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Abstract

Background and objectives: Regulatory T cells (Tregs) are a vital cell subset that induces immune tolerance in
the tumor microenvironment by secreting suppressive cytokines and inhibiting innate immune cells. Transform-
ing growth factor-beta (TGF-B) plays an important role in this process. However, the effect of TGF-B blockade on
intratumoral Tregs and its specific biological role remains unclear.

Methods: Quantitative and functional changes in Tregs were evaluated after TGF-f blockade with gradient doses
of monoclonal antibody 1D11 in a murine pancreatic ductal adenocarcinoma model.

Results: The number of tumor infiltrating Tregs decreased significantly (high dose, low dose and control, 38.6
+ 8.1, 38.6 + 1.8, 74.6 £ 4.9 /40x field, p = 0.024) after 1D11 administration, while CD8* T cells in the tumor
microenvironment significantly increased in the low dose group but reversed in the high dose group (3.1 + 1.4,
12.3+2.1,5.4 £+ 0.5 /40x field, p = 0.016). The frequency of CD4*, CD8* or Treg cells in the peripheral blood and
spleen showed no significant change. The typical cytokines TGF-B and inerleukin-10 secreted by Tregs as well as
interferon-y produced by cytotoxic T cells in tumor tissues did not change compared with the controls.

Conclusions: TGF-B blockade with a monoclonal antibody can reduce Tregs in the tumor niche, however, its

therapeutic efficacy in PDAC patients remains limited. Further investigation of combination therapies is re-
quired.
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Pancreatic ductal adenocarcinoma (PDAC) has the worst progno-
sis among digestive malignancies. Thus, there is an urgent need to
discover new effective treatments. With the increasing incidence
of PDAC, the 5-year survival is less than 6% in Shanghai and 10%
in the US."? Although surgery is the only treatment to potentially
cure PDAC,? survival can be improved by neoadjuvant/adjuvant
therapy since only less than one-fifth of PDAC patients is eligible
to receive surgery.*-¢

In the last 20 years, immunotherapy has readily gone from
the bench to bedside. Various strategies, including monoclonal
antibodies, kinase inhibitors, and immune checkpoint therapies,
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have been widely applied and shown to have relatively satisfy-
ing outcomes. Treatments focusing on the tumor niche and anti-
tumor immunity were considered the most hopeful therapies to
improve PDAC prognosis.” However, regardless which immune
treatment is administrated, the effect is limited by the immunosup-
pressive microenvironment of PDAC. Regulatory T cells (Tregs)
can induce immune tolerance in the tumor niche through contact-
dependent (such as inhibiting the maturation of effector T cells
and suppressing cytotoxic T cells (Tc) and contact independent
(such as secreting immunosuppressive cytokines and combining
interleukin-2) approaches.® Therefore, Tregs play a vital role in the
escape, metastasis, and invasion of PDAC. In contrast, Tc is the
representative of antitumor immunity which can be induced by tu-
mor cells. We have previously reported on Treg and Tc distribution
in PDAC and their relationships with survival in postoperative pa-
tients. Our work indicated that higher intratumoral Tregs and lower
peritumoral Tc were both related to worse prognosis of PDAC,’
consistent with other studies.!%!!

Transforming growth factor-f (TGF-B) is a multifunctional
polypeptide with three isotypes in mammals that also suppress
antitumor immunity in the tumor microenvironment.!> TGF-B can
induce naive T cells to differentiate into Tregs, which is secreted
from various cells such as tumor cells, myeloid derived suppres-
sor cells (MDSCs), dendrite cells (DCs), and macrophages.'3-15
On the other hand, TGF-f is an important suppressive functional
molecule in Treg-mediated immune regulation.!®-1® In addition,
deletion of Smad4/DPC4 is a very common mutation in high grade
pancreatic intraepithelial neoplasm and carcinoma cells, which can
break the negative feedback of TGF-f on epithelial cell prolifera-
tion.! In preclinical studies, silencing TGF-B gene expression or
blocking its function with antibodies has been shown to effectively
reduce intratumoral Tregs.2? Thus, neutralizing TGF-p may be an
effective treatment for PDAC.

1D11 is a murine originated monoclonal antibody that can rec-
ognize and neutralize all three isotypes of TGF-B.2! 1D11 has al-
ready been widely used in preclinical studies for breast cancer,??
glioma,?*?* and kidney cancer.?* Some studies indicated that 1D11
could decrease tumor-infiltrating Tregs?S and inhibit CD4"CD25~
T cells from differentiating into CD4*CD25" Tregs.? Furthermore,
11D1 increased the amount and cytotoxic activity of tumor infil-
trating Tc by promoting secretion of granzyme B and perforin.?>?’

We previously collected five PDAC tissue samples and ana-
lyzed them using an Agilent whole genome expression array.
The results showed that both CD25 and TGF-p expression were
upregulated and CD8 expression was downregulated (data not
published). Therefore, we hypothesized that Tregs and TGF-f are
increased in the tumor microenvironment, following inhibition
of CD8" Tc cells. In this study, we blocked TGF-f signaling with
IDI11 and evaluate the effect in a murine PDAC model. Specifi-
cally, we analyzed changes in tumor volume, frequencies of T cell
subsets in the peripheral blood, spleen and tumor tissues, and in-
tratumoral cytokines.

Materials and methods
Animals and cell line

Six- to eight-week old female C57BL/6 mice were purchased from
the SLAC laboratory animal (Shanghai, China) and kept under
barrier condition in the Department of Laboratory Animal Science,
Fudan University. All protocols were approved by the animal ex-
periment ethics board of Fudan University (Supplementary File 1).
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The murine PDAC cell line Panc02 was a kind gift from Johns
Hopkins Hospital, USA. The cells were cultured in RPMI-1640
(Gibco, Carlsbad, CA, USA) supplemented with 10% FBS (Gibco,
Australia) and 1% penicillin/streptomycin (Gibco, Carlsbad, CA,
USA), and incubated at 37°C and 5% CO,.

Tumor implantation, TGF-f blockade, and sample harvest

Before the experiment, the mice had one week to acclimate to the
laboratory environment. To establish the murine PDAC model,
Panc02 cells were suspended in serum-free RPMI at the concen-
tration of 1 x 109 /0.1 mL and then subcutaneously injected in the
right flank of the mice. Palpable tumors typically formed two to
three weeks after inoculation. Eighteen mice were randomly di-
vided into three groups as follows: high dose group (100 pg/dose),
low dose group (50 pg/dose), and control group (PBS, phosphate
buffer solution). Mice with ulcer on the tumor were precluded be-
cause of the possible influence on immunity.

The anti-TGF- antibody (Clone: 1D11, R&D System, Minne-
apolis, MN, USA) was diluted with sterilized PBS into 50 pg /0.1
mL and 25 pg /0.1 mL, and PBS alone was administrated as con-
trol. Mice in each group were injected with 0.2 mL 1D11 or PBS
intraperitoneally every three days, for a total of three times. Before
injection, the long (a) and short (b) diameters of the tumors were
measured with electronic caliper and the volume was calculated
as a x b%/2.

Within 24—48 hours after the final administration, mice were
anaesthetized with 1% pentobarbital and tumor volumes were meas-
ured. Blood samples were collected via orbital extraction and anti-
coagulated with EDTA. Tumor tissues were resected under sterile
conditions and laparotomy was performed to harvest the spleen.

Flow cytometry

Erythrocytes in the blood samples were lysed with 1x ammonium
chloride lysis buffer. The spleen was processed using the Gen-
tleMACS Dissociator (Miltenyi Biotec, Bergisch Gladbach, Ger-
many) in protocol m_spleen_02 to obtain single cell suspensions.
All cell suspensions were washed and resuspended with stain buffer
at about 1-5 x 107 cells/mL. In this panel, fluorescence combined
antibodies included FITC CD3 Molecular Complex (561798), PE-
Cy7 CD8a (552877), PerCP-Cy5.5 CD4 (550954), APC CD25
(557192), PE CD127 (552543). All antibodies were from BD (San
Jose, CA, USA). After incubation for 20 m at room temperature,
the samples were washed and analyzed using a BD FACS Aria II
flow cytometer. OneComp eBeads™ (eBioscience, Carlsbad, CA,
USA) were applied to calculate compensation. Lymphocytes were
gated with FSCxSSC characters and T cells were further gated as
CD3+ cells. Under the T cell gate, the proportions of CD4+ T help-
er (Th) cells, CD4+CD25+CD127low/— Tregs, and CD8+ Tc were
also recorded. All analyses were performed using FlowJo v10.0.7
(Tree Star, Inc., USA).

Immunohistochemistry

Tumor tissues were dissected into pieces for different analyses.
Samples were fixed with neutral formaldehyde for at least 24 h and
embedded in paraffin. Tissues were sectioned at 5 pm thickness
and deparaftinated in gradient ethanol. Antigen retrieval was per-
formed with EDTA retrieving solution and endogenous peroxidase
was inactivated with 3% H,0,. Two primary antibody pairs were
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Table 1. Tumor volume during 1D11 administration (n = 4-6)

Intervention n Day 1 Day 4 Day 7
PBS 4 17.548.5 28.7+6.5 55.1+33.1
1D11 50ug 4 12.145.7 20.3+8.2 42.7+35.9
1D11 100pg 6 12.848.5 21.5+18.6 75.9+61.6
p-value 0.601 0.402 0.079

PBS, phosphate buffer solution.

applied separately: rabbit anti-mouse FoxP3 (MABS8214, R&D
Systems, 1:125, Minneapolis, MN, USA) was mixed with mouse
anti-mouse TGF-f (MAB1835, R&D Systems, 1:50, Minneapolis,
MN, USA) or rat anti-mouse interleukin (IL) -10 (ab189392, Ab-
cam, 1:100, Cambridge, MA, USA), while rat anti-mouse CD8a
(14-0808, eBioscience, 1:100, Carlsbad, CA, USA) was stained
alone. The double staining was processed using the MultiVision™
Polymer Detection System (TL-012-MHRA, Thermo Scientific)
following the manufacturer’s instructions. The rabbit originated
primary antibody stained blue and the mouse/rat originated pri-
mary antibody stained red. Finally, slides were counterstained with
hematoxylin and mounted with Clearmount™ as previously pub-
lication.?® Since the density of different lymphocyte subsets varies
across slides, we chose the 4-5 fields with the highest cell density
under low power (4x) and then counted CD8+ cells, FoxP3+ cells,
FoxP+IL-10+ cells, and FoxP3+TGF-f+ cells in these high-power
fields (40%). The means of these fields were finally calculated for
statistical analyses.

Enzyme linked immunosorbent assay

Parts of the tumor tissue samples were frozen at -80°C for later
procedures. Every 10 mg tissue was incubated with 1.000 mL Ra-
dio Immunoprecipitation Assay (RIPA) lysis buffer (Beyotime,
Shanghai, China) supplemented with 1 mmol/L phenylmethane-
sulfonyl fluoride (Beyotime, Shanghai, China) and processed using
the GentleMACS Dissociator in protocol Protein 01 for receiving
tissue homogenate. Total protein in each sample was measured
using a BCA protein assay kit (Beyotime, Shanghai, China), and
cytokines including TGF-f, IL-10, and interferon (IFN)-y were
measured using an ELISA kit (Quantikine, R&D Systems, Minne-
apolis, MN 55413 USA) separately. All cytokines were normalized
to the total protein concentration.

Statistical analysis

Data are shown as mean + standard deviation. Statistics were per-
formed using IBM SPSS Statistics Version19. Data were analyzed
using the one-way ANOVA test or rank sum test as appropriate.
Once the significance among the groups was indicated, the LSD
method was used for further comparison. A p-value <0.05 was con-
sidered as statistical significance.

Results
Tumor volume variation after TGF-f blockade

Sixteen to nineteen days after implantation, a palpable tumor was
found on the flank of mice. On the first day of antibody adminis-
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tration, the average tumor sizes were 17.5 £ 8.5, 12.1 £ 5.7, and
12.8 + 8.5 mm? in the control, low-dose, and high-dose groups,
respectively. During TGF- blockade, the average volume of tu-
mors increased to 28.7 = 6.5, 20.3 + 8.2, and 21.5 = 18.6 mm? on
day 4 and 55.1 £33.1,42.7 + 35.9, and 75.9 + 61.6 mm? on day 7.
No significant difference was found between the TGF-f blockade
and control groups (p = 0.601, 0.402, and 0.079 on days 1, 4 and
7; Table 1).

Distribution of T cell subsets in the peripheral blood and spleen

No significant change of T cell subsets was found in the peripheral
blood or spleen following systemic administration of the TGF-f
blocking antibody (Fig. 1). In the high-dose, low-dose, and control
groups, the average proportions of Th were 53.1 + 4.2%, 54.7 +
3.6%, and 54.4 £ 1.8%, respectively; Tregs were 5.64 + 0.31%,
5.55 £ 0.22%, and 5.81 + 0.40%, respectively; and Tc were 31.7
+ 1.8%, 30.3 £ 0.8%, and 31.3 £ 3.1%, respectively in the pe-
ripheral blood (p = 0.728, 0.514, and 0.603, respectively between
doses). The average proportions of Th cells were 55.5 +4.0%, 55.6
+2.1%, and 55.4 + 1.4%, respectively; Tregs were 8.44 + 1.30%,
8.99 + 0.52%, and 9.00 + 1.17%, respectively; and Tc were 25.2 +
1.7%, 27.1 £ 3.1%, and 27.8 + 2.2%, respectively the in spleen (p
=10.990, 0.700, and 0.270, respectively between doses).

Variations in tumor-infiltrating T lymphocytes

We observed that the numbers of tumor-infiltrating lymphocytes
in the tumor microenvironment were significantly different after
TGF-p blockade. In the high-dose, low-dose, and control groups,
the average numbers of tumor-infiltrating FoxP3* cells were 38.6
+8.1,38.6 = 1.8, and 74.6 = 4.9. These numbers were significantly
lower (p = 0.03 for the high-dose group; p = 0.04 for the low-dose
group) than the control, but there was no significant between two
doses (p = 0.90). In all groups, the tumor-infiltrating FoxP3* cells
were significantly decreased after TGF-B blockade (p = 0.024,
one-way ANOVA; Fig. 2a). Additionally, the average number of
tumor-infiltrating CD8" cells was significantly different in the
high-dose (3.1 + 1.4), low-dose (12.3 £ 2.1), and control (5.4 +
0.5) groups (p = 0.016; Fig. 2a). Moreover, the number of Tc cells
increased in the low-dose group (p = 0.020) and decreased in the
high-dose group (p = 0.924) compared with control. This differ-
ence requires further investigation.

Cytokine variations in tumor tissues

In the high-dose, low-dose, and control groups, the average con-
centrations of TGF-B1 were 965.2 + 225.7, 1,774.1 + 707.7, and
1,002.3 + 133.4 pg/mg, respectively; IL-10 was 13.2 + 3.2, 18.1
3.0, and 14.4 + 3.0 pg/mg; and IFN-y was 21.8 + 6.2, 28.4 + 10.5,
and 15.1 £ 5.6 pg/mg, respectively (Fig. 2b). None of these results
was statistically significant (p = 0.056, 0.094, and 0.082, respec-
tively between doses). In addition, the cell number per high-power
field in the immunohistochemistry double staining analysis was
calculated and is presented in Table 2, as well as in Figure 2¢ and d.

Discussion

In this study, we tested the hypothesis that administration of 1D11
could reduce the number and function of Tregs in PDAC by block-
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Fig. 1. T cell subset frequencies in peripheral blood and spleen after TGF-B blockade. The frequencies of CD4* Th, CD8* Tc (a), and CD25*CD127'°%/~ Tregs
(b) gated on the CD3* gate in peripheral blood and spleen were assessed by flow cytometry. There was no significant change after 1D11 administration (c).
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Fig. 2. Variations in tumor infiltrating Tregs, Tc and typical cytokines after TGF-B blockade. The tumor infiltrating Tregs decreased significantly after 1D11
administration while the Tc cells showed the opposite trend (a). The typical functional cytokines of Tregs, such as TGF-B and IL-10, and IFN-y, were mainly
produced by CD8* Tc and did not vary significantly (b). Representative images of double stained slides (c, d). *p < 0.05 where statistics could be calculated.

28

DOI: 10.14218/CSP.2022.00001 | Volume 1 Issue 1, December 2022


https://doi.org/10.14218/CSP.2022.00001

Zhao G.C. et al: TGF- blockade in pancreatic adenocarcinoma

Table 2. FoxP3 and TGF-B/IL-10 double stained by IHC (n = 4)
Intervention IL-10* FoxP3*IL-10* TGF-B* FoxP3*TGF-B*

PBS 29 09 7.0 0.7
50pug1D11 23 08 35 0.0
100 pg 1011 4.6 0.4 3.2 0.2

IHC, immunohistochemistry; PBS, phosphate buffer solution; TGF-B. transforming
growth factor-B; IL-10, interleukin-10.

ing TGF-f blockade. However, the results did not support our hy-
pothesis as we observed that only the tumor-infiltrating Tregs were
changed significantly. Nor did we observe any significant changes
in the T cell subset distribution in peripheral blood or spleen or the
typical functional Treg and Tc cell cytokines in the tumor niche.
Even in the high-dose antibody group there were no significant
changes in the number of tumor-infiltrating Tc.

Tumor growth was not inhibited by 1D11 compared with the
control group in this study; however, this finding was not surpris-
ing. The effects of monoclonal antibodies have been controversial
in previous cancer studies. Two studies focused on glioma showed
contrasting results: one identified that 1D11 could only delay the
progression of tumor after radiotherapy,? while the other showed
that a single 1D11 treatment could result in complete remission of
tumor in immune sufficient mice.?* Some studies indicated that
TGF-p blockade may induce apoptosis or inhibit resistance to apo-
ptosis.?53! In the murine models established with different breast
cancer cell lines, the anti-proliferation and induction of apoptosis
effect of 1D11 varied considerably;3* thus, we propose that the tu-
mor inhibitive ability of 1D11 is dependent on tumor type, host
immune status, and experimental design.

Numerous studies have already demonstrated that TGF-f block-
ade could effectively decrease tumor-infiltrating Tregs and inhibit
cytokine secretion in animal models. In a renal carcinoma model,
ID11 inhibited the differentiation of Tregs induced by TGF-p.2¢
Another murine sarcoma model also revealed that 1D11 admin-
istration after resection of the primary site could significantly
decrease Tregs in the metastases, reduce serum IL-10 levels, and
increase metastases-infiltrating Tc cells and serum IFN-y,2* which
indicated that TGF-B blockade may confer antitumor immunity
through inhibiting Tregs. In a murine pancreatic cancer model es-
tablished in the Rag-/- mouse and Panc02 which lack mature T
cells, 1D11 inhibited FoxP3 expression induced by TGF-B.33 Our
results only indicated that intratumoral Tregs could be reduced by
neutralizing TGF-f and that the effect on intratumoral Tc remains
uncertain. Previous studies reported that 1D11 could elevate the
amount and activity of CD8" Tc in tumor niches,** while there was
no change in Tc distribution in the spleen.??

Given that the approaches (intravenous or intraperitoneal) and
doses (from 5 to 5,000 pg/g body weight) of 1DI11 has varied
across studies,?”3034 it is not surprising that our 1D11 intervention
had no effect on lymphocyte distribution in the peripheral blood
and spleen or intratumoral cytokines. However, changes in func-
tional cytokines secreted by T cells after TGF-f§ blockade remains
controversial. Several clinical studies showed that cytokines se-
creted by Tregs may only partially change. A study from Sweden
indicated that Tregs proliferated in gastric cancer mucosa with
high-levels of IL-10 and only little TGF-B.35 In contrast, a meta-
analysis of 1,407 type 1 diabetes patients and 1,373 healthy con-
trols from 40 case-control studies confirmed that peripheral Tregs
and serum TGF-f were reduced in the diabetes patients while the
serum IL-10 levels remained in normal ranges.>® These results sug-
gest that the classical cytokines secreted by a specific T cell subset
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may not always be related to immune regulatory function. Thus,
our results suggest that TGF-p blockade may alter Treg function in
a cytokine independent manner in the PDAC model.

Previous studies have also showed that a discrete DC subset
both expanded Tregs and suppressed Tc to establish an immuno-
suppressive microenvironment conducive to metastasis.’’ Given
similar results in murine glioma model?® as well as other mod-
els,?238 we propose that neutralization of TGF- may perform bet-
ter at preventing metastasis compared to treating a primary tumor.
A recent study reported that TGF-f failed to alter the frequencies
of MDSCs or DCs in the primary tumor but had an effect in liver
metastases in a murine model. Expression of programmed death-
ligand 1 in macrophages was also increased by TGF-f in another
experiment, which indicates that TGF-B plays a suppressive role
in the microenvironment of PDAC.3® Furthermore, combination
of adoptive and innate immunotherapy showed a promise in tumor
treatments.*” We also attempted to neutralize TGF-B and block
CD25, and found that this combination therapy was beneficial.
The Treg frequency in the blood, spleen, and tumor decreased with
this approach and tumor growth was also significantly suppressed.
This effect has been shown to be further enhanced with an anti-
PD-1 antibody.*! In addition, since the stromal plays a relatively
important role in PDAC, and TGF- plays an important role in
tumor angiogenesis, cell apoptosis, collagen synthesis, and stromal
cell differentiation, more attention should be given to these non-
immune related aspects to comprehensively evaluate the effect of
TGF-B blockade in PDAC.*? Moreover, a recent report revealed
that the tumor-promoting function of TGF-f was induced by
MUCI overexpression.*> As MUCI is not expressed in the Panc02
cell line, the function of TGF-f requires further investigation in
this model.

Several limitations in our work should be mentioned. Since this
was a preclinical study and the sample volume was quite small,
some conclusions need to be further confirmed. We also failed to
be able to conduct statistical analysis for our double staining to
confirm the functional cytokines secreted by Tregs and Tc because
only few double-stained cells could be found, however, with ad-
vancements in flow cytometry, we can more effectively assay these
cytokines in the future.

In conclusion, our study elucidated that tumor-infiltrating Tregs
could be suppressed by TGF-f blockade using a monoclonal anti-
body in a murine PDAC model. However, TGF-f blockade mono-
therapy may create limited therapeutic efficacy in PDAC patients,
so further combination therapies should be investigated.
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