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Introduction

Among women in the US, breast cancer (BC) is the most com-
monly diagnosed malignancy and is the second leading cause of 
cancer-related death, after lung cancer.1,2 Currently, recurrence 
and metastasis are the primary causes of morbidity and mortal-
ity for BC. In 2016, the Surveillance, Epidemiology, and End Re-

sults Program estimated that there were 246,660 new BC cases, 
which accounted for 14% of all new cancer cases. In addition, al-
though BC is typically limited to women, the Centers for Disease 
Control and Prevention reported 2,000 new cases of BC among 
men and 400 deaths in 2013.3 A study that observed a cohort of 
89,835 women, with an average follow-up of 22.1 years, reported 
that BC was associated with duration, intensity, and cumulative 
exposure to cigarette smoking (CS).4 Despite the well-established 
epidemiological relationship, the underlying mechanisms that link 
smoking and BC remain incomplete.5 Recent mechanism studies 
implicated that the tumor microenvironment, in particular, tumor-
associated macrophages (TAMs) constitute approximately 50% 
of cells in BC bulk, had a pivotal role in tumor progression and 
metastasis of BC. TAMs are mainly derived from macrophages 
that are recruited by cytokines, which are secreted by BC cells 
and cancer-infiltrated macrophages. These cytokines include mac-
rophage colony-stimulating factor (CSF1), C-C motif chemokine 
ligand 2 (CCL2), and C-C motif chemokine ligand 5 (CCL5).6 
TAM infiltration combined with increased levels of CCL2 have 
been linked to poor prognosis and are associated with BC metas-
tasis.7 TAM secretes cytokines that include CCL18, matrix metal-
loproteinases (MMPs), and vascular endothelial growth factor A 
(VEGF-A), which stimulate tumor migration, angiogenesis, and 
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metastasis.8 It has been suggested that CS promotes M2 polari-
zation of macrophages;9 however, currently, no literature directly 
addresses the effects of smoking on TAM or BC-TAM crosstalk. 
This review aims to discuss the significant effect that E-cig use 
has on the BC tumor microenvironment, which ultimately leads 
to enhanced tumor malignancy and metastasis, with an emphasis 
on the impact that E-cig use has on the crosstalk between cancer 
and immune cells, as well as the potential underlying mechanisms 
that drive this aggressive phenotype of BC. This will advance our 
understanding of this matter and will provide scientific evidence 
with this is required to highlight the risks associated with vaping 
and suggests a potential intervention for the treatment of aggres-
sive BCs that present an increased risk of metastasis.

CS, E-cigs, and breast cancer

In the US, it has been estimated that 16% of all adults are classified 
as smokers,10,11 and therefore, CS persists as the largest preventable 
cause of death.2,12 In 2009, the Canadian Expert Panel on Tobacco 
Smoke and Breast Cancer Risk reported that the association between 
smoking and BC was consistent with causality.13 A modest increase 
in BC prevalence was observed with every additional 20 pack-years, 
and the hazard ratio increased, which was dependent on the quantity, 
duration, and initial age of CS.14 In one study Pierce et al. found 
that BC patients that have a history of smoking (>a 30 pack-year 
history) were at increased risk (+54%) of overall BC mortality com-
pared with nonsmoking patients.15 Despite the well-established epi-
demiological relationship and a significant amount of data, the basic 
mechanisms that link smoking and BC remain unknown.

Cigarette combustion from smoking has been reported to gener-
ate thousands of agents that result in increased motility and epithe-
lial-mesenchymal transition of BC cells, following exposure.16–19

In mice, lung metastasis occurred following mammary fat pad in-
jection with cigarette smoke extract (CSE)-treated MCF-7 BC cells; 
however, no metastasis was identified among mice that received un-
treated MCF-7 cells.19 Nicotine, the primary addictive component of 
cigarettes, has been reported to disrupt cellular metabolic processes, 
compromise genomic integrity, and accelerate the proliferation of 
transformed cells.20 Nicotine operates by activating nicotinic acetyl-
choline receptors, which stimulate several signaling pathways that 
exacerbate tumorigenic effects, such as MEK/ERK and Sox2 via 
Yap1-E2F1 axis in non-small cell lung cancers.21,22 Clinical pres-
entation of the resulting smoking-related DNA adducts in epithelial 
cells has been found within the breast milk of smokers.23,24

During the last decade, E-cigs were introduced and marketed 
as a healthy alternative to CS.25 Since their introduction into 
the US in 2007, E-cigs have maintained widespread acceptance 
among smokers and nonsmokers, in particular, among young peo-
ple.26 Despite their potential benefit as a reduced-harm product, 
E-cigs have been reported to pose potential risks. Of note, E-cig 
exposure has been demonstrated to induce the emergence of mu-
tagenic O6-methyldeoxyguanosines and γ-hydroxy-1, N2-propano-
deoxyguanosines in lung and bladder-derived DNA in mice.27,28 
In addition, E-cig vapor condensate (EVC) promotes a significant 
increase in the production of tumor necrosis factor alpha (TNF-α), 
MMP 9, and IL-6 in cultured alveolar macrophages,29 and addi-
tionally suppresses cellular antioxidant defense within cultured 
epithelial cells.30 In addition, chronic vaping induces protease re-
lease from users pulmonary immune cells, which compounds its 
toxicity.31,32 However, the effect of E-cigs on BC metastasis and 
its underlying mechanism(s) have not been studied. E-cig liquid 
is available in a variety of flavors and contains vehicle solvents, 

such as propylene glycol and vegetable glycerin, in addition to 
nicotine.33 Of note, the aerosolization of E-cig liquid from vap-
ing alters its chemical composition, which results in >250 different 
compounds in the inhaled E-liquid vapor.34 Emerging evidence, 
which includes previous research conducted by our group, sug-
gests that E-cig use results in immune cell activation and systemic 
inflammation. However, the impact of vaping on the development 
and metastasis of BC remains unknown. The existing literature 
on lung cancer suggests a substantial booster effect of E-cigs on 
phase-I carcinogen-bioactivating enzymes, which increase the 
production of reactive oxygen species (ROS), as well as DNA oxi-
dation, which produces 8-hydroxy-2′-deoxyguanosine in rat mod-
els.35 In addition, E-cigs have been reported to suppress cellular 
antioxidant defenses, which results in significant DNA damage in 
pulmonary epithelial cells.12,36

E-cig, immunity, and macrophage activation

Increasing evidence suggests that E-cigs alter innate and acquired 
immunity. E-cig vapor induces allergy-based asthma inflamma-
tory responses37 and increases susceptibility to viral infection in 
mouse lung cells.38,39 In humans, airway epithelial cell exposure 
to E-cig aerosols promotes the secretion of inflammatory cytokines 
IL-6 and IL-8.22 Exposure of alveolar macrophages (AMs) to a 
sublethal 0.5% EVC or nicotine-free ECVC (nfECVC) increases 
ROS production approximately 50-fold and significantly inhibits 
phagocytosis. Secretion of IL-6, TNF-α, IL-8, CCL2, and MMP-9 
is significantly upregulated in AMs following EVC challenge.13 In 
cultured Kupffer cells it was observed that exposure to EVC or to-
bacco promoted the production of oxidative stress, a robust inflam-
matory response, and subsequent cytokine release.40 In addition, 
it was observed in a cohort of 16 healthy human volunteers that 
increased endothelial progenitor cells, as well as E-selectin positive 
microvesicles in circulation, were induced by only 10 puffs of E-cig 
vapor.11 However, it is important to consider that immune altering 
effects of E-cig use might be location and macrophage differentia-
tion-dependent. Recently, a study showed that after continuous ex-
posure of E-cig for 1 month, mouse lung AMs showed unaltered M2 
markers and substantially decreased M1-associated markers that 
included IL-1β, TNFα, CD80, NOS2, CD86, and toll-like receptor 
(TLR)-7.41 Functionally, in response to polyinosinic:polycytidylic 
acid stimulation, E-cig exposed AMs exhibited decreased expres-
sion of interferon (INF) response factor 7, a principal transcription 
factor in the regulation of type 1 IFN production in the presence of 
viral stimuli. In agreement with the activation of systematic inflam-
mation and immune cells, a our unpublished study demonstrated 
that E-cig vapor exposure over 4 months amplified CCR2+ and ac-
tivated (IA+) subsets in Ly6C high and Ly6C low macrophages, as 
well as CCR5+ subsets in Ly6C high macrophages in the circula-
tion of ApoE−/− mice. In addition, E-cig vapor exposure increased 
TLR9+ monocytes in the circulation of normal chow-fed ApoE−/− 
mice. In vitro EVC treatment upregulates expression of IL-6 and 
CCL2 in cultured RAW264.7 murine macrophages, as well as in 
MM6 human macrophages (unpublished). Furthermore, in addition 
to our results, the current literature confirms the significant pheno-
typic alterations among circulating monocytes and resident mac-
rophages that are caused by E-cig use.

TAM, BC metastasis, and BC-TAM crosstalk

Under physiological conditions, the microenvironment of any 
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organ is predominantly tumor-suppressive; however, in the pres-
ence of chronic inflammation alterations to the microenvironment 
could encourage a tumor-promoting microenvironment (TME).42 
This type of inflammatory microenvironments are composed of 
modified extracellular matrices (ECMs), immune cells, and stro-
mal cells, which include TAMs. Therefore, the pivotal functions of 
the TME in immunosuppression, tumor progression, and metasta-
sis are apparent.43 This is further evidenced by the strong associa-
tion between TAM infiltration and poor prognosis and metastasis 
in BC.44 In addition, in BC xenograft mouse models, a reduction 
in tumor growth rate and metastasis, combined with decreased 
TAM infiltration, was observed when they were treated with mac-
rophage-targeting chemotherapy (trabectedin) or CSF1 inhibitors, 
which highlighted a potential therapeutic opportunity.45,46 TAMs 
compose ≤50% of the total cell population in situ47 and are primar-
ily derived from cytokine-recruited macrophages that are secreted 
by TME stromal cells and cancer cells, and include CCL2, CCL5, 
and CSF1.48 CSF1-mediated development of recruited mac-
rophages result in nonpolarized (M0) macrophages,49 which dis-
play significant plastic characteristics that allow for self-alteration 
of their phenotypes in response to various environmental stimuli. 
The developed TAMs could be categorized across a functional 
spectrum, where M1-like and M2-like macrophages constitute op-
posing extrema of the continuum.50,51 M1-like macrophage stimu-
lation is induced by type 1 T helper cell cytokines and functions 
in an antitumor manner by secreting reactive nitrogen, oxygen 
intermediates, and pro-inflammatory cytokines.52,53 The stimula-
tion of M2-like macrophages is mediated by type 2 T helper cell 
cytokines and shows protumor characteristics. Under different 
conditions, M2-like macrophages further differentiate into three 
subtypes that function at every stage of the metastatic cascade, 
these subtypes consist of M2a, M2b, and M2c.54 In general, the 
BC microenvironment is composed of TAMs mainly related to the 
M2-like phenotype.49

Crosstalk between TAMs and BC cells exhibits an auto-regu-
latory loop. TNF-α produced by both cell types increases TAM 
expression of CCL8 and SIGLEC1; and CCL8, then stimulates 
macrophage recruitment, BC invasion, and BC cell secretion of 
CSF1.55 Further, TAMs regulate a number of metastatic processes, 
which includes blood vessel intravasation, local invasion, extrava-
sation at distant sites, and metastatic cell growth.46,56–58 This type 
of effect is seen in the CCL2-CCR2 signaling pathway between BC 
cell and TAMs that promote the initial recruitment of inflammatory 
macrophages to the premetastatic niche, where these macrophages 
evolve into metastasis-associated macrophages (MAMs). MAM-
derived VEGF-A promotes tumor cell extravasation and seeding.42 
In addition, CCL2-CCR2 signaling activates CCL3-CCR1 signal-
ing in MAMs, which support MAM accumulation at the metastatic 
site,59 which enhances signaling pathway-mediated metastatic cell 
growth via the FMS-like tyrosine kinase 1-focal adhesion kinase 
(FAK1)-CSF1 and CSF1-C-ets-2-microRNAs pathways in mac-
rophages.60–64 In addition to their effects on cell growth, TAMs 
suppress the function and infiltration of antitumor CD8+ T cells 
into the tumor microenvironment, which conferred treatment re-
sistance in BC xenograft mouse models.65–67

VCAM-1 and cancer metastasis

In BC, the aberrantly expressed immunoglobulin (Ig)-like ad-
hesion molecule, VCAM-1, contains seven extracellular Ig do-
mains, which allows it to bind to its counter-receptor, the α4β1 
integrin.68,69 Further analyses of leukocyte subpopulations within 

metastatic lung lesions indicated that TAMs expressed the high-
est levels of α4 integrins. The majority of preliminary research on 
TAM-BC crosstalk has centered on various soluble factors that 
are secreted by TAMs and tumor cells.5,55 However, recent studies 
have shown that the depletion and inhibition of the further recruit-
ment of macrophages into the lungs significantly impede metasta-
sis, although this is not mechanistically understood.6,58 However, 
a recent investigation of VCAM-1 presented a potential mecha-
nism,54 where tumor cells that enter the lung parenchyma are im-
mediately engulfed by macrophages, which is probably due to the 
induction of innate immune response. Then, due to the proximity 
that macrophages and tumor cells reside in, interactions between 
VCAM-1 and the α4 integrins are promoted, which recruit Ezrin, 
a cytoplasmic adaptor protein that links the actin cytoskeleton to 
the cytoplasmic tail of VCAM-1, and ultimately results in tyrosine 
phosphorylation of Ezrin.70 On activation, Ezrin functions as an 
adaptor that binds PI3K and its downstream mediator, AKT, which 
triggers AKT-mediated cell survival signaling.54 Then, α4 integrin-
expressing TAMs induce favorable microenvironment conditions 
that are conducive to an increased presence of VCAM-1 that ex-
press BC cells, which are present in the lungs as well as loci of 
primary tumor infiltration.

CCL5/CCR1/CCR5 axis in tumor-TAM crosstalk and cancer 
progression

CCL5 facilitates lymphocyte and macrophage infiltration in a 
number of different cancers, including BC.71–73 CCL5 binds to 
either one of its macrophage-bound receptors, CCR1 or CCR5; 
therefore, initiating AKT signaling to recruit and repolarize TAMs. 
In a transplantable model of BC the dual CCR1/CCR5 antagonist, 
Met-CCL5, impeded tumor growth and inhibits the migration of 
macrophages and lymphocytes into 410.4 tumors, which poten-
tially implicated CCL5 in the facilitation of tumor-promoting mac-
rophage or lymphocyte infiltration.70,72 In addition, in murine PDX 
models of human malignant phyllodes tumors, the CCL5-CCR5 
axis that was blocked by the FDA-proved CCR5 inhibitor, maravi-
roc, suppressed macrophage recruitment to the tumor, significantly 
retarding tumor growth.74 Although CCL5-CCR5 expression in 
healthy breast epithelial duct cells, in general, is limited, its ex-
pression by breast tumor cells at primary tumor sites is substan-
tially upregulated with higher levels of CCL5 expression, which 
is representative of a more aggressive disease course.75 In animal 
studies, CCL5 functions as an essential component of the crosstalk 
between BC and tumor microenvironment cells by: (1) modifying 
the balance of various leukocytes, in situ, via enhanced recruit-
ment of deleterious TAMs and the suppression of antitumor T cell 
activity; (2) amplifying metastatic processes; and (3) intensifying 
migratory and invasion-related properties of BCs.70,76

E-cigs, BC metastasis and BC-TAM crosstalk

Emerging experimental and epidemiological findings suggest that 
CS amplifies lung metastasis of BC.16,77,78 These studies highlight-
ed that CS was an exacerbating factor in uncontrolled cell prolif-
eration and invasiveness of breast tumor cell lines, the pathogen-
esis of a subpopulation of CD44+/CD49f+ tumor stem cells, and 
the enhancement of metastasis from the primary injection site.27 
To highlight the critical role of crosstalk between BC and TAM, 
which could be enhanced following CS/E-cig treatment, our labs 
have recently shown that E-cig exposure substantially increased 
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BC cell growth in mammary fat pad tumor and metastatic lung 
colonization. This was supported by immunohistochemical stain-
ing that was conducted following E-cig exposure that highlighted 
an increase in TAM infiltration activity and decreased BC apopto-
sis, but increased cell proliferation indices. Further, in vitro studies 
have shown that the upregulation of protein expression for CCL5 
and VCAM-1 occurs, in addition to various other protumorigenic 
factors in BC cells, following exposure to E-cig vapor. Mechanis-
tically, coculture systems have demonstrated in EVCs and mac-
rophages stimulated by CCL5/CCR1/CCR5 that axis-mediated 
BC cell growth and migration were independent of one another. 
During metastasis, E-cig exposure facilitated BC cell survival via 
VCAM-1/integrin α4β1-mediated direct interaction with infiltrated 
macrophages. These findings, for the first time, illustrate the del-
eterious effects of E-cig use in BC growth and metastasis. In addi-
tion, this review highlights the essential role of TAMs, via CCL5 
and VCAM-1 pathways, in E-cig induced acceleration of BC tu-
mor development.82

Future direction

A recent survey into vaping usage found that 2.1 million middle 
school and high school students reported using E-cigarettes in 
2017, this population more than doubled the following year, and 

reached 4.9 million students in 2018.79 The continuous increase 
in the popularity of vaping, in particular, among teenagers, raises 
concerns within the public health community. Preliminary evi-
dence on the effects of E-cig exposure revealed it increased the 
potential for addiction, the development of the adolescent brain, 
and therefore, had a direct negative impact on overall health;80,81 
however, its contribution to cancer has rarely been reported. In a 
recent study that used animal models and cell-based systems, the 
extent that E-cig exposure affected BC progression and lung me-
tastasis, which supports how the potential underlying mechanisms 
in the process were altered.82 In this hypothesis, E-cig use drives 
the infiltration of monocytes into tumor areas, in the primary tu-
mor and lung-colonized tumors, via CCR5 upregulation on the sur-
face of TAMs and VCAM-1 on BC cells, respectively. The CCL5-
CCR1/CCR5 axis maintains crosstalk between BC cells and TAMs 
and VCAM-1 upregulation increases the binding of TAMs and BC 
cells during infiltration, which enhances the survival rate of meta-
static BC cells during lung colonization. In addition, TAMs trigger 
the secretion of CCL5, which is derived from BC cells and assists 
in the migration of BC cells to the lungs, and Met-CCL5 inhibitors 
effectively prevent the contribution of CCL5 to BC cell migra-
tion. Furthermore, other cytokines, such as CXCL5/10/16, MMPs, 
Osteopontin, Proliferin, VEGF, and TNFα are secreted from BC 
cells after E-cig treatment, which prompts tumor progression and 
metastasis (Fig. 1).

Fig. 1. The schematic mechanisms of E-cigarettes (E-cig) that promotes breast cancer (BC) growth and lung metastasis. E-cig treatment drives the infiltra-
tion of monocytes into tumor areas in primary tumor and lung colonized tumor via CCR5 upregulation on tumor associated macrophage (TAMs) surface and 
VCAM-1 on BC cells. CCL5/CCR1/CCR5 axis maintains the crosstalk between BC cells and TAMs and VCAM-1 upregulation increases the binding of TAMs and 
BC cells during infiltration and enhances the survival rate of metastatic BC cells during lung. In addition, TAMs trigger the secretion of CCL5 derived from BC 
cells (dashed arrow), and assist the migration of BC cells to the lungs. Met-CCL5 inhibitor effectively prevents the contribution of CCL5 to BC cell migration. 
Furthermore, other cytokines, such as CXCL5/10/16, MMPs, Osteopontin, Proliferin, VEGF, and TNFα are secreted from BC cells after E-cig treatment, which 
prompts tumor progression and metastasis.
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Conclusions

In conclusion, this hypothesis improves our understanding of the 
critical role of TAMs, via CCL5 and VCAM-1 pathways, in E-
cig promoted BC tumor development. Because of the complexity 
of the tumor microenvironment and of the mechanism that drives 
BC malignancy, further questions need to be explored. The find-
ings of this review raise more questions about the role of tumor-
TAM crosstalk in cancer progression and metastasis, such as is 
the CCL5/CCR1/CCR5 axis the only pathway mediated by this 
crosstalk? What about other smoking-related cancers including 
lung cancer, head, and neck cancer? The answers to these ques-
tions could lead to new therapeutic opportunities to combat cancer 
progression and metastasis.
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