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Introduction

MicroRNAs (miRNAs) are small noncoding RNAs that are typi-
cally 22 nucleotides in length.1 miRNAs have been found to regu-

late approximately 30% of genes in humans at the post-transcrip-
tional level.2 In recent years, miRNA expression has been shown 
to correlate to diseases, most notably cancers.3 An example of an 
miRNA that has been correlated with tumor suppression and can-
cer inhibition is the miRNA precursor lethal-7 (let-7).4 As such, 
miRNAs are now being studied as promising biomarkers for vari-
ous cancers including pancreatic cancer.5

There has been a lot of computational research surrounding 
miRNA–disease association prediction. For example, Shi and 
co-workers have proposed a calculation method for miRNA– 
disease relationship prediction based on random walk analysis.6 
This model uses the connection between miRNAs and disease 
genes in protein–protein interaction (PPI) networks to predict 
potential miRNA–disease associations. In addition, Chen and co-
authors have proposed a bipartite network projection model for 
predicting potential associations between miRNAs and disease 
(BNPMDA) using miRNA functional similarity, disease semantic 
similarity, and the known human miRNA–disease associations.7 
This model constructs bias ratings between diseases and miRNAs 
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using miRNA function similarity and disease semantic similar-
ity. Then, the bipartite network recommendation algorithm is ap-
plied to predict miRNA–disease association. Moreover, You and 
colleagues have proposed an miRNA–disease association predic-
tion model called a path-based miRNA–disease association (PB-
MDA).8 This model implements a personalized recommendation 
algorithm that recommends potential miRNA–disease pairs based 
on information of related miRNAs and diseases. Ji and co-authors 
also have proposed a network embedding-based heterogeneous in-
formation integration method to predict the potential associations 
between miRNA and disease.9 This model first used a heteroge-
neous information network constructed using known associations 
between drugs, miRNA, protein, lncRNA, and disease and then 
applied the graph-representations (GraRep) method to learn and 
predict potential miRNA–disease associations.

Using the previously obtained results in miRNA–disease rela-
tion prediction, a set of databases of miRNA–disease relationships 
was created during the past several years. We conducted the next 
step—we used these databases to construct a set of descriptors for 
machine-learning diagnostics using miRNA. In our study, a novel 
miRNA descriptor system was proposed to predict potential asso-
ciations between miRNAs and diseases. Based on our hypothesis 
that miRNA–disease association can be elucidated using sequence 
information of miRNAs and genes targeted by miRNA, we con-
structed our miRNA descriptor system using numerical sequence 
information of miRNAs and target genes.

Methods

Classification model

To show the effectiveness of our miRNA descriptor system, we con-
structed a classification model using known associations of miR-

NAs with various cancers. We illustrated the concept of the system 
in more detail using a pancreatic cancer model as an example. From 
the miRNA cancer association database miRCancer,10 we extracted 
107 miRNAs that are associated with breast cancer, and from the 
miRNA database miRBase,11 we extracted 107 random miRNAs 
as training/testing data. The model was then constructed based on 
miRNA descriptors created using the training/testing data. Figure 1 
shows the flowchart of our method. The model was then evaluated 
using the Random Forest machine-learning algorithm. The results 
reveal that our method performed with a high accuracy of 86.9%.

Developing the miRNA descriptor system

We developed a system of miRNA descriptors taking in consid-
eration the known miRNA–cancer associations and miRNA tar-
get predictions (Fig. 2). The system was tested based on pancre-
atic cancer as an example as follows. A list of miRNAs that are 
known to be associated with pancreatic cancer was downloaded 
from the miRCancer10 database, and miRNA target predictions 
were downloaded from the miRNA target prediction database 
miRDB.12 A list of all known miRNAs was also downloaded 
from miRBase.11 To extract the sequence information of the miR-
NAs that are associated with pancreatic cancer, a Python script 
was written to find the pancreatic cancer-associated miRNAs 
(name) in the miRDB and to extract the corresponding miRNA 
sequence. In total, 152 miRNA sequences (associated with pan-
creatic cancer) were extracted in this manner. An additional 152 
human miRNA sequences with no known association to pancre-
atic cancer were randomly selected from miRBase, for a total of 
304 miRNA sequences. The 152 miRNA sequences with a known 
association to pancreatic cancer were assigned “associated” la-
bels and the 152 randomly selected miRNA sequences were as-
signed “non-associated” labels to create two categories for clas-
sification. These miRNA sequences were later used as inputs to 

Fig. 1. Flowchart of the method. Fig. 2. miRNA descriptors based on target genes. 
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create the miRNA descriptors.
Another Python program was developed to automatically extract 

the miRNA descriptors based on the miRNA sequences (associated 
with pancreatic cancer) as the input. One part of the miRNA de-
scriptors consisted of numerical miRNA sequence information. The 
miRNA sequence information used in this study is more complete 
and comprehensive compared to previous studies.12 The miRNA 
descriptors based on the sequence information consisted of the 
number of base pairs, the assigned number of each base pair, the 
frequency of each base pair, the mean mass of each base pair, the 
number of hydrogen bonds, the symmetry of the miRNA sequence, 
the motifs within the entire miRNA sequence (2, 3, 4 base pair mo-
tifs), and the motifs within the first five base pairs and within the 
last five base pairs. Each motif was a distinct descriptor and was 
assigned a score of “1” if the miRNA sequence had the motif and a 
score of “0” if it did not have the motif. Table 1 includes the names 
and formulas/descriptions for each of the numerical descriptors 
based on miRNA sequence information. In total, there were 996 
miRNA descriptors based on the sequence information.

The other part of the miRNA descriptor set was based on miRNA 
target genes from the miRDB database.12 These miRNA target genes 
were included as descriptors because we hypothesized that miRNAs 
that are associated with the same disease will share similar targets 
as well.13 For this study, a target score threshold of 99 was used to 
make sure the miRNA and selected target genes were strongly cor-
related. A Python program was developed to automatically find all 
target genes with a target score of 99 or more for all miRNAs. Then, 
the program created a new descriptor for each unique gene selected. 
A target gene descriptor was assigned a score of “1” if the miRNA 
sequence had a target score of 99 or more with that target gene and a 
score of “0” otherwise. Figure 2 shows how the miRNA target gene 
descriptors were created. In this study, a total of 6,436 target gene 
descriptors were created from the 304 miRNA sequences.

The miRNA descriptor system was developed to take a list of 
miRNAs as the input and to issue a table with the sequence infor-
mation and target gene descriptors for each miRNA as the output. 

This system could be applied to any disease with known miRNA–
disease associations.

Machine learning

We describe the system performance based on pancreatic cancer as 
an example. The 6,436 target gene-based descriptors and the 996 
numerical miRNA sequence-based descriptors from the 304 miRNA 
sequences were combined to create a single miRNA descriptor table 
with 304 miRNA sequences (rows) and 7,432 descriptors (columns). 
An additional column was added to the descriptor table to label the 
two classes of data for classification. The 304 miRNAs that are as-
sociated with pancreatic cancer were given the class of “associated” 
while the 304 randomly selected miRNAs were given the class of 
“non-associated.” The descriptor table was then used as the input 
for multiple machine-learning classification algorithms. Out of all 
of the classification algorithms, Random Forest14 with an 80%/20%  
training–testing split had the highest classification accuracy.

We first used Random Forest with an 80%/20% training-testing 
split to evaluate the performance of the model before any feature 
selection was done. An 80%/20% training-testing split ensures that 
there is no overfitting as 20% of the data is not used to build the 
model but is used for testing. Then, the InfoGainAttributeEval15 
algorithm was used to determine which descriptors contribute the 
most to information gain during classification. The descriptors that 
have no contribution to information gain were removed, thus leaving 
a list of descriptors that have a positive contribution to classification, 
ordered from the greatest contribution to the least contribution.

The reduced table of descriptors then went through more precise 
feature selection. A script removed descriptors one by one starting 
from the descriptors with the least information gain contribution, 
evaluated the performance of the model using Random Forest, and 
kept the deletion if the classification accuracy increased. Overall, 
the number of descriptors for our 304 miRNA sequences was re-
duced from 7,432 to 3,648 descriptors.

Table 1.  miRNA descriptors based on the sequences

Name of descriptor Description/Formula

Number of base pairs N

Number of each base pair xA, xU, xC, xG

Frequency of each base pair xA/N, xU/N, xC/N, xG/N

Mean mass of each base pair (135.1(xA) + 112.1xU) + 111.1(xC) + 151.1(xG))/N

Number of hydrogen bonds 2(xA + xU) + 3(xC + xG)

Symmetry score If the first base pair is the same as the last base pair, add 1 to the symmetry score. 
If the second base pair is the same as the second-to-last base pair, add 1 to the 
symmetry score. Repeat until the middle of the miRNA (N/2 term) is reached.

2-base-pair motifs (i.e., AA, AU, 
AC) of the entire sequence

Each motif is a separate descriptor. If the miRNA has the motif, 
a “1” is assigned. Otherwise, a “0” is assigned.

3-base-pair motifs (i.e., AAA, AAU, 
AAC) of the entire sequence

Each motif is a separate descriptor. If the miRNA has the motif, 
a “1” is assigned. Otherwise, a “0” is assigned.

4-base-pair motifs (i.e., AAAA, 
AAAU) of the entire sequence

Each motif is a separate descriptor. If the miRNA has the motif, 
a “1” is assigned. Otherwise, a “0” is assigned.

Motifs (2-, 3-, 4-base pair) 
within the first 5 base pairs

Each motif is a separate descriptor. If the 5 first base pairs of the miRNA 
contains the motif, a “1” is assigned. Otherwise, a “0” is assigned.

Motifs (2-, 3-, 4-base pair) 
within the last 5 base pairs

Each motif is a separate descriptor. If the 5 first base pairs of the miRNA 
contains the motif, a “1” is assigned. Otherwise, a “0” is assigned.

https://doi.org/10.14218/CSP.2021.00001
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Table 2.  Performance comparison of the different classifiers for the developed machine-learning models

Classifier ACC PREC MCC TPR FPR AUC PRC area

LMT 81.97% 82.1% 80.4% 82.0% 18.5% 85.9% 84.9%

SVM 81.97% 82.1% 64.0% 82.0% 17.9% 82.1% 76.4%

Naїve Bayes 80.26% 82.6% 63.0% 80.3% 18.4% 84.9% 83.0%

Random Forest 86.88% 87.1% 73.9% 86.9% 12.8% 86.4% 86.1%

LMT, Logistic Model Tree; SVM, Support Vector Machine; ACC, accuracy; PREC, precision; MCC, Matthews correlation coefficient; TPR, true-positive rate; FPR, false-positive rate; 
AUC, area under the receiver-operating characteristic curve; PRC area, area under the precision-recall curve.

Results

The results of the proposed classification were evaluated using con-
fusion matrices and their derivatives: the accuracy (ACC), precision 
(PREC), Matthews correlation coefficient (MCC), true-positive rate 
(TPR) or recall (REC), false-positive rate (FPR), as well as the area 
under the receiver-operating characteristic (ROC) curve (AUC), and 
the area under the precision-recall curve (PRC area). Comparison 
of different classifiers results (pancreatic cancer) is presented in Ta-
ble 2. The best weighted averages for each of these metrics were as 
follows: ACC, 86.9%; PREC, 87.1%; MCC, 73.9%; TPR (REC), 
86.9%; FPR, 12.8%; AUC, 86.4%; and PRC area, 86.1%.

The ROC curve compares the sensitivity and specificity across 
a range of values. Thus, the vertical axis is the TPR, that is, the 
sensitivity or recall; and the horizontal axis is the FPR or (1−speci-
ficity). The FPR is the probability of falsely classifying a posi-
tive class. The best performance showed the model based on the 
Random Forest classifier. The model’s low FPR of 12.8% demon-
strates a low probability of wrongly classifying an miRNA–breast 
cancer pair that is associated. The TPR (sensitivity) is the prob-
ability of correctly classifying a positive class. The model’s high 
TPR of 86.9% indicates a high probability of correctly classifying 
an miRNA–breast cancer pair that is associated. The large average 
AUC value of 86.4% indicates that the Random Forest classifier 
is very robust. Another way to evaluate the performance of the 
proposed method is the PRC area, which shows precision values 
for the corresponding sensitivity (recall, i.e., TPR) values. The 
model’s large PRC area value of 86.1% once again shows the good 
performance of our method.

Performance comparison of the different classifiers for the de-
veloped machine-learning models

To further test the significance of the classifier on our model, we 
compared the performance of the four classifiers Random For-

est,14 Naїve Bayes,16 Logistic Model Tree,17 and Support Vector 
Machine18 using the 80%/20% training–testing split. In the com-
parison, the environment and training/testing set were kept the 
same and only the classifier engine was changed. Additionally, the 
same statistic metrics of ACC, PREC, MCC, TPR (REC), FPR, 
AUC, and PRC area were used. Table 3 shows the comparison of 
the performance of all of the classifiers. The comparisons show 
that the Random Forest classifier had a better performance, ro-
bustness, accuracy, and sensitivity than the other classifiers for 
our system.

miRNA-based diagnostics of various cancers

To prove the robustness of our system of descriptors for miRNA–
disease prediction, we conducted case studies using pancreatic 
cancer, lung cancer, and breast cancer. Previously, we tested our 
method on pancreatic cancer using target gene descriptors based 
on target gene prediction scores of 99 or higher. To explore wheth-
er the number of parameters (descriptors) has a significant impact 
on the prediction performance (statistic metrics), we conducted 
each case study using two different target gene prediction thresh-
olds, 90 and 99. Each case study was conducted using Random 
Forest with an 80%/20% training-testing data split, and we evalu-
ated the models using the same statistic metrics of ACC, PREC, 
MCC, TPR (REC), FPR, AUC, and PRC area. Additionally, the 
same method was used to create the miRNA target gene-based 
descriptors and to perform feature selection on each study. Table 
3 shows the average prediction statistic metrics of performance 
for each case study.

The results show that the accuracies of the case studies are both 
consistent and high, ranging from 85.1% to 88.5%, proving the 
robustness of the method for miRNA–disease association predic-
tion. Additionally, the prediction accuracies are consistently high 
for both a target gene prediction threshold of 99 and a target gene 
prediction threshold of 90 for each case study, showing that the 

Table 3.  Comparison of the miRNA-based diagnostics on various cancers and different target gene thresholds

Cancer type and prediction threshold ACC PREC MCC TPR FPR AUC PRC area

Breast cancer (target gene threshold of 90) 87.7% 88.0% 76.4% 87.7% 12.9% 88.7% 86.4%

Breast cancer (target gene threshold of 99) 85.1% 85.6% 70.1% 85.1% 14.3% 88.3% 86.5%

Lung cancer (target gene threshold of 90) 86.3% 86.9% 73.2% 86.3% 13.2% 88.5% 85.7%

Lung cancer (target gene threshold of 99) 86.3% 86.7% 72.8% 86.3% 13.0% 88.9% 87.9%

Pancreatic cancer (target gene threshold of 90) 88.5% 88.7% 78.4% 88.5% 11.5% 88.9% 87.5%

Pancreatic cancer (target gene threshold of 99) 86.9% 87.1% 73.9% 86.9% 12.8% 86.4% 86.1%

ACC, accuracy; PREC, precision; MCC, Matthews correlation coefficient; TPR, true-positive rate; FPR, false-positive rate; AUC, area under the receiver-operating characteristic 
curve; PRC area, area under the precision-recall curve.
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method operates robustly even with small numbers of descriptors.
To further explore the relationship between the number of de-

scriptors and the prediction accuracies, the number of descriptors 
and the prediction accuracy for each case study are compared in 
Figures 3–5. For each case study, descriptors were removed based 
on their information gain contribution (the descriptors with the 
least information gain were removed first). While there were fluc-
tuations in the prediction accuracies when the number of descrip-
tors was reduced, the prediction accuracies in each case study were 
still consistently high across all numbers of descriptors for all case 
studies. This finding proves that although the results were the high-
est when there was a high number of descriptors, high accuracies 
could still be achieved across all diseases with lower numbers of 
descriptors.

Testing of outside datasets on the developed models

To ensure that our models are able to differentiate between dif-
ferent diseases, various datasets were tested on each model. From 
each disease dataset, approximately 50 randomly selected associ-
ated miRNAs were paired with the same number of randomly se-
lected non-associated miRNAs. Then, the selected data were used 
to test the model.

First, randomly selected data from the lung cancer and breast 
cancer datasets were tested on the pancreatic cancer model with a 
target gene threshold of 99. The model classified the lung cancer 
data with 57.8% accuracy and the breast cancer data with 56.4% 

accuracy. Next, randomly selected data from the pancreatic can-
cer and breast cancer datasets were tested on the lung cancer 
model with a target gene threshold of 99. The model classified 
the pancreatic cancer data with 56.7% accuracy and the breast 
cancer data with 58.3% accuracy. Finally, randomly selected 
data from the lung cancer and pancreatic cancer datasets were 
tested on the breast cancer model with a target gene threshold 
of 99. The model classified the lung cancer data with 56.7% 
accuracy and the pancreatic cancer data with 55.9% accuracy. 
The accuracies are presented in Table 4. The accuracies were all 
higher than 50% because of some overlapping miRNAs between 
the three datasets. However, each model performed consistently 
worse when classifying datasets from other diseases. Thus, we 
conclude that the models are able to differentiate between dif-
ferent cancers.

We also tested a noncancer disease on the system to provide 
further verification. From the HMDD database,19 we extracted 86 
miRNAs associated with Alzheimer’s disease and also extracted 
86 miRNAs not associated with Alzheimer’s disease. The selected 
data were tested on the pancreatic cancer, lung cancer, and breast 
cancer association models with 90 target genes. The pancreatic 
cancer model classified the Alzheimer’s data with 48.1% accuracy, 
the lung cancer model classified the Alzheimer’s data with 53.0% 
accuracy, and the breast cancer model classified the Alzheimer’s 
data with 56.7% accuracy. The low classification accuracies of the 
Alzheimer’s data further demonstrate that the models are able to 
differentiate between different diseases. The accuracies are shown 
in Table 5.

Finally, we tested pancreatic, breast, and lung cancer data from 
other studies5,20-22 on our corresponding models. From the other 
studies, we were able to extract 12 lung cancer-associated miRNAs, 
13 pancreatic cancer-associated miRNAs, and 30 breast cancer-as-
sociated miRNAs that were not presented in our model. Then, the 
same number of unassociated miRNAs was paired with the cancer 
data and tested on each model.

The lung cancer data from other studies21 yielded a 91.7% ac-
curacy when tested on our lung cancer model; the pancreatic can-
cer data from other studies5,20 yielded a 92.3% accuracy when 
tested on our pancreatic cancer model; and the breast cancer data 
from other studies22 yielded a 95.0% accuracy when tested on our 
breast cancer model. These results verify the validity of our mod-
els.

After establishing that our individual classifiers for breast, pan-
creatic, and lung cancer were able to differentiate between differ-
ent diseases, we used a hard-voting scheme to recognize different 
cancers from a single input dataset. A hard-voting scheme uses 

Fig. 3. Comparison of the prediction accuracy for the pancreatic cancer 
model with different numbers of descriptors. 

Fig. 4. Comparison of the prediction accuracy for the lung cancer model 
with different numbers of descriptors. 

Fig. 5. Comparison of the prediction accuracy for the breast cancer mod-
el with different numbers of descriptors. 
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majority voting for classification. The hard-voting scheme was ap-
plied to each of the three individual models. Table 6 shows exam-
ples of the results from the hard-voting scheme.

Discussion

Predicting the associations between miRNA and disease not only can 
greatly help to understand the role of miRNA in the development of 
diseases, but it can also significantly improve the early diagnosis 
of the specific disease. In this study, we proposed a new systematic 
method to predict the association between miRNA and disease us-
ing miRNA descriptors that consist of miRNA sequence information 
and target gene information. To demonstrate the effectiveness of the 
method, we used the system to create a machine-learning model for 
the diagnosis of several cancers using the miRNA profiles of breast, 
pancreatic, and lung cancer patients. The model’s good performance 
shows that an miRNA’s association with these cancers is highly re-
lated to patterns within the miRNA sequence information and target 
genes. Additionally, the InfoGainAttributeEval algorithm provides 
further insights on the specific properties that have the greatest effect 
on the information gain aspect of the classification. Deeper analysis 
could be done regarding the specific properties of miRNA that are 
the most important in determining their association with disease. We 
can conclude that the developed system of miRNA descriptors is ef-
fective in cancer diagnostics.

Conclusions

In this article, we proposed a new miRNA descriptor system cre-
ated using miRNA sequence information and target gene informa-
tion to develop machine-learning models for pancreatic, lung, and 
breast cancer. The models were trained and evaluated using the 
Random Forest classifier. Then, the models were tested using dif-
ferent disease datasets from other studies. Each model was able to 

classify its corresponding cancer with >90% accuracy and other 
diseases with <60% accuracy. Finally, a hard-voting scheme was 
created using the relative classification accuracies of each model 
to perform cancer diagnosis. The final experimental results show 
that our method performs well and is effective for the classifica-
tion of cancers. In addition, the hard-voting scheme proves that our 
method is able to perform cancer diagnosis. Therefore, we believe 
that our proposed method will be a useful tool for performing can-
cer diagnosis in the future.
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