU, which will be discussed in the following sections.

Dogma once held that the brain was immune-privileged; that 
is, it was assumed that innate and adaptive immune system com-
ponents were sequestered from the brain by the BBB. However, 
the BBB is neither impenetrable nor impervious as previously 
understood. B lymphocytes migrate from the periphery across the 
BBB,53 where they become activated and perform immune regu-
lating functions within the central nervous system (CNS).54 These 
activated microglia secrete interleukin-6 (IL-6) within the CNS 
compartment.55 In addition to local cytokine production, circulat-
ing IL-1α and tumor necrosis factor-alpha (TNF-α)46,56 enter the 
CNS via active transport.

Complex links between neuroinflammation and BBB function 
have been discovered. Endothelial cells secrete pro-inflammatory 
cytokines. When exposed to Aβ40 species in vitro, cultured hu-
man brain endothelial cells respond by up-regulating gene expres-
sion for inflammatory cytokines IL-1β and IL-6.57 Endothelial 

cells are primary regulators of Aβ influx into the brain58 via re-
ceptors for advanced glycation end products (RAGE),59 a process 
that contributes to the propagation of the inflammatory response. 
Pro-inflammatory cytokines IL-2 and IL-6,60,61 regulate BBB per-
meability. Evidence indicates that age-related BBB disruption is 
more pronounced among individuals with cognitive dysfunction.62 
Similarly, levels of IL-1β, IL-6, and TNF-α in endothelial cells are 
higher in AD patients than in cognitively intact individuals.63

Pericytes and the neurovascular unit: overview

The NVU consists of three major components: neurons, glia, and 
vascular cells. The vascular cells and their interactions with the 
other components have been the target of recent research. In ad-
dition to the endothelial cells, the basal lamina (also referred to 
as the basement membrane), microvascular smooth muscle cells, 
and pericytes comprise the vascular component of the NVU. The 
endothelium forms the first structural layer of the NVU and is in 
direct contact with plasma and other blood components. The sec-
ond cellular layer of the NVU consists of the end feet of astrocytes, 
the basal membrane, which is an extension of astrocyte end feet, 
and the pericytes. Perictyes envelop cerebral capillaries, and pre-
capillary arterioles and venules, and make anatomical contact with 
endothelial cells (Fig. 1).64 A host of disturbances that involve per-
icytes have been shown to occur during physiological aging. Dis-
turbances of pericyte function might represent a unifying feature of 
disparate lines of evidence that accounts for age-related neuronal 
loss, neurodegeneration, and the pathophysiology of AD (Fig. 2).

Pericytes and aging

One consequence of physiological aging is the increased produc-
tion and diminished scavenging of various ROS, in particular, the 
free radical superoxide anion (O2

−). Increased ROS levels affect 
many organ systems, including the cerebral microvasculature. The 
accumulation of ROS species gradually leads to mitochondrial 
dysfunction, DNA damage, and apoptosis. In addition, O2

− breaks 
down nitric oxide (NO), which is a regulator of vascular tone in its 
role as a vasodilator. Aging is associated with reduced bioavail-
ability of NO in multiple organ systems.65 Perictytes are among 
the cells that are subject to the cumulative deleterious effects of 
age-associated ROS overexpression.

Aging pericytes develop certain deviations of their ultrastruc-
tural elements; these include intracellular inclusions, pinocytotic 
vesicles, enlarged lipid granules, and mitochondrial abnormalities, 
all of which suggest cellular dysfunction, degeneration, or both.66 
Alterations of desmin protein filaments in pericytes have been ob-
served,67 which suggests a disturbance of their cellular structure. 
In human elders, pericytes become depopulated68 and show a sig-
nificant reduction in their area of capillary coverage.69

The precise roles that pericytes play under optimal physiologi-
cal conditions and during normal aging have not yet been fully 
elucidated. Research over the past 10–15 years, however, has re-
vealed several key functions that these cells perform during the 
development and maintenance of cerebral microcirculation. Peri-
cytes control microvascular blood flow directly via contraction, 
which causes capillary constriction70 and, under pathological 
conditions, ischemia which might lead to localized hypoxemia.71 
They play an important role in angiogenesis72; associated proper-
ties include migration and variability in phenotype, alignment, and 
endothelial cell contact. Pericytes guide and determine the direc-
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tion and branching of newly formed blood vessels,73 prevent ves-
sel regression,74 and promote endothelial cell survival.75 Pericytes 
in the hypothalamus serve an important role in the regulation of 
glucose levels through insulin signaling. In a murine model, per-

ictyes increased insulin sensitivity in hypothalamic neurons in a 
dose-dependent fashion; neither astrocytes nor vascular smooth 
muscle cells contributed to that process.76 This finding suggests 
that hypothalamic pericyte loss might be implicated specifically 

Fig. 1. Schematic representation of the neurovascular unit.64 Penetrating arteriole branches into arterioles and capillaries, which then drain via venules 
into veins, returning to subarachnoid space. Schematic cross sections of arterial, capillary, and venous levels are shown, each with its vessel-associated cell 
types. The box depicts how pericytes establish direct connections with endothelial cells through peg-socket contacts. AEF, astrocyte endfoot; BM, basement 
membrane; EC, endothelial cell; PC, pericyte; PVF, perivascular fibroblast; SMC, smooth muscle cell. Source: Lendahl et al. 2019, Figure © EMBO. Repro-
duced under the terms of the Creative Commons Attribution 4.0 License which permits use, distribution, and reproduction in any medium, provided the 
original work is properly cited.
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in the dysregulation of insulin sensitivity, which is a fundamental 
aspect of diabetes.

The molecular mechanisms that drive the formation and main-
tenance of the cerebral microvasculature are centered on intracel-
lular signaling. Platelet-derived growth factor (PDGF) is secreted 
by endothelial cells and binds to platelet-derived growth factor 
receptor-beta (PDGFR-β), which is expressed by pericytes. This li-
gand-receptor complex activates signal transduction pathways that 
regulate migration and proliferation of pericytes toward endothe-
lial cells that compose the vascular wall.77 Experimental models 
of diabetic retinopathy that used pericyte-deficient mice revealed 
that chronic hyperglycemia resulted in diminished PDGFR-β sign-
aling, which leads to pericyte apoptosis.78 Pericyte loss induces 
endothelial cell proliferation with increased numbers of abnor-
mal acellular capillaries,74,79 rather than endothelial apoptosis.80 
Downstream events that are related to pericyte changes include 
significant capillary remodeling, which is characterized by vessel 
dilation and tortuosity, as well as basal lamina hypertrophy.67,81

Subsequent studies revealed the particular importance of peri-

cytes in microvascular regulation; they are the only cells of the 
NVU that express PDGFR-β to enable a response to PDGF.80 
Moreover, soluble PDGFR-β has been identified as a specific 
marker of pericyte injury.82 In addition to PDGF, vascular en-
dothelial growth factor is secreted by pericytes under hypoxic 
conditions, which stimulates proliferation and migration of addi-
tional pericytes.83 Nuclear factor-kappa B (NF-κB), an important 
transcription factor that mediates the inflammatory response, is 
activated in a subpopulation of pericytes in response to exercise, 
which promotes angiogenesis.84

In concert with their angiogenic properties, pericytes are crucial 
to maintain the integrity of the BBB. Vascular remodeling that oc-
curs with pericyte apoptosis contributes to capillary destabiliza-
tion,67 which causes the breakdown of the BBB. Pericytes regulate 
the formation of endothelial tight junctions that modulate vascular 
permeability. Pericyte structural deterioration and apoptosis via 
any mechanism results in reduced contact with and coverage of 
endothelial cells67,85 and the breakdown of the BBB, consequently 
permitting the influx and accumulation of serum proteins includ-

Fig. 2. Idealized longitudinal cross section of the neurovascular unit summarizing molecular mechanisms of pericyte regulation and their relationships 
with AD pathophysiology. Microglia release ROS and inflammatory factors in the presence of Aβ aggregates. Accumulating extracellular Aβ is transported 
into endothelial cells and perictyes via RAGE, triggering transcription factors, such as NF-κB and MMP-9 to produce IL-x and TNF-α, setting up a feed-forward 
loop of accelerating Aβ production and neuroinflammation. APOE4 secreted by astrocytes is taken up by perictyes via LRP-1 and further promotes release 
of inflammatory factors, but APOE2 and APOE3 inhibit that pathway. Aβ induces a significant increase in NOX4 that inhibits pericyte proliferation and 
downstream angiogenesis. Aβ interferes directly with tight junction proteins, increasing BBB permeability. ET-1 secreted by endothelial cells binds to ETA 
receptors on perictyes, causing them to contract, leading to capillary constriction. Hyperglycemic states inhibit the interaction between PDGF secreted by 
endothelial cells and its receptor PGDFR-β found on perictyes, contributing to pericyte apoptosis, endothelial proliferation, capillary remodeling and BBB 
breakdown. Aβ, amyloid beta; AEF, astrocyte endfoot; APOEx, apolipoprotein Ex; BBB, blood-brain barrier; EC, endothelial cell; ET-1, endothelin-1; ETA, ET-1 
type A receptor; HPN, hippocampal pyramidal neuron; IL-x, interleukin-x, LPR-1, low-density lipoprotein receptor-related protein-1; MG, microglial cell; 
MMP-9, matrix metalloproteinase-9 complex; NF-κB, nuclear-factor kappa B; NOX4, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4; PC, 
pericyte; PDGF, platelet-derived growth factor; PDGFR-β, platelet-derived growth factor receptor-beta; RAGE, receptor for advanced glycation end products; 
ROS, reactive oxygen species; TJ, tight junction; TNF-α, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor. Figure © Steven P. Cercy.
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ing the key coagulation macromolecules thrombin, fibrinogen, and 
fibrin—which thrombin cleaves from fibrinogen—as well as plas-
min and hemoglobin.80

Elevated thrombin in AD86 contributes to neuronal loss, vas-
cular injury, and cognitive impairment.87 Fibrinogen exacerbates 
the neurotoxic effects of Aβ.88 Moreover, fibrinogen leakage from 
injured cerebral microvessels activates resident microglia bearing 
CD-11b receptors, which then prune neuronal dendritic spines and 
whole dendrites.89 Protein influx from all sources contributes to 
cerebral edema that might cause further capillary compression.90 
The NF-κB signaling pathway is a fundamental link between 
thrombosis and inflammation.91 Free iron from degraded hemo-
globin generates ROS.92 All of these aberrant processes contribute 
to secondary neuronal degeneration.90,93

Pericytes and AD pathophysiology

Based on the foregoing research findings, the issues to be deter-
mined are to what extent pericyte dysfunction contributes to or 
interacts with classical AD pathophysiological processes, and by 
what mechanisms those interactions occur. Pericyte degeneration 
begins early in AD, particularly in hippocampal neurons, which 
are among the first cells involved in AD pathology. Reductions 
in pericyte coverage correlate inversely with evidence of BBB 
permeability,62 as measured by hippocampal levels of plasma pro-
teins, including immunoglobulin G and fibrin.94 Elevated soluble 
PDGFR-β in cerebrospinal fluid is an early biomarker of cognitive 
dysfunction, which is independent of Aβ and tau levels.82,95 This 
shows that pericyte-specific dysfunction, which is characterized 
by vascular regression and disrupted vascular permeability, is as-
sociated with key attributes of AD pathology.93

Pericytes, APOE and Aβ

As APOE and Aβ functions have been further elucidated, their re-
lationships with pericytes and other elements of the NVU have 
come into focus. APOE2 and APOE3 are secreted by astrocytes 
and taken up by pericytes via low-density lipoprotein receptor-re-
lated protein-1 (LRP-1), where they inhibit a key pro-inflammato-
ry pathway, the cyclophilin A-nuclear factor B-matrix metallopro-
teinase 9 complex. However, APOE4 promotes that pathway,66,96 
which directly increases pericyte injury97 and impairs the forma-
tion of basement membranes.98 Thus, APOE4 accelerates pericyte 
loss relative to carriers of APOE2 and APOE3 alleles.

It is well known that in AD, cerebral capillary constriction is 
provoked by Aβ via the production of ROS.99 However, the mech-
anisms of this and locus of action remained unclear. Aβ enhances 
the activity of nicotinamide adenine dinucleotide phosphate oxi-
dases (NOXs) to form reactive superoxides. NOX4 is found in 
pericytes and endothelial cells. In a transgenic mouse model, Aβ 
increased NOX4 levels sevenfold, and the blockade of NOX4 pre-
vented capillary constriction following the application of Aβ. In 
contrast, NOX2, which is found in macrophages, increased by only 
twofold in the presence of Aβ, and blocking NOX2 produced a 
substantially attenuated effect on capillary relaxation. Similar find-
ings were elicited using human brain slices treated using compa-
rable methods.89

RAGE, which is expressed by neurons, glia, vascular smooth 
muscle cells, endothelial cells, and pericytes, has a crucial role in 
the influx of peripheral Aβ into the parenchyma. RAGEs bind to 
Aβ and a broad range of compounds that are referred to as ad-
vanced glycation end products (AGEs), also known as glycotox-

ins. These compounds are produced as a normal consequence of 
lipid and protein metabolism and are present in foods that are 
cooked at high temperatures. During physiological aging, AGEs 
accumulate progressively within all cells. However, in AD and dia-
betes, this normal process is accelerated. AGEs are present within 
Aβ plaques and neurofibrillary tangles of patients with AD. Ac-
cumulated AGEs contribute to the induction of oxidative stress by 
glial cells.100 Increases in RAGE protein and RAGE-expressing 
microglia occur in AD, and correlate with disease severity.101

Pericytes are crucial for regulating Aβ trafficking between 
the BBB and parenchyma via the LRP-1 and RAGE pathways 
described previously. They assist with Aβ clearance by phago-
cytosis and promote Aβ efflux from parenchyma via the LRP-1 
pathway.102 Despite this role, pericytes remain susceptible to Aβ 
toxicity.103 In AD, the accumulation of Aβ within pericytes leads 
to dysmorphic remodeling104 and apoptosis. In a transgenic model 
of pericyte-deficient viable mice overexpressing APP, degenera-
tion and loss of pericytes resulted in elevated levels of Aβ40 and 
Aβ42 in the brain, as well as increased levels of tau not typically 
observed in this transgenic model. Reinforcement of this destruc-
tive cycle occurs when reduced cerebral blood flow leads to fur-
ther synthesis and accelerating burden of Aβ, worsening pericyte 
apoptosis, progressive microvascular injury, and cognitive im-
pairment.102

Endothelin-1 (ET-1), which is a powerful vasoconstrictor that 
is secreted by endothelial cells, also appears to play an important 
role in Aβ-mediated vascular insult. Levels of ET-1 are elevated in 
individuals with AD, and are up-regulated by Aβ.105 Subsequent 
research revealed that Aβ oligomers induced the release of ROS 
in pericytes, which enhances transcription and release of ET-1,106 
which then binds ET-1 type A (ETA) receptors. It is this ligand-
receptor complex that causes pericytes to contract, which leads to 
capillary constriction, and results in hypoxic ischemia, local hypo-
glycemia, and neuronal loss in affected microregions. Constriction 
of capillaries worsens with increasing Aβ load.107 Furthermore, 
BBB disruption is directly related to the influx of circulating Aβ 
into brain parenchyma.94

The intramural deposition of Aβ within the walls of the cerebral 
vasculature that occurs in CAA is an important yet overlooked 
component of AD pathology.108 Cultured human brain pericytes 
exposed in vitro to the Dutch-type mutation that affects the Aβ40 
species is the predominant species that induces the formation of 
Aβ fibrils at the cell surface, which leads to pericyte degeneration. 
Insulin appears to inhibit Aβ fibril formation in a dose-dependent 
manner, further suggesting that insulin might be involved in the 
regulation of Aβ fibrillization and might mitigate Aβ-induced peri-
cyte loss in AD.109 In humans with CAA, dystrophic neurites are 
found within the perivascular spaces of capillaries in occipital as-
sociation cortex, more so than in primary occipital cortex. In addi-
tion, the density of dystrophic neurites correlates with Aβ levels.108 
Relationships among insulin regulation, Aβ fibril formation, and 
the deposition of Aβ in intramural and perivascular spaces have 
implications for diabetes and the risk it poses for the development 
of sporadic AD.

Aβ interferes directly with the integrity of endothelial tight 
junctions, which are regulated by pericytes and leads to an inap-
propriate increase in BBB permeability.60 In addition, Aβ stabi-
lizes fibrin clots;110 increased fibrin deposition has been observed 
in vessels that are affected by CAA.74 Of note, age-dependent vas-
cular damage in pericyte-deficient mice precedes neuroinflamma-
tion, neurodegeneration, and consequent impairments in learning 
and memory.80 This is consistent with cerebral hypometabolism 
outweighing the degree of volume loss among humans who are 
presymptomatic EOFAD mutation carriers.111
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Pericytes and tau

In addition to the deleterious influence of Aβ on the BBB that was 
identified recently, tau plays a significant but less understood role 
in the regulation of BBB integrity. In a transgenic mouse model, 
age-related increases in tau were associated with increased BBB 
permeability against erythrocytes, peripheral T lymphocytes, 
and immunoglobulin G. This effect was first observed in the hip-
pocampus,112 where the earliest tau aggregation occurs in AD. The 
migration of cells and molecules of the immune system, which is 
facilitated by a leaky BBB, helps to drive neuroinflammation.113 
However, detectable neuroinflammation and neurodegeneration 
do not occur until well after the initiation of BBB deterioration.112 
One mechanism through which tau might influence BBB perme-
ability occurs through its interactions with tight junctions and 
adherens junctions between endothelial cells and their actin cy-
toskeleton proteins. Disrupting this association appears to result 
in tau-induced neurotoxicity.114 Pericyte deficiency in a transgenic 
model of AD in mice led to increased phosphorylation of tau in 
the hippocampus and cortex.102 Collectively, these processes could 
potentially cause a synergistic effect between pericyte loss, tau 
generation, Aβ accumulation, and neurodegeneration.

Future directions

Based on recent and emerging evidence, pericytes present a novel 
opportunity to shift the focus of disease-modifying therapies away 
from failed efforts to break the link between amyloid deposition 
and cognitive decline. AD pathology appears to develop 15–20 
years prior to symptom onset. One likely reason for the failure of 
available therapies could be that the development of pathology in 
AD has advanced too far to be amenable to treatment once individ-
uals become symptomatic. Thus, the main thrust of AD research 
over the last decade has been to identify early markers of AD well 
in advance of symptom onset.115

One potential approach entails a renewed focus on neuroin-
flammation. However, rather than using traditional NSAIDs, 
inflammation that is mediated by IL-1β, IL-6, and other pro-in-
flammatory cytokines could be specifically targeted in an attempt 
to block Aβ-mediated generation of ROS in pericytes.116 The Aβ-
RAGE-cyclophilin A-nuclear factor B-matrix metalloproteinase 
9 cascade, which is an important mechanism of AD pathogenesis 
via BBB disruption might be a promising potential target for AD 
therapies.60

Agents that inhibit the release of ET-1 or antagonize the ETA 
receptors on pericytes are worthy of consideration. In a murine 
model, C-type natriuretic peptide reversed the effects that were 
mediated by ET-1 and interrupted Aβ-provoked capillary constric-
tion.105 Depletion of fibrinogen reduces CAA and cognitive de-
cline in transgenic AD mice,110 and therefore, could represent an 
important therapeutic target.

Finally, because of their unique properties, in particular, their 
ability to withstand hypoxic conditions, perictyes should be con-
sidered as a viable option for cell-based therapies. In one study, 
mesenchymal stem cells that had differentiated into pericytes 
were stereotactically injected into the brains of mice genetically 
modified as an animal model for AD. The mice showed improved 
microcirculation and reduced levels of insoluble cortical and hip-
pocampal Aβ,117 which suggested that pericyte implantation might 
provide a novel approach to the management of AD. Additional 
data indicate that pericytes harvested from temporal neocortex and 
cerebral ventricular zone proliferate readily in culture and are ro-

bust under storage.118,119

In summary, research into the NVU, in particular, the so-called 
“forgotten”120 cell—the pericyte—has yielded valuable insights 
into the pathogenesis of AD. With this knowledge, there is poten-
tial to develop promising avenues for treating what is perhaps the 
most relentless and refractory disease known to neuroscience.

Conclusions

Converging evidence has revealed that vascular pathology, rath-
er than reflecting collateral or ancillary damage, is central to the 
pathophysiology of AD. Moreover, the markers for AD pathology 
that had been considered evidence of pure neurodegeneration, are 
mediators of vascular pathology. Pericytes, with their unique at-
tributes as a locus for the interaction of multiple factors that con-
tribute to neuronal integrity and stability, are perhaps positioned as 
a crucial nexus to resolve the pathophysiology of AD and establish 
a basis for the first effective disease-modifying interventions.
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