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Introduction

There is a large number of microbial communities, approximately 
500 to 2,000 species, present in the gastrointestinal tract. The in-
testinal microbiota performs many essential functions that help the 
host to maintain health.1 Studies indicate that host homeostasis and 
disease development are maintained by the immune system. Intes-
tinal microbiota may contribute to the progression of coronavirus 
disease 2019 (COVID-19) due to the gut-lung interaction with 
the immune system.2 Dysbiosis of intestinal microbiota results in 

changes in the composition of intestinal flora, gut permeability, and 
bacterial translocation. These processes eventually lead to multiple 
organ failure and may also result in the translocation of the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the 
lung into the intestinal tract.3

COVID-19 is a global epidemic that spreads acute respiratory 
infection caused by SARS-CoV-2. SARS-CoV-2 is a single-strand-
ed RNA-enveloped virus belonging to the β-coronavirus genus. 
Full-genome analysis showed that SARS-CoV-2 shares 79.6% se-
quence identity with SARS-CoV and belongs to the same genus 
of coronaviruses.4 The main transmission modes are respiratory 
droplets and close contact with an infected patient.5 The clinical 
features of COVID-19 include high rates of transmission, destruc-
tion of multiple organs, and more serious symptoms in the elder-
ly.6–8 Additionally, multiple other clinical manifestations may also 
be observed, such as fever, dyspnea to pneumonia, acute respirato-
ry distress syndrome, multiple organ failure, all of which may lead 
to death.9 Digestive disorders appear to precede or follow respira-
tory symptoms7 as previous studies have reported the incidence of 
gastrointestinal symptoms in 2% to 50% of COVID-19 cases.10–13 
The digestive system is not only a part of disease expression, but is 
also a potential driver of disease severity and viral transmission.9 
This review highlights the relationship between intestinal micro-
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biota dysbiosis and SARS-CoV-2 infection.

Structure and function of the human intestinal microbiota

The intestinal microbiota is established from infant birth status 
and is relatively stable and resilient in adults with temporal pat-
terns.14,15 The intestinal microbiota of different individuals is rela-
tively stable,16 however, the diversity of intestinal flora decreases 
with biological age.17 Most of the flora in the human intestinal 
tract is located in the colon, while the amount of bacteria in the je-
junum, ileum, and duodenum decreases in turn. The intestinal flora 
of humans consists of approximately 100 trillion resident microor-
ganisms, including bacteria, viruses, fungi, and chlamydiae.18 The 
healthy state is characterized by between 500 and 2,000 microbial 
species, which comprise the four most common bacteria phyla of 
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria.19

The intestinal microbiota provides many beneficial functions 
in modulating intestinal barrier function, supporting the host im-
mune system, inhibiting tumors, promoting vitamin synthesis, 
aiding digestion and absorption, and enhancing primary alveolar 
macrophage function.20,21 Intestinal bacteria as well as products 
and metabolites of intestinal bacteria, play beneficial roles in the 
intestinal mucosal barrier by enhancing tight junctions and de-
creasing the permeability of the epithelium.20 Differentiation and 
maturation of intestinal T helper 17 cells and secretion of IgA can 
be induced by intestinal flora, which are important components 
of intestinal mucosal immunity and participate in the regulation 
of human autoimmune diseases.22,23 The intestinal microbiota di-
rectly or indirectly, through enzymes, makes an important contri-
bution to the metabolism of dietary carbohydrates, proteins, bile 
acids, and vitamins.24

Intestinal microbiota dysbiosis and disease

Multiple factors can lead to changes in the intestinal microbiota, 
such as exercise, diet, obesity, drug utilization, host genetics, and 
disease.15,25 Exercise can enhance the number of beneficial micro-
bial species and improve the development of commensal intestinal 
bacteria.26 A high-fat diet-induced intestinal microbiota dysbio-
sis increases intestinal permeability and causes an inflammatory 
response, whereas methionine-restricted diets can increase the 
abundance of Bifidobacterium, Lactobacillus, and Bacteroides.27 
Overuse of antibiotics can also lead to intestinal microbiota dys-
biosis and superinfection, which in turn can aggravate the primary 
disease.28,29

There is a correlation between intestinal microbiota imbalance 
and many diseases. Microbial dysbiosis contributes to the devel-
opment of liver cirrhosis, increases carcinoma susceptibility, and 
aggravates inflammatory bowel disease.30 The number of Entero-
bacteriaceae, Enterococcus, and Saccharomyces was significantly 
greater in liver cirrhosis patients, but the number of Lactobacillus, 
Bacteroides, and Clostridium was significantly decreased.30 Fu-
sobacterium were also enriched in colorectal carcinomas, while 
Bacteroidetes and Firmicutes were significantly reduced in tu-
mors.31 The characteristics of intestinal microbiota can be used 
to predict biological age and the prognosis of diseases, to treat 
diseases, and to develop new drugs.17 Intestinal microbiota plays 
an important role in the regulation of lung inflammation. The gen-
eration of metabolites of intestinal microbiota, such as short chain 
fatty acids, can suppress respiratory inflammation by activating 
G protein-coupled receptors.32 Type 2 diabetes has a significantly 

lower abundance of verrucomicrobiae, which may be a potential 
biomarker thereof.33 Based on a population view, the microbial 
synthesis potential of the dopamine metabolite 3,4-dihydroxyphe-
nylacetic acid correlates positively with the mental quality of life, 
and microbial γ-aminobutyric acid production may play a role in 
the evolution of depression.34 Nevertheless, the mechanism of in-
teraction between microbiota and the host, especially at the mo-
lecular and biochemical levels, needs further study. These studies 
suggest that maintaining a normal intestinal microecology is one 
of the most important treatment strategies to maintain the dynamic 
balance of the immune system and reduce the occurrence of dis-
eases.

The alterations of intestinal microbiota in COVID-19 patients

Dysbiosis of the intestinal microbiota can lead to a variety of gas-
trointestinal symptoms, leading to multi-organ dysfunction, the 
symptoms of which include diarrhea (4.8–50.0%), nausea, and 
vomiting (3.9%).11,35,36 COVID-19 patients with gastrointesti-
nal symptoms are also more likely to have higher rates of fever, 
fatigue, and shortness of breath, compared with patients without 
gastrointestinal symptoms.37 However, a study of 138 COVID-19 
patients found that diarrhea was present in 10.1% of patients, but 
there was no significant correlation between the occurrence of di-
arrhea and the need for intensive care.38 Due to the limited data at 
present, medical staff should pay attention to COVID-19 patients 
who are complicated with gastrointestinal symptoms and who may 
be in a more severe condition. Whether gastrointestinal symptoms 
are a factor of poor prognosis remains to be studied further.

Dysbiosis of intestinal microbiota in COVID-19 exhibits a de-
crease in the abundance and diversity of probiotics and an increase 
in those of opportunistic pathogen bacteria. The probiotic bacteria, 
such as Bifidobacterium and Lactobacillus, decreased, and was 
dominated by pathogenic bacteria such as Streptococcus, Rothia, 
Veillonella, Erysipelatoclostridium, and Actinomyces.9,39 Bifdo-
bacteriumand Lactobacillus can enhance the secretion of IgA and 
maintain mucus-secreting goblet cells, which in turn benefit the 
defensive effect of mucosal barriers.20,24 Lu et al. found that Strep-
tococcus and Rothia were likely to increase the risk of secondary 
bacterial lung infections in H7N9 patients.40 Dysbiosis of the in-
testinal microbiota causes deficiencies in nutrient absorption in the 
gut and immune regulation, as well as lung injury.41,42

In some COVID-19 patients who have needed to be adminis-
tered antibiotics, the drugs generally affect the intestinal microbio-
ta. Zuo et al.43 found that COVID-19 patients receiving empirical 
antibiotics or antibiotic-naïve therapy were characterized by the 
enrichment of opportunistic pathogens and the depletion of ben-
eficial commensals. COVID-19 patients without antibiotic therapy 
had an enriched population of opportunistic pathogens, including 
Clostridium hathewayi, Actinomycesviscosus, and Bacteroidesnor-
dii. These opportunistic pathogens are known to cause bactere-
mia.44 While receiving antibiotics, patients demonstrated a further 
depletion of probiotics such as F. prausnitzii, Lachnospiraceae 
bacterium 5_1_63FAA, Eubacteriumrectale, Ruminococcusobe-
um, and Doreaformicigenerans, which are symbionts beneficial to 
host immunity.43 This suggests that the use of antibiotics should be 
considered carefully as it may exacerbate intestinal flora disorders.

This dysbiosis of intestinal microbiota in patients with COV-
ID-19 can persist in a subset up to 12 days after nasopharyngeal 
clearance of SARS-CoV-2.45 Although SARS-CoV-2 infection 
may be cured in the respiratory tract, loss of probiotics and gas-
trointestinal tract SARS-CoV-2 persisted in some COVID-19 pa-
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tients.43,46 On the other hand, COVID-19 patients were enriched 
with fungal pathogens such as candida and aspergillus.45 Candida 
albicans caused by intestinal colonization aggravates inflamma-
tion in the gastrointestinal tract.47 Therefore, attention should be 
paid to the monitoring of intestinal microecological disorders in 
COVID-19 patients with gastrointestinal symptoms. Since these 
studies involved a small number of cases, more studies need to be 
conducted in the future, especially regarding the study of intestinal 
fungi.

Interaction and mechanism between COVID-19 and intestinal 
microbiota

There is evidence to suggest the presence of crucial cross-talk be-
tween the gastrointestinal microbiota and the lungs (gut-lung axis). 
The gut-lung axis mainly refers to the gastrointestinal microbiota, 
which can strengthen lung resistance, eliminate pathogenic bacte-
ria and reduce or slow down the occurrence and development of 
respiratory diseases through the regulation of the immune response 
signal pathway. At the same time, disorders of the respiratory tract 
also impact the gastrointestinal tract through immune regulation.48 
The main reason for this extrapulmonary phenomenon may be that 
the virus damages the intestinal mucosa and changes the intestinal 
flora, while dysbiosis of intestinal microbiota aggravates the se-
verity of COVID-19.2 The RNA of SARS-CoV-2 can be detected 
in and be isolated from stool, and can be accompanied by intes-
tinal microbiota disorders.49 However, Wolfel et al.50 reported 
that SARS-CoV-2 was isolated from samples derived from the 
throat or lung in COVID-19 patients, but not from stool samples 
despite high concentrations of virus RNA. This results suggests 
that whether the fecal-oral transmission route is utilized by SARS-
COV-2 still needs more research.

Effects of SARS-CoV-2 on intestinal microbiota

COVID-19 can cause systemic inflammation syndrome, acute 
respiratory distress syndrome, shock, and antimicrobial use, all of 
which directly or indirectly cause dysbiosis of intestinal micro-
biota. Among these options, the combination of SARS-CoV-2 and 
angiotensin converting enzyme 2 (ACE2) plays a unique role in 
intestinal microecology. SARS-CoV-2 infects host cells by bind-
ing to the receptor of ACE2 and transmembrane serine protease 2 
(TMPRSS2).51 ACE2 and TMPRSS2 are not only co-expressed in 
lung AT1 and AT2 cells but are also highly expressed in enterocytes 
from the ileum and colon.51,52 SARS-CoV-2 has four structural 
proteins, which are necessary for particle formation and include 
spike, membrane, envelope, and nucleocapsid proteins.53 The first 
step of viral infection is entry into host cells. The spike protein on 
the viral envelope can bind to the specific cellular receptor ACE2 
on the membrane of host cells. Spike protein can then be cleaved 
into S1 and S2 subunits. S1 is the receptor binding domain that 
contributes to the SARS-CoV-2 attachment to the surface of the 
human cell, and thus promotes the S2-mediated fusion process of 
SARS-CoV-2 with host cell membrane.54 TMPRSS2 of host cell 
protease cleaves the spike protein, promoting the virus to release 
fusion peptides for membrane fusion.55

ACE2 is essential for neutral amino acid transporters in the gas-
trointestinal tract. Amino acid malnutrition can result in intestinal 
inflammation by ACE2, which plays an important role in innate 
immunity, amino acid homeostasis, and maintenance of intestinal 
microbiota.56,57 ACE2 is necessary for intestinal B(0) AT1 expres-

sion, which is involved in the absorption of amino acids. When 
ACE2 is decreased or knocked out, tryptophan cannot be effective-
ly absorbed and the mTOR pathway activity in the small intestine 
is reduced. This results in decreased expression of antimicrobial 
peptides in intestinal Paneth cells, which can lead to changes in 
the composition of intestinal flora and increase the risk of bacterial 
translocation and endotoxemia.56,58–60

ACE2 is a negative regulator of the renin-angiotensin system 
(RAS) and converts angiotensin II (Ang II) to vasoprotective hep-
tapeptide (Ang-(1-7)).61 Ang-(1-7) binds with the receptor Mas to 
construct the ACE2-Ang-(1-7)-Mas axis, which exerts beneficial 
effects by improving endothelial function, anti-oxidative stress, 
and inhibits the inflammatory response and alleviates intestinal 
inflammation.62–64 In addition, Yang et al. reported that colonized 
gut microbiota decrease in colonic ACE2 expression through the 
presence or absence of the microbiota rats. This suggests that the 
variability of gut microbial composition is one of factors for the 
susceptibility of COVID-19.57

TMPRSS2 is a protease that belongs to the type II transmem-
brane serine protease family. The cells expressing TMPRSS2 play 
a role in infecting and propagating SARS-CoV-2.65 TMPRSS2 
knockout mice can reduce the primary sites of infection and in-
crease virus spread within the respiratory tract and immunopatho-
logical injury after infection by SARS-CoV.66 This suggests that 
TMPRSS2 plays a critical role in coronavirus infection and will be 
one of the selected targets for drug therapy in the future.

Moreover, influenza pulmonary infection can change the intes-
tinal microecology through type I interferons (IFNs). High levels 
of type I IFNs increase interlukin-17 production and Th17 cell 
activation, which promotes the production of pro-inflammatory 
cytokines and chemokines and destroys intestinal epithelial cells.67

The binding of SARS-CoV-2 to the ACE2 receptor results in 
ACE2 downregulation. TMPRSS2 enhances the spread of this vi-
rus, hindering the absorption of intestinal nutrients, aggravating in-
testinal inflammation, reducing the function of intestinal mucosal 
barrier, and causing intestinal flora translocation and abnormal 
composition. However, the exact mechanism by which SARS-
CoV-2 interacts with intestinal microbiota is still unclear.

Effects of intestinal microbiota dysbiosison COVID-19

Normal intestinal microbiota play an important role in the regula-
tion of lung immunity and host defense.21 Dysbiosis of the intes-
tinal microbiota leads to deficient energy harvesting and immune 
protection, is correlated to diarrhea and systemic invasion by mi-
crobial pathogens, and increases the burden of lung infection pa-
tients.68 Dysbiosis of the intestinal microbiota therefore induces 
the translocation of intestinal flora, the aggravation of systemic 
inflammation and lung injury.

Respiratory influenza virus infection induces intestinal injury 
by microbiota-mediated Th17 cell-dependent inflammation,69 
which increases the risk of bacterial translocation. Dickson et al. 
found that the lung microbiome is enriched with intestinal bacteria 
in a murine model of sepsis and in humans with established acute 
respiratory distress syndrome. Overall, the gut-lung translocation 
and disorder of the lung microbiome are associated with indices of 
systemic and alveolar inflammation, respectively.70 In contrast, the 
cytokine storm is caused by the massive release of cytokines and 
chemokines, leading to widespread and uncontrolled disorders of 
the host immune defense in COVID-19 patients.9,71,72

Dysbiosis of intestinal microbiota can result in the enhancement 
of pulmonary influenza virus amplification, leading to the aggrava-
tion of airway inflammation and the progression of sepsis.69,70,73,74 
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Through the BALB/c pulmonary influenza virus infection mouse 
model with dysbiosis of intestinal microbiota, Pang et al.74 found 
that the lung viral load significantly increased and suggested that 
intestinal dysbacteriosis might affect antiviral immunity in the 
lung.74 For intestinal dysbacteriosis COVID-19 patients, whether 
there is similar performance, and whether the virulence and infec-
tivity of the virus change still need further research (Fig. 1).

Effects of probiotics on COVID-19

Probiotics are living microorganisms that, when used at a reason-
able dosage, are beneficial to the health of the host. Probiotics can 
improve intestinal flora disorders, reduce secondary infections, 
and improve immunity.75–78 About 12.3% of COVID-19 patients 
need invasive ventilation.7 Probiotics have been reported to reduce 
enteritis, the duration of intensive care unit stays, and ventilator-
associated pneumonia in patients with sepsis.75,79 Modulating the 
intestinal microbiota has been reported to have ameliorated the 
symptoms and pathology in a sepsis mouse model.80 Studies have 
further found that probiotics can reduce the incidence of respira-
tory diseases in the elderly and children.81,82 d’Ettorre et al. found 
that from 28 COVID-19 patients the risk of developing respiratory 
failure was eight-fold lower in patients receiving oral bacteriot-
herapy, and the prevalence of patients transferred to the intensive 
care unit and mortality was lower.83 Previous studies have found 
that probiotics can produce exopolysaccharides, increase leu-
kocyte and natural killer cell counts, decrease inflammatory cy-
tokine expression, and influence both innate and adaptive immune 
responses.82 However, the potential mechanisms of probiotics on 

COVID-19 are not yet well defined.
Fecal microbiota transplantation (FMT) is one of the treatment 

strategies to restore the dynamic balance of intestinal microbiota. 
Considering that SARS-CoV-2 may be potentially transmitted 
through a fecal-oral route, the use of FMT should be conducted 
with caution during the epidemic of COVID-19.84 To preserve in-
testinal balance and reduce the risk of secondary bacterial infec-
tions, the use of probiotics is recommended for the treatment of 
patients with severe COVID-19 in China.9 Clinical trials testing 
probiotic treatments for COVID-19 are being undertaken, how-
ever, until reliable data is available against this approach, probiotic 
use should be recommended (Table 1).

Future direction

COVID-19 is a global epidemic that can cause multiple organ 
failure within the digestive system. It is necessary to confirm the 
mechanism and interaction between intestinal microbiota and 
COVID-19. SARS-CoV-2 infects host cells by binding to the re-
ceptor of ACE2, which is co-expressed in the lung and intestinal 
tract. Further studies are needed to identify other binding receptors 
by which this virus infects host cells. Dysbiosis of intestinal micro-
biota may occur in COVID-19 patients, but further studies on the 
gastrointestinal injury of these patients are needed. Noninvasive 
tests such as calprotectin, computerized tomography enterograph, 
magnetic resonance enterograph, may be used to assess the gastro-
intestinal injury. Moreover, the intestinal microbiota participates in 
helping the host to maintain homeostasis through a gut-lung inter-
action. Clinical attention should focus on the efficacy and mecha-

Fig. 1. A model for the process by which SARS-CoV-2 enters host cells in the lung and gastrointestinal tract. The spike glycoprotein of SARS-CoV-2 binds 
to the angiotensin converting enzyme 2 (ACE2) on host cells, allowing the virus enter. Transmembrane protease serine 2 (TMPRSS2) also participates in this 
process by cleaving the spike glycoprotein, promoting the virus to release fusion peptides for membrane fusion.
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nism of probiotic therapy in COVID-19 patients.

Conclusion

A variety of mechanisms are involved in the interaction between 
the intestinal microbiota and COVID-19. SARS-CoV-2 can cause 
dysbiosis of intestinal microbiota and intestinal damage, with 
dysbiosis of intestinal microbiota aggravating a systemic inflam-
matory response and lung injury. Modulating the intestinal micro-
biota improves digestive symptoms and the pathology of respira-
tory infectious diseases. Probiotics may have therapeutic value for 
COVID-19. Nevertheless, more studies on the interaction between 
intestinal flora and COVID-19 are needed in the future.
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