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Review Article

Introduction

Psychotic disorders, such as schizophrenia, are among the top ten 
causes of disability worldwide,1 and are associated with a spec-
trum of neurocognitive deficits, which may be present from the 
very early stages and worsen with the onset of frank psychosis.2 
Typically, the onset of psychosis occurs in late adolescence or 
early adulthood,3,4 with 70% of these individuals experiencing a 
second episode within 5–8 years.3,5 Although studies have consist-
ently identified a number of environmental as well as genetic risk 

factors that contribute to the risk architecture of psychosis,4,6–8 
mechanistic understanding as to how they may increase the risk 
of psychosis is unclear. Such understanding is critical to the iden-
tification of novel therapeutic targets as well as of biomarkers that 
may predict the risk of disease before the actual onset of illness, 
of relapse following onset, or indeed of biomarkers of response to 
treatment.

In this review, we explore the current understanding of the neu-
robiological underpinnings of psychosis, focusing on knowledge 
gained from one prominent risk factor in particular. Following 
this, we propose a novel approach that may help shed mechanistic 
insight on aspects of the presentation of psychosis. For the pur-
poses of the present review, the risk factor of interest is cannabis 
use, and its activity within the related endocannabinoid system 
in man.

Cannabis, the endocannabinoid (eCB) system, and psychosis

Recreationally, cannabis is one of the most widely used illicit 
drugs in the world.9 However, its use is also recognised as one of 
the most preventable risk factors for the onset and relapse of psy-
chotic disorders.10–13 A recent meta-analysis revealed that the risk 
of onset of psychosis amongst cannabis users is 2–4 times higher 
than in non-users, depending on degree of exposure.14 A separate 
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meta-analytic review found that the prognosis for individuals with 
psychosis who continued to use cannabis following onset of illness 
was significantly worse compared to those who discontinued use 
after onset, in terms of outcomes, relapse rates, hospital admis-
sions, and positive symptoms.15

Of particular concern has been the heavy use of high-potency 
strains of cannabis, especially given evidence that the availability 
of high-potency cannabis has been on the rise over the last two 
decades.16–18 In the context of cannabis use, potency is determined 
by the level of delta-9-tetrahydrocannabiniol (Δ9-THC), the main 
psychoactive ingredient present in the extract of the cannabis plant. 
Indeed, the frequent use of high-potency strains of cannabis, which 
contain high levels of Δ9-THC, has been associated with signifi-
cantly greater risk of onset and of relapse in psychosis, compared 
to use of less potent forms or to less frequent use.12,16,19

Δ9-THC, the primary psychotropic constituent of cannabis, 
binds to the endogenous cannabinoid receptors, which are distrib-
uted throughout what is known as the “endocannabinoid system” 
(eCB system).20,21 The eCB system mainly constitutes endogenous 
cannabinoid receptors (CB1 and CB2 receptors) and their ligands 
(including anandamide, and 2-arachidonoylglycerol, or 2-AG) dis-
tributed throughout the central and peripheral nervous systems in 
the mammalian brain.22 Expression of the CB1 type endocannabi-
noid receptor is particularly high in the hippocampus, cerebellum, 
basal ganglia, and neocortex23—regions involved in a number of 
cognitive processes of particular interest in the context of psycho-
sis, such as learning, memory, and attention processing.24–26 Ex-
pression of the CB2 receptor is predominantly observed in immune 
cells, from where it is thought to exert an effect on immune func-
tions.21 CB2 receptor expression has also been observed in central 
nervous system neurons, albeit at much lower levels than the CB1 
type.21 Various animal studies have proposed links between CB2 
receptor function and anxiety,27 emesis,28 schizophrenia-related 
behaviours,29 alcohol preference,30 and impulsive behaviours.31 
However, these functions – and the cellular mechanisms through 
which CB2 receptors exert these functions—are still disputed.32

Consistent with the known CB1 receptor distribution, acute ad-
ministration of Δ9-THC in healthy individuals has been shown to 
induce transient psychotic symptoms,33,34 and to cause impairments 
in aspects of memory and learning,33,35 abnormalities in inhibitory 
control processing and attentional salience processing,34,36,37 as 
well as alter the normal activity of the neural substrates underly-
ing all of these processes.38,39 Evidence that modulation of these 
brain regions and cognitive processes by acute administration of 
Δ9-THC resembles aspects of the neural abnormalities and psy-
chopathology that are also observed in schizophrenia further sup-
port a role for alterations in the eCB system in the pathophysiology 
of the disorder, and highlight it as an important target for further 
research.20

Independent of its role in modulating the psychoactive and psy-
chotomimetic effects of cannabis, the eCB system has also been 
implicated in schizophrenia in other ways.40 One potential con-
tributing element to the overall role of the eCB system in schizo-
phrenia may be the relationship between eCB dysfunction and ab-
normal dopamine levels.41 Normal dopamine activity is involved 
in a number of cognitive processes, such as motivational salience, 
decision making, and attention and cognitive control, which are 
altered in schizophrenia.42–44 Striatal dopamine hyperactivity, in 
particular, is one of the most consistent findings in the pathophysi-
ology of psychosis.45

Although causality is unclear, as the influence of one on the 
other may in fact be bidirectional, irregularities in both the availa-
bility of this neurotransmitter and in the activity of the eCB system 
are very likely related. This may be inferred from the dysregulated 

neural levels of anandamide—an endogenous cannabinoid—ob-
served in hyperdopaminergic rat models of schizophrenia,46 and 
increases in dopamine in the nucleus accumbens of healthy rats 
following acute administration of anandamide.47 Additionally, an 
accumulating body of evidence suggests that acute and chronic 
cannabis use in humans may affect dopamine release and synthesis 
differentially, as reviewed by Sami et al.48

eCB system alterations have also been implicated in the patho-
physiology of schizophrenia through the findings of post-mortem 
studies, which have identified exaggerated CB1 receptor binding 
in the dorsolateral prefrontal cortex as well as abnormal levels 
of anandamide across the brain in individuals with schizophre-
nia.49,50 Indeed, dysregulated levels of anandamide have also been 
observed in animals following repeated Δ9-THC administration,51 
and in the cerebrospinal fluid of first-episode psychosis patients 
with co-morbid high frequency cannabis use, as compared to first-
episode patients with low frequency cannabis use, and healthy 
controls,52 further linking alterations in components of the eCB 
system to the psychosis-like effects of Δ9-THC.

These findings from studies of both the effects of cannabis use 
on behaviour and brain activity, and abnormal eCB function in 
psychosis warrant a systematic investigation of the eCB system 
in the context of psychosis, and indicate that an optimal approach 
would be an experimental medicine paradigm, in conjunction with 
cannabinoid administration. However, ethical and safety consid-
erations preclude studies involving the administration of cannabis 
or Δ9-THC to individuals with psychosis.

Cannabidiol (CBD)

The use of CBD, a non-psychotropic component of the cannabis 
plant, is a potential approach that could overcome the ethical issues 
surrounding pharmacological challenge studies involving adminis-
tration of cannabis or Δ9-THC in patients with psychosis. There is 
evidence to suggest that short-term CBD administration (4 weeks) 
may result in an increase in peripheral anandamide levels in pa-
tients with schizophrenia, associated with a reduction in psychotic 
symptoms53; and may also counteract the psychotic symptoms, 
cognitive impairments, and associated brain activation abnormali-
ties induced by Δ9-THC administration in healthy volunteers.54,55

Though the mechanism of action underlying the effects of 
CBD is still unclear, a range of molecular mechanisms have been 
suggested as acting either individually or in conjunction with oth-
ers to produce the aforementioned notable effects.53,56 One theory 
relates to the potential action of CBD as a high-potency antagonist 
of CB1 receptor agonists,57 which—in opposition to the partial 
agonist activity of Δ9-THC at CB1 receptors—may result in the 
contrasting effects induced by the two exogenous cannabinoids. 
Another prominent argument concerns the ability of CBD to en-
hance anandamide signalling via the inhibition of anandamide 
uptake and intracellular degradation.56,58 As noted earlier, this in-
crease in anandamide levels has been associated with decreases in 
psychotic symptoms, and though the exact nature of this relation-
ship remains inconclusive, it is likely that this ability to increase 
anandamide signalling is related to the antipsychotic properties 
of CBD.53

Nonetheless, consistent with this evidence overall, in recent 
years there has been considerable interest in a potential role for 
CBD as an antipsychotic treatment.59 Additionally, CBD has also 
been found to display neuroprotective properties, and has demon-
strated a low side effect profile, and tolerability in doses of up to 
1,500 mg.60,61 All of these factors combine to make CBD an ideal 
tool for the safe perturbation of the eCB system in a pharmacologi-
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cal challenge paradigm, and will allow the further investigation of 
abnormalities of the eCB system in clinical populations.

Psychosis as a disorder of dysconnectivity

Although abnormal patterns of brain activity in specific brain re-
gions are well documented in psychosis and have been associated 
with aspects of the illness,62 these localised abnormalities have 
thus far failed to provide a comprehensive account of the neuro-
cognitive mechanisms underlying the multiple, complex pheno-
typic features of the disorder.63,64 There is increasing recognition 
that attributing even very specific symptoms, such as auditory hal-
lucinations, to dysfunction in just one localised area of the brain is 
overly simplistic, and that such an approach is far less plausible for 
the broad range of positive and negative psychotic symptoms and 
ubiquitous cognitive deficits that characterize psychotic disorders, 
such as schizophrenia.64

This is further complicated by the fact that these symptoms 
are not only heterogeneous in their presentation across individu-
als with psychosis, but can also change in prominence across time 
within the same individual. This limitation has prompted a more 
integrated approach, focusing instead on the interaction over time 
of brain regions that have been traditionally functionally segre-
gated. The ensuing research drove the development of what is 
known as the dysconnectivity theory of schizophrenia,65 which 
describes the psychopathology of the disorder as resulting from 
an underlying dysconnection syndrome.65–67 The term functional 
connectivity (FC) describes the temporal relationship between ac-
tivation measured in different brain regions, either at rest or dur-
ing a task,68 and is inferred from the correlation between regional 
fluctuations in the blood-oxygen-level-dependent signal of differ-
ent brain regions, measured using functional magnetic resonance 
imaging (fMRI).

A number of studies have investigated FC alterations in the con-
text of psychosis, which are summarized below.

Results of resting state studies

A popular approach in neuroimaging literature has been to de-
scribe brain regions as being organized into functional neural net-
works, three of which are of particular interest in the context of FC 
research across neuropsychiatric diagnoses.64 These networks are 
the Default Mode Network (DMN), the Salience Network (SN), 
and the Central Executive Network (CEN). Resting-state func-
tional MRI (rs-fMRI) techniques have proven particularly useful 
in the study of such networks in psychosis. They provide a means 
of representing intrinsic brain function and connectivity between 
brain regions under resting as opposed to activation conditions, 
which involve external stimuli or induced reactions.69,70

The DMN is largely active at rest, and as such, is engaged by a 
range of internally directed thought processes, including self-ref-
erential thought, aspects of autobiographical memory, and future 
simulations—all processes that are notably disrupted in schizo-
phrenia.71 Anatomically, the core nodes of the DMN include the 
posterior cingulate cortex and the precuneus, the medial prefron-
tal cortex, and the angular gyrus.72 Additional regions involved 
in DMN processes include the dorsal medial subsystem, and the 
medial temporal subsystem.72

Normally, DMN and CEN activity are thought to be anti-cor-
related.73 That is, DMN activity is reduced during externally ori-
ented task states, at the same time as CEN activity is increased, 

and vice versa for the internally oriented/resting state. As such, the 
CEN is thought to be responsible for higher level cognitive func-
tions (e.g. attentional control, and executive task performance), 
and is rooted in the dorsolateral prefrontal cortex and the posterior 
parietal cortices.74

Critical to the appropriate engagement and disengagement 
of CEN and DMN activity, the SN is believed to moderate this 
“switching” between networks through the attribution of salience 
to external or internal stimuli.64 In salience literature, the attribu-
tion of salience refers to the assignment of importance to external 
stimuli or internal mental events, critical in the processing of an 
individual’s experiences.75 The anterior insula (a core region in 
the SN) is thought to moderate the shift between activity in the 
DMN (internally directed processes) and CEN (externally directed 
processes) by increasing cognitive and task control system activ-
ity, whilst suppressing DMN activity when a salient event is de-
tected.75,76 In contrast, in individuals with schizophrenia, abnormal 
levels of dopamine in the SN are thought to result in aberrant an-
terior insula activity (with a particularly high expression of do-
pamine D1 receptors in the anterior insula), which in turn results 
in the misattribution of salience to external/internal stimuli, and 
consequently the dysfunctional switching between DMN and CEN 
engagement.64, 77–79

The functional consequences of this sequence include greater 
connectivity between the DMN and CEN, greater connectivity 
within the DMN, and decreased anterior insula activity occurring 
at rest, as well as a failure to suppress DMN activity during ex-
ternally driven tasks.77,80 Decreased FC between the SN and both 
the DMN and CEN at rest has also been reported in patients with 
schizophrenia,77,81 as well as an overall reduction in the strength 
of negative FC between task-positive and task-negative networks 
during both rest and task in patients diagnosed with schizophrenia, 
as well as with other psychotic disorders.73,80

It is thought that the potential symptomatic consequences of 
these connectivity abnormalities range from hallucinations and 
deficits in emotional processing (resulting in part from misattribu-
tion of salience) to deficits in self-referential thinking (resulting in 
part from the over-engagement of the DMN). As such, this triple 
network model is thought to provide the most unified account to 
date of the mechanisms underlying the spectrum of different psy-
chosis symptom domains—from deficits of self to the classic posi-
tive, negative and cognitive domains.82

Apart from the anterior insula, an additional core node of the 
SN is the dorsal anterior cingulate cortex, though its broader func-
tions also rely on input from the amygdala, ventral striatum, and 
the substantia nigra/ventral tegmental area75—with a high expres-
sion of both dopamine and CB1 receptors observed in the dorsal 
and ventral striatum, and in the substantia nigra.21,83

If eCB dysfunction were to have a role in the pathophysiology 
of psychosis, one would expect it to modulate components of the 
three networks described here, in a manner consistent with altera-
tions observed in those with psychosis. However, this has yet to be 
examined. Indeed, few studies have investigated the effects of Δ9-
THC on FC during cognitive tasks or at rest. The limited available 
evidence suggests that Δ9-THC can induce a reduction in connec-
tivity between the SN and the CEN, increase connectivity between 
the DMN and CEN, and increase connectivity within the DMN, 
during salience processing in healthy individuals37,84—reflective 
of those disturbances described in the triple network model. This, 
coupled with the high distribution of CB1 receptors within the SN 
and the propensity for acute Δ9-THC to impair performance on 
salience processing tasks in healthy individuals,85 would suggest a 
plausible if as yet undefined role for eCB dysfunction in the triple 
network model of schizophrenia.
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Results of cognitive activation studies

In the context of characterising overall functional dysconnectivity 
in schizophrenia, studies that employ cognitive tasks are essential 
for a more complete understanding of the nature of disturbances 
observed during psychosis. Learning and memory impairments 
are particularly well-documented phenomena in the neurocogni-
tive profile of individuals with schizophrenia, both in the context 
of comorbid cannabis use and its absence,86,87 and are similarly 
observed in healthy individuals following both acute Δ9-THC 
administration and chronic cannabis use.39,88 Across all illness 
stages of schizophrenia, but particularly during the first episode 
of psychosis, memory tasks involving verbal learning and encod-
ing have been found to display significant impairments, compared 
to healthy individuals.26 Similarly, verbal learning, memory, and 
attention appear to be the most consistently impaired cognitive do-
mains in studies of acute and chronic cannabis use.89

Encoding refers to the mental storage of information for later 
retrieval or recollection from short-term or long-term memory, and 
is crucial for learning.86 The brain regions largely involved in ver-
bal learning and encoding include, but are not limited to, the me-
dial temporal lobe (formation of new memories) and the prefron-
tal cortex (essential for executive control functions and salience 
processing).90–92 Both regions display significant abnormalities 
in activation and connectivity during encoding and recall across 
illness stages in schizophrenia.86, 91–96 Specifically, reports of 
connectivity-related abnormalities have included decreases in FC 
between the DMN and some regions involved in executive control, 
and decreased connectivity within the DMN during encoding and 
recall tasks.94–96 Connectivity within the DMN and the regions in-
volved in executive control was found to correlate positively with 
task performance,93 indicating a failure to recruit crucial neural 
resources that is linked to level of cognitive impairment.

Neural abnormalities in corresponding regions have been ob-
served during encoding and recall tasks in healthy individuals ad-
ministered Δ9-THC, including decreases in insular activity during 
encoding,97 increases in parahippocampal activity while learning 
during repeated trials of encoding, and a change in ventrostriatal 
activation during repeated trials of cued word recall condition.98 
While the effect of Δ9-THC on the FC between these regions dur-
ing encoding and recall has not previously been explored, these 
studies do highlight the importance of such investigations, and of 
further research of the eCB system overall.

Effect of eCB system perturbation on neurocognitive sub-
strates implicated in psychosis

As outlined earlier, while the justification for investigating the 
role of eCB dysfunction in psychosis is clearly there—focusing 
particularly on the relationship between experimentally induced 
perturbations of the eCB system and the function of neural sub-
strates implicated in psychosis, as well as symptoms and cogni-
tive changes characteristic of psychosis – this has yet to be carried 
out systematically. Additionally, as discussed previously, though 
its safety and pharmacological profile make CBD an ideal tool for 
safe perturbation of the eCB system in clinical populations, to our 
knowledge, no study as yet has investigated the effects of such per-
turbation on the neurocognitive substrates implicated in psychosis, 
in psychosis patients directly. However, given the clear parallels 
between neurocognitive abnormalities observed in psychosis and 
those induced by Δ9-THC, results of studies investigating the op-
posing effects of CBD and Δ9-THC in healthy individuals are also 

highly informative.
In healthy individuals, the neural effects of CBD compared 

to those of Δ9-THC are relatively consistent, generally showing 
a direct and opposite effect on brain activation and connectivity 
during cognitive tasks, including salience processing, emotional 
processing, learning, and short-term memory.34,37,55,99,100 The re-
sults of both human and animal studies exploring the behavioural 
effects of CBD in comparison to Δ9-THC on these same cognitive 
processes that are also strongly affected in schizophrenia, specifi-
cally learning and short-term memory, have thus far been less con-
sistent.54,55,101,102 This variability may be related to a number of 
factors, such as the heterogeneity of study designs (including vary-
ing CBD dosage) and modest sample sizes, together with limited 
overall research on the topic. In particular, differences in cognitive 
activations tasks employed in previous studies may have contrib-
uted to inconsistency in results. Not only have previous studies 
employed cognitive tasks that engage different cognitive domains, 
they also commonly vary in degree of difficulty,20 hindering cross-
study comparability.

Future research directions

As outlined above, despite the importance of such investigations 
for understanding the neurobiological underpinnings of psycho-
sis, there is a clear lack of studies that have investigated the re-
lationship between dynamic perturbation of the eCB system and 
functional brain abnormalities, or indeed FC between the DMN, 
SN and CEN in patients with psychosis. We posit that the optimal 
approach to address this gap would be for studies to investigate 
the effects of acute and/or short-term perturbation of the eCB sys-
tem in patients with psychosis. Exploration of the role of the eCB 
system in the neurobiology of psychosis is most ideal in the early 
stages of psychosis, as such studies will be able to overcome issues 
relating to the longer term effects of illness course and antipsy-
chotic treatment on aspects of cognition.2,103.

Indeed, previous research has also shown functional dyscon-
nectivity to become increasingly widespread from the early to the 
latter stages of schizophrenia.104. Changes in FC have also been ob-
served after relatively short-term antipsychotic use (12 weeks).105 
Utilising a paradigm that focuses both on resting state abnormali-
ties as well as the cognitive domains that are notably impaired in 
early psychosis, such as verbal memory, will be particularly useful 
in informing a comprehensive understanding of the role of the eCB 
system in large scale network dysconnectivity in psychosis.

Conclusions

Overall, such an approach may help connect multiple theoretical 
strands in schizophrenia research and rationally integrate a role for 
the eCB system into the relatively well-established dysconnectiv-
ity theory, focusing on the dysconnectivity of large-scale networks 
in psychosis. This may help formulate a comprehensive frame-
work for the neurocognitive abnormalities underlying psychosis.
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