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Introduction

Pancreatic ductal adenocarcinoma (PDAC) has the worst progno-
sis among digestive malignancies. Thus, there is an urgent need to 
discover new effective treatments. With the increasing incidence 
of PDAC, the 5-year survival is less than 6% in Shanghai and 10% 
in the US.1,2 Although surgery is the only treatment to potentially 
cure PDAC,3 survival can be improved by neoadjuvant/adjuvant 
therapy since only less than one-fifth of PDAC patients is eligible 
to receive surgery.4–6

In the last 20 years, immunotherapy has readily gone from 
the bench to bedside. Various strategies, including monoclonal 
antibodies, kinase inhibitors, and immune checkpoint therapies, 
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Abstract

Background and objectives: Regulatory T cells (Tregs) are a vital cell subset that induces immune tolerance in 
the tumor microenvironment by secreting suppressive cytokines and inhibiting innate immune cells. Transform-
ing growth factor-beta (TGF-β) plays an important role in this process. However, the effect of TGF-β blockade on 
intratumoral Tregs and its specific biological role remains unclear.

Methods: Quantitative and functional changes in Tregs were evaluated after TGF-β blockade with gradient doses 
of monoclonal antibody 1D11 in a murine pancreatic ductal adenocarcinoma model.

Results: The number of tumor infiltrating Tregs decreased significantly (high dose, low dose and control, 38.6 
± 8.1, 38.6 ± 1.8, 74.6 ± 4.9 /40× field, p = 0.024) after 1D11 administration, while CD8+ T cells in the tumor 
microenvironment significantly increased in the low dose group but reversed in the high dose group (3.1 ± 1.4, 
12.3 ± 2.1, 5.4 ± 0.5 /40× field, p = 0.016). The frequency of CD4+, CD8+ or Treg cells in the peripheral blood and 
spleen showed no significant change. The typical cytokines TGF-β and inerleukin-10 secreted by Tregs as well as 
interferon-γ produced by cytotoxic T cells in tumor tissues did not change compared with the controls.

Conclusions: TGF-β blockade with a monoclonal antibody can reduce Tregs in the tumor niche, however, its 
therapeutic efficacy in PDAC patients remains limited. Further investigation of combination therapies is re-
quired.
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have been widely applied and shown to have relatively satisfy-
ing outcomes. Treatments focusing on the tumor niche and anti-
tumor immunity were considered the most hopeful therapies to 
improve PDAC prognosis.7 However, regardless which immune 
treatment is administrated, the effect is limited by the immunosup-
pressive microenvironment of PDAC. Regulatory T cells (Tregs) 
can induce immune tolerance in the tumor niche through contact-
dependent (such as inhibiting the maturation of effector T cells 
and suppressing cytotoxic T cells (Tc) and contact independent 
(such as secreting immunosuppressive cytokines and combining 
interleukin-2) approaches.8 Therefore, Tregs play a vital role in the 
escape, metastasis, and invasion of PDAC. In contrast, Tc is the 
representative of antitumor immunity which can be induced by tu-
mor cells. We have previously reported on Treg and Tc distribution 
in PDAC and their relationships with survival in postoperative pa-
tients. Our work indicated that higher intratumoral Tregs and lower 
peritumoral Tc were both related to worse prognosis of PDAC,9 
consistent with other studies.10,11

Transforming growth factor-β (TGF-β) is a multifunctional 
polypeptide with three isotypes in mammals that also suppress 
antitumor immunity in the tumor microenvironment.12 TGF-β can 
induce naïve T cells to differentiate into Tregs, which is secreted 
from various cells such as tumor cells, myeloid derived suppres-
sor cells (MDSCs), dendrite cells (DCs), and macrophages.13–15 
On the other hand, TGF-β is an important suppressive functional 
molecule in Treg-mediated immune regulation.16–18 In addition, 
deletion of Smad4/DPC4 is a very common mutation in high grade 
pancreatic intraepithelial neoplasm and carcinoma cells, which can 
break the negative feedback of TGF-β on epithelial cell prolifera-
tion.19 In preclinical studies, silencing TGF-β gene expression or 
blocking its function with antibodies has been shown to effectively 
reduce intratumoral Tregs.20 Thus, neutralizing TGF-β may be an 
effective treatment for PDAC.

1D11 is a murine originated monoclonal antibody that can rec-
ognize and neutralize all three isotypes of TGF-β.21 1D11 has al-
ready been widely used in preclinical studies for breast cancer,22 
glioma,23,24 and kidney cancer.25 Some studies indicated that 1D11 
could decrease tumor-infiltrating Tregs25 and inhibit CD4+CD25− 
T cells from differentiating into CD4+CD25+ Tregs.26 Furthermore, 
11D1 increased the amount and cytotoxic activity of tumor infil-
trating Tc by promoting secretion of granzyme B and perforin.22,27

We previously collected five PDAC tissue samples and ana-
lyzed them using an Agilent whole genome expression array. 
The results showed that both CD25 and TGF-β expression were 
upregulated and CD8 expression was downregulated (data not 
published). Therefore, we hypothesized that Tregs and TGF-β are 
increased in the tumor microenvironment, following inhibition 
of CD8+ Tc cells. In this study, we blocked TGF-β signaling with 
1D11 and evaluate the effect in a murine PDAC model. Specifi-
cally, we analyzed changes in tumor volume, frequencies of T cell 
subsets in the peripheral blood, spleen and tumor tissues, and in-
tratumoral cytokines.

Materials and methods

Animals and cell line

Six- to eight-week old female C57BL/6 mice were purchased from 
the SLAC laboratory animal (Shanghai, China) and kept under 
barrier condition in the Department of Laboratory Animal Science, 
Fudan University. All protocols were approved by the animal ex-
periment ethics board of Fudan University (Supplementary File 1).

The murine PDAC cell line Panc02 was a kind gift from Johns 
Hopkins Hospital, USA. The cells were cultured in RPMI-1640 
(Gibco, Carlsbad, CA, USA) supplemented with 10% FBS (Gibco, 
Australia) and 1% penicillin/streptomycin (Gibco, Carlsbad, CA, 
USA), and incubated at 37°C and 5% CO2.

Tumor implantation, TGF-β blockade, and sample harvest

Before the experiment, the mice had one week to acclimate to the 
laboratory environment. To establish the murine PDAC model, 
Panc02 cells were suspended in serum-free RPMI at the concen-
tration of 1 × 106 /0.1 mL and then subcutaneously injected in the 
right flank of the mice. Palpable tumors typically formed two to 
three weeks after inoculation. Eighteen mice were randomly di-
vided into three groups as follows: high dose group (100 µg/dose), 
low dose group (50 µg/dose), and control group (PBS, phosphate 
buffer solution). Mice with ulcer on the tumor were precluded be-
cause of the possible influence on immunity.

The anti-TGF-β antibody (Clone: 1D11, R&D System, Minne-
apolis, MN, USA) was diluted with sterilized PBS into 50 µg /0.1 
mL and 25 µg /0.1 mL, and PBS alone was administrated as con-
trol. Mice in each group were injected with 0.2 mL 1D11 or PBS 
intraperitoneally every three days, for a total of three times. Before 
injection, the long (a) and short (b) diameters of the tumors were 
measured with electronic caliper and the volume was calculated 
as a × b2/2.

Within 24−48 hours after the final administration, mice were 
anaesthetized with 1% pentobarbital and tumor volumes were meas-
ured. Blood samples were collected via orbital extraction and anti-
coagulated with EDTA. Tumor tissues were resected under sterile 
conditions and laparotomy was performed to harvest the spleen.

Flow cytometry

Erythrocytes in the blood samples were lysed with 1× ammonium 
chloride lysis buffer. The spleen was processed using the Gen-
tleMACS Dissociator (Miltenyi Biotec, Bergisch Gladbach, Ger-
many) in protocol m_spleen_02 to obtain single cell suspensions. 
All cell suspensions were washed and resuspended with stain buffer 
at about 1−5 × 107 cells/mL. In this panel, fluorescence combined 
antibodies included FITC CD3 Molecular Complex (561798), PE-
Cy7 CD8a (552877), PerCP-Cy5.5 CD4 (550954), APC CD25 
(557192), PE CD127 (552543). All antibodies were from BD (San 
Jose, CA, USA). After incubation for 20 m at room temperature, 
the samples were washed and analyzed using a BD FACS Aria II 
flow cytometer. OneComp eBeads™ (eBioscience, Carlsbad, CA, 
USA) were applied to calculate compensation. Lymphocytes were 
gated with FSC×SSC characters and T cells were further gated as 
CD3+ cells. Under the T cell gate, the proportions of CD4+ T help-
er (Th) cells, CD4+CD25+CD127low/− Tregs, and CD8+ Tc were 
also recorded. All analyses were performed using FlowJo v10.0.7 
(Tree Star, Inc., USA).

Immunohistochemistry

Tumor tissues were dissected into pieces for different analyses. 
Samples were fixed with neutral formaldehyde for at least 24 h and 
embedded in paraffin. Tissues were sectioned at 5 µm thickness 
and deparaffinated in gradient ethanol. Antigen retrieval was per-
formed with EDTA retrieving solution and endogenous peroxidase 
was inactivated with 3% H2O2. Two primary antibody pairs were 
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applied separately: rabbit anti-mouse FoxP3 (MAB8214, R&D 
Systems, 1:125, Minneapolis, MN, USA) was mixed with mouse 
anti-mouse TGF-β (MAB1835, R&D Systems, 1:50, Minneapolis, 
MN, USA) or rat anti-mouse interleukin (IL) -10 (ab189392, Ab-
cam, 1:100, Cambridge, MA, USA), while rat anti-mouse CD8a 
(14-0808, eBioscience, 1:100, Carlsbad, CA, USA) was stained 
alone. The double staining was processed using the MultiVision™ 
Polymer Detection System (TL-012-MHRA, Thermo Scientific) 
following the manufacturer’s instructions. The rabbit originated 
primary antibody stained blue and the mouse/rat originated pri-
mary antibody stained red. Finally, slides were counterstained with 
hematoxylin and mounted with Clearmount™ as previously pub-
lication.28 Since the density of different lymphocyte subsets varies 
across slides, we chose the 4−5 fields with the highest cell density 
under low power (4×) and then counted CD8+ cells, FoxP3+ cells, 
FoxP+IL-10+ cells, and FoxP3+TGF-β+ cells in these high-power 
fields (40×). The means of these fields were finally calculated for 
statistical analyses.

Enzyme linked immunosorbent assay

Parts of the tumor tissue samples were frozen at -80°C for later 
procedures. Every 10 mg tissue was incubated with 1.000 mL Ra-
dio Immunoprecipitation Assay (RIPA) lysis buffer (Beyotime, 
Shanghai, China) supplemented with 1 mmol/L phenylmethane-
sulfonyl fluoride (Beyotime, Shanghai, China) and processed using 
the GentleMACS Dissociator in protocol Protein_01 for receiving 
tissue homogenate. Total protein in each sample was measured 
using a BCA protein assay kit (Beyotime, Shanghai, China), and 
cytokines including TGF-β, IL-10, and interferon (IFN)-γ were 
measured using an ELISA kit (Quantikine, R&D Systems, Minne-
apolis, MN 55413 USA) separately. All cytokines were normalized 
to the total protein concentration.

Statistical analysis

Data are shown as mean ± standard deviation. Statistics were per-
formed using IBM SPSS Statistics Version19. Data were analyzed 
using the one-way ANOVA test or rank sum test as appropriate. 
Once the significance among the groups was indicated, the LSD 
method was used for further comparison. A p-value <0.05 was con-
sidered as statistical significance.

Results

Tumor volume variation after TGF-β blockade

Sixteen to nineteen days after implantation, a palpable tumor was 
found on the flank of mice. On the first day of antibody adminis-

tration, the average tumor sizes were 17.5 ± 8.5, 12.1 ± 5.7, and 
12.8 ± 8.5 mm3 in the control, low-dose, and high-dose groups, 
respectively. During TGF-β blockade, the average volume of tu-
mors increased to 28.7 ± 6.5, 20.3 ± 8.2, and 21.5 ± 18.6 mm3 on 
day 4 and 55.1 ± 33.1, 42.7 ± 35.9, and 75.9 ± 61.6 mm3 on day 7. 
No significant difference was found between the TGF-β blockade 
and control groups (p = 0.601, 0.402, and 0.079 on days 1, 4 and 
7; Table 1).

Distribution of T cell subsets in the peripheral blood and spleen

No significant change of T cell subsets was found in the peripheral 
blood or spleen following systemic administration of the TGF-β 
blocking antibody (Fig. 1). In the high-dose, low-dose, and control 
groups, the average proportions of Th were 53.1 ± 4.2%, 54.7 ± 
3.6%, and 54.4 ± 1.8%, respectively; Tregs were 5.64 ± 0.31%, 
5.55 ± 0.22%, and 5.81 ± 0.40%, respectively; and Tc were 31.7 
± 1.8%, 30.3 ± 0.8%, and 31.3 ± 3.1%, respectively in the pe-
ripheral blood (p = 0.728, 0.514, and 0.603, respectively between 
doses). The average proportions of Th cells were 55.5 ± 4.0%, 55.6 
± 2.1%, and 55.4 ± 1.4%, respectively; Tregs were 8.44 ± 1.30%, 
8.99 ± 0.52%, and 9.00 ± 1.17%, respectively; and Tc were 25.2 ± 
1.7%, 27.1 ± 3.1%, and 27.8 ± 2.2%, respectively the in spleen (p 
= 0.990, 0.700, and 0.270, respectively between doses).

Variations in tumor-infiltrating T lymphocytes

We observed that the numbers of tumor-infiltrating lymphocytes 
in the tumor microenvironment were significantly different after 
TGF-β blockade. In the high-dose, low-dose, and control groups, 
the average numbers of tumor-infiltrating FoxP3+ cells were 38.6 
± 8.1, 38.6 ± 1.8, and 74.6 ± 4.9. These numbers were significantly 
lower (p = 0.03 for the high-dose group; p = 0.04 for the low-dose 
group) than the control, but there was no significant between two 
doses (p = 0.90). In all groups, the tumor-infiltrating FoxP3+ cells 
were significantly decreased after TGF-β blockade (p = 0.024, 
one-way ANOVA; Fig. 2a). Additionally, the average number of 
tumor-infiltrating CD8+ cells was significantly different in the 
high-dose (3.1 ± 1.4), low-dose (12.3 ± 2.1), and control (5.4 ± 
0.5) groups (p = 0.016; Fig. 2a). Moreover, the number of Tc cells 
increased in the low-dose group (p = 0.020) and decreased in the 
high-dose group (p = 0.924) compared with control. This differ-
ence requires further investigation.

Cytokine variations in tumor tissues

In the high-dose, low-dose, and control groups, the average con-
centrations of TGF-β1 were 965.2 ± 225.7, 1,774.1 ± 707.7, and 
1,002.3 ± 133.4 pg/mg, respectively; IL-10 was 13.2 ± 3.2, 18.1 ± 
3.0, and 14.4 ± 3.0 pg/mg; and IFN-γ was 21.8 ± 6.2, 28.4 ± 10.5, 
and 15.1 ± 5.6 pg/mg, respectively (Fig. 2b). None of these results 
was statistically significant (p = 0.056, 0.094, and 0.082, respec-
tively between doses). In addition, the cell number per high-power 
field in the immunohistochemistry double staining analysis was 
calculated and is presented in Table 2, as well as in Figure 2c and d.

Discussion

In this study, we tested the hypothesis that administration of 1D11 
could reduce the number and function of Tregs in PDAC by block-

Table 1.  Tumor volume during 1D11 administration (n = 4−6)

Intervention n Day 1 Day 4 Day 7

PBS 4 17.5±8.5 28.7±6.5 55.1±33.1

1D11 50µg 4 12.1±5.7 20.3±8.2 42.7±35.9

1D11 100µg 6 12.8±8.5 21.5±18.6 75.9±61.6

p-value 0.601 0.402 0.079

PBS, phosphate buffer solution.
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Fig. 2. Variations in tumor infiltrating Tregs, Tc and typical cytokines after TGF-β blockade. The tumor infiltrating Tregs decreased significantly after 1D11 
administration while the Tc cells showed the opposite trend (a). The typical functional cytokines of Tregs, such as TGF-β and IL-10, and IFN-γ, were mainly 
produced by CD8+ Tc and did not vary significantly (b). Representative images of double stained slides (c, d). *p < 0.05 where statistics could be calculated.

Fig. 1. T cell subset frequencies in peripheral blood and spleen after TGF-β blockade. The frequencies of CD4+ Th, CD8+ Tc (a), and CD25+CD127low/− Tregs 
(b) gated on the CD3+ gate in peripheral blood and spleen were assessed by flow cytometry. There was no significant change after 1D11 administration (c).
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ing TGF-β blockade. However, the results did not support our hy-
pothesis as we observed that only the tumor-infiltrating Tregs were 
changed significantly. Nor did we observe any significant changes 
in the T cell subset distribution in peripheral blood or spleen or the 
typical functional Treg and Tc cell cytokines in the tumor niche. 
Even in the high-dose antibody group there were no significant 
changes in the number of tumor-infiltrating Tc.

Tumor growth was not inhibited by 1D11 compared with the 
control group in this study; however, this finding was not surpris-
ing. The effects of monoclonal antibodies have been controversial 
in previous cancer studies. Two studies focused on glioma showed 
contrasting results: one identified that 1D11 could only delay the 
progression of tumor after radiotherapy,29 while the other showed 
that a single 1D11 treatment could result in complete remission of 
tumor in immune sufficient mice.30 Some studies indicated that 
TGF-β blockade may induce apoptosis or inhibit resistance to apo-
ptosis.25,31 In the murine models established with different breast 
cancer cell lines, the anti-proliferation and induction of apoptosis 
effect of 1D11 varied considerably;32 thus, we propose that the tu-
mor inhibitive ability of 1D11 is dependent on tumor type, host 
immune status, and experimental design.

Numerous studies have already demonstrated that TGF-β block-
ade could effectively decrease tumor-infiltrating Tregs and inhibit 
cytokine secretion in animal models. In a renal carcinoma model, 
1D11 inhibited the differentiation of Tregs induced by TGF-β.26 
Another murine sarcoma model also revealed that 1D11 admin-
istration after resection of the primary site could significantly 
decrease Tregs in the metastases, reduce serum IL-10 levels, and 
increase metastases-infiltrating Tc cells and serum IFN-γ,23 which 
indicated that TGF-β blockade may confer antitumor immunity 
through inhibiting Tregs. In a murine pancreatic cancer model es-
tablished in the Rag-/- mouse and Panc02 which lack mature T 
cells, 1D11 inhibited FoxP3 expression induced by TGF-β.33 Our 
results only indicated that intratumoral Tregs could be reduced by 
neutralizing TGF-β and that the effect on intratumoral Tc remains 
uncertain. Previous studies reported that 1D11 could elevate the 
amount and activity of CD8+ Tc in tumor niches,24 while there was 
no change in Tc distribution in the spleen.22

Given that the approaches (intravenous or intraperitoneal) and 
doses (from 5 to 5,000 µg/g body weight) of 1D11 has varied 
across studies,27,30,34 it is not surprising that our 1D11 intervention 
had no effect on lymphocyte distribution in the peripheral blood 
and spleen or intratumoral cytokines. However, changes in func-
tional cytokines secreted by T cells after TGF-β blockade remains 
controversial. Several clinical studies showed that cytokines se-
creted by Tregs may only partially change. A study from Sweden 
indicated that Tregs proliferated in gastric cancer mucosa with 
high-levels of IL-10 and only little TGF-β.35 In contrast, a meta-
analysis of 1,407 type 1 diabetes patients and 1,373 healthy con-
trols from 40 case-control studies confirmed that peripheral Tregs 
and serum TGF-β were reduced in the diabetes patients while the 
serum IL-10 levels remained in normal ranges.36 These results sug-
gest that the classical cytokines secreted by a specific T cell subset 

may not always be related to immune regulatory function. Thus, 
our results suggest that TGF-β blockade may alter Treg function in 
a cytokine independent manner in the PDAC model.

Previous studies have also showed that a discrete DC subset 
both expanded Tregs and suppressed Tc to establish an immuno-
suppressive microenvironment conducive to metastasis.37 Given 
similar results in murine glioma model29 as well as other mod-
els,22,38 we propose that neutralization of TGF-β may perform bet-
ter at preventing metastasis compared to treating a primary tumor. 
A recent study reported that TGF-β failed to alter the frequencies 
of MDSCs or DCs in the primary tumor but had an effect in liver 
metastases in a murine model. Expression of programmed death-
ligand 1 in macrophages was also increased by TGF-β in another 
experiment, which indicates that TGF-β plays a suppressive role 
in the microenvironment of PDAC.39 Furthermore, combination 
of adoptive and innate immunotherapy showed a promise in tumor 
treatments.40 We also attempted to neutralize TGF-β and block 
CD25, and found that this combination therapy was beneficial. 
The Treg frequency in the blood, spleen, and tumor decreased with 
this approach and tumor growth was also significantly suppressed. 
This effect has been shown to be further enhanced with an anti-
PD-1 antibody.41 In addition, since the stromal plays a relatively 
important role in PDAC, and TGF-β plays an important role in 
tumor angiogenesis, cell apoptosis, collagen synthesis, and stromal 
cell differentiation, more attention should be given to these non-
immune related aspects to comprehensively evaluate the effect of 
TGF-β blockade in PDAC.42 Moreover, a recent report revealed 
that the tumor-promoting function of TGF-β was induced by 
MUC1 overexpression.43 As MUC1 is not expressed in the Panc02 
cell line, the function of TGF-β requires further investigation in 
this model.

Several limitations in our work should be mentioned. Since this 
was a preclinical study and the sample volume was quite small, 
some conclusions need to be further confirmed. We also failed to 
be able to conduct statistical analysis for our double staining to 
confirm the functional cytokines secreted by Tregs and Tc because 
only few double-stained cells could be found, however, with ad-
vancements in flow cytometry, we can more effectively assay these 
cytokines in the future.

In conclusion, our study elucidated that tumor-infiltrating Tregs 
could be suppressed by TGF-β blockade using a monoclonal anti-
body in a murine PDAC model. However, TGF-β blockade mono-
therapy may create limited therapeutic efficacy in PDAC patients, 
so further combination therapies should be investigated.
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