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Introduction

Diabetes is a metabolic disease, characterized by variations in 
blood glucose levels (BGLs) due to either absolute insulin defi-
ciency (type 1 diabetes mellitus, T1DM) or defective insulin action 
(type 2 diabetes mellitus, T2DM) or a combination of both.1 T1DM 
features autoimmune destruction of insulin-producing cells present 
in the pancreas, known as beta cells.2 This causes insufficient insu-
lin production, thereby leading to a life-long dependency on admin-
istration of insulin to the body through external routes. A healthy 
pancreas releases insulin in response to elevated glucose levels in 
the body and helps in the transfer of glucose from the blood to the 
cells of the body. In order to mimic it for a diabetic patient, basal 

insulin is administered to replicate background insulin during fast-
ing phases of the day and additional bolus insulin is administered 
during mealtimes. Switching between these basal and bolus doses 
at strategic times is the foundation for upcoming automated diabe-
tes care technologies. Hyperglycemia (increased) or hypoglycemia 
(reduced) leads to macrovascular and microvascular complications. 
Even glycemic variability within normal ranges can lead to com-
plications, underlying the concept of time in range (TIR).3 T1DM 
patients may experience frequent hypoglycemia episodes over 24 
hours in a day. Since the brain uses glucose exclusively for energy, 
when blood glucose concentration drops, its functions are impaired.

With the burden of self-management falling on the patient, there 
is a growing need for devices that can monitor these levels con-
tinuously and then automatically adjust insulin delivery rates to 
help maintain blood glucose in an optimal range. Such devices are 
now being called ‘artificial pancreatic systems (APSs)’ or ‘closed-
loop (CL) systems’. When augmented with accurate and reliable 
continuous glucose monitors, they can regulate glucose levels and 
better control a patient’s glycemic status. APS consists of the fol-
lowing three components: an insulin pump, also known as con-
tinuous subcutaneous insulin infusion (CSII); a sensor, that con-
tinuously measures interstitial glucose concentrations (also known 
as continuous glucose monitoring (CGM)); and a controller, that 
contains and executes algorithms to calculate insulin levels and 
thereby control glucose. These components can be wired, made 
to communicate wirelessly, or integrated all onto a single device.4 
APS can be categorized into two types, namely single-hormone 
systems, which only deliver insulin, and dual-hormone systems, 
which deliver both insulin and glucagon. The addition of glucagon 
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has the potential to further alleviate the risk of hypoglycemia but 
increases the system’s complexity with separate drug reservoirs 
and infusion sets (Fig. 1).

CSII/Insulin Pumps

Portable CSII pumps first became possible in the early 1970s and 
showed achievement of improved glycemic control in early stud-
ies. The late 1990s and early 2000s saw rapid expansion in design 
and availability of CSII systems, as research showed improved 
outcomes with use of this technology.5 Insulin pumps deliver in-
sulin by continuous infusion through a single subcutaneous site, 
which is replaced, on average, every 3 days. Only rapid-acting 
insulin is used, and the analogue insulins have gained popularity 
over this. A pump delivers programmable basal insulin around the 
clock that is tailored to the patient’s 24-h glucose profile. Accurate 
estimates of the insulin bolus depend on the carbohydrate content 
of the food and the BGLs. Potential benefits of insulin pumps are 
significant reductions in A1C without increasing hypoglycemia, 
programmed insulin delivery that mimics the pancreatic function 
superior than injections, improved glycemic control with mini-
mum glycemic variability, and minimize risk of hypoglycemia 
and need for hospitalization

Indications of insulin pump

Presence of persistently high HbA1C despite multidose insulin 
injection (MDII) therapy, recurring hypoglycemia, frequent wide 
glycemic variabilities, and persistent early morning hypergly-
cemia. Other indications are childhood and young adult age (as 
they typically desire fewer restrictions), preconception planning 
and pregnancy, gastroparesis, hectic lifestyle and frequent travel. 

T2DM status is also an indication, according to its increased insu-
lin requirements in general.

Disadvantages of insulin pump

Disruption of insulin administration (pump failure, kinked tubing, 
etc.) with subsequent development of severe hyperglycemia and dia-
betic ketoacidosis due to the short duration of the fast-acting insulin 
used in pumps. The sensor detects glucose in the interstitial fluid 
during its diffusion between the capillary and the target cell.5 Under 
steady-state conditions, interstitial glucose concentrations have been 
shown to be similar but not precisely equal to venous blood glucose 
concentrations in healthy individuals or animals.6 Rapid changes in 
blood glucose concentrations have been reported to affect the accu-
racy of the interstitial glucose sensing, causing the sensor to report 
glucose concentrations below their actual values.7,8

CGM

Self-monitoring of blood glucose (SMBG) has traditionally been used 
to monitor BGLs and confirm any instances of hypo/hyperglycemia. 
This enables the users to be independent and take corrective actions 
by adjusting the insulin dosage to counter external conditions. These 
glucose-meters have been available for more than 30 years now and 
come equipped with memory and software to store and analyze BGL 
data.9 For a diabetic user, BGL varies four to ten times a day, pos-
sibly due to differences in physical activity, lifestyle, food intake, and 
insulin injections. The act of monitoring and correcting situations for 
hypo/hyperglycemia is imperative for delaying the onset and slowing 
the progression of diabetic complications in the user.10

Glucose monitoring has transitioned from the SMBG to CGM 
owing to the demand for a less invasive method of measurement. 

Fig. 1. Various components in an APS. 
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CGM systems enable patients to monitor their BGL throughout the 
day, according to measurements taken at definite intervals of time 
as opposed to irregular, manually-set ones. These dynamic data 
have contributed towards better diabetes management, as they can 
be analyzed to recognize the rate of change as well as the direction 
of the glucose level changes. Additionally, CGM data give better 
insight into the impact that meals, exercises, stress, or illness may 
have on the user’s glucose levels in real-time.11 This information 
enables users to proactively manage the increase or decrease in glu-
cose levels. Additionally, it can be used in conjunction with insulin 
pumps (CSII pump technology) to better guide the insulin therapy 
(sensor-augmented pump (SAP) therapy).11,12 Of note, the first 
commercial CGM device was approved in 1999.

CGM systems consist of an electrochemical sensor, a reusable 
electronic transmitter, and a data display unit.13–15 They can be clas-
sified into three categories, as follows: (i) invasive (implantable) sen-
sors; (ii) minimally invasive sensors; and (iii) noninvasive sensors, 
the placements of which depend on their glucose sensing mecha-
nisms.15 These sensors provide BGL information every 5 to 10 m, 
with a delay of 5 to 15 m approximately.14 The data are transmitted 
to a data display unit using a transmitter. A visualization of CGM 
data can be displayed on the data display unit for the user’s benefit. 
The system can also analyze the data to generate historical trends 
or to alert the user of impending hypo/hyperglycemia episodes.11,14

Certain studies have shown that the use of CGM systems decreas-
es the frequency of hypoglycemic episodes and thereby increases 
the time spent in normal-glycemia.14,16 A randomized study in adults 
showed that the users in the CGM group had a 72% reduction in hy-
poglycemic episodes.17 With the use of an integrated CGM system, 
alarms alerting the user of high or low glucose levels help increase 
the time spent in normal-glycaemia. With the emergence of these 

systems and the availability of remote monitoring, BGL data and 
trends can be shared with smartphones. This feature uses Wi-Fi or 
cell phone signals to upload data to the cloud and can provide ac-
cess to physicians to view glucose trends and thereby alter insulin 
therapy. Additionally, parents can also access and monitor a young 
child’s BGL data through such a feature.12,18

Glucose metabolism plant model

In a control system, the plant’s output is regulated according to a 
desired set point using a controller. In this case, the output to be 
controlled is the blood glucose concentration and the patient acts 
as the plant. For simulation purposes, a glucose metabolism model 
is used that can then be made to act like a healthy individual or a 
T1DM patient as per the analysis being done.

Glucose metabolism models are generally formulated using dif-
ferential equations that represent the biological dynamics of the 
human body. There are many models that have been proposed, 
which vary in form and details. Since they exhibit a huge varia-
tion, a direct comparison between them becomes a difficult task.6 
Select models are reviewed in Table 1.7,8,19–23

Controller Designs

The main objective of a controller being implemented into an 
APS is to provide safe and effective glycemic control in T1DM. 
Quantitatively, this means maintaining the patient’s blood glu-
cose concentration within a target range of 70–140 mg/dL for 

Table 1.  Glucose metabolism plant models

Model Year Comments Limitations

Bergman’s 
Minimal model 
(pharmacokinetic 
model)

1981 Two-compartment model that describes 
glucose–insulin interaction using three 
ordinary differential equations8

Greatly widespread model19

Does not consider exogenous insulin 
infusion and CH absorption from the gut7

Assumes linear increase in rate 
of insulin secretion19

Sorensen’s model 
(physiological model)

1985 Uses various body organs to describe 
the blood glucose system7

Composed of 19 state equations, describing 
insulin-glucose concentrations, and 
incorporates the effect of glucagon21

Unable to capture real hyperglycemic 
extremes characteristic of T1DM7

Has been criticized for not accurately 
representing observed glucose change20

Cobelli’s model 1998 Two-compartment minimal model 
extended to include three subsystems
Effect of glucagon on glucose 
metabolism is included, each depicted 
with a single compartment

–

Hovorka model 
(pharmacokinetic 
model)

2002 Non-linear model, presenting the relationship 
between subcutaneous insulin infusion 
and intravenous glucose concentrations
Provides the most comprehensive 
understanding of glucose–insulin dynamics7

Has been used in several clinical and in silico 
studies in the field of artificial pancreas20

Counter-regulatory hormones (e.g., 
glucagon, epinephrine, etc.) have not 
been considered in the model
Physiological factors, such as stress or sickness, 
are also not considered along with exercise
Does not consider variations in the 
absorption of different foods8

The Dalla Man 
model and UVA/
Padova simulator

2006/2009 Simulation model representing glucose-insulin 
dynamics during meals using physiological 
events occurring during digestion22

Simulator has replaced animal testing in 
many studies, with preclinical testing23

–
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as much time as possible by delivering doses of insulin. Addi-
tionally, the controller should be able to prevent hypoglycemic 
episodes as well.5 The controller requires a desired blood glucose 
value, which will be compared with the real-time blood glucose 
value received from the blood glucose sensor.24 The insulin value 
is sent to the pump, which may be either subcutaneous or in-
traperitoneal and which further delivers insulin to the patient. A 
control algorithm incorporated in a CL will calculate the required 
insulin value based on the above comparison. Figure 2 describes 
the controller algorithm for insulin. The various control algo-
rithms are detailed below.

PID controller

The PID controller uses the difference between the reference (set 
point) and the process output value to generate an error signal 

e(t) that becomes the input signal to the controller. It has three 
elements, also called actions; these being: proportional (P), in-
tegral (I), and derivative (D) actions. The proportional gain Kp 
determines the magnitude of the instantaneous response of the 
controller to the error signal. The integral action with parameter 
Ki sums the error values over time to force the steady-state error 
to zero. The derivative term with parameter Kd responds to direc-
tions and magnitudes of change in outputs.8 A major advantage 
to the classical PID strategy is that the tuning parameters are a 
clear function of sample time, whereas other published strategies 
are specific to a given sample time. It has been argued that the 
function of pancreatic β cells is similar in nature to PID and is 
composed of P, I and D components. The PID controller has cer-
tain limitations due to its purely reactive nature, i.e. it responds 
to changes in glucose concentration after they have occurred. It 
suffers most from the problem of having to optimize the trade-off 
between slow-pace regulation that is well-suited to mild control 
actions (applicable overnight), and postprandial regulation that 
calls for prompt and energetic corrections (post-meals).25 Addi-
tionally, it has been observed that a classical PID controller is 
unable to regulate BGLs well.8

Model predictive controller (MPC)

MPCs are closely related to the optimal control problem, where 
the control action is determined by real-time optimization.8 As a 
distinctive feature, MPCs can predict glucose dynamics, reduce 
or eliminate the inherent time delays between interstitial glucose 
monitoring and subcutaneous insulin infusion, and incorporate 
meal or hypoglycemia detection methods.26,27 They can be patient-
personalized, i.e. capable of learning specifics of a patient’s daily 
routines (e.g., usual timing and content of meals and usual exercise 
timing, duration, and intensity) in order to optimize insulin deliv-
ery. This type of controller shows good performance to measured 
meals with proper carbohydrate-to-insulin ratio boluses.27 Stud-
ies have shown that there can be performance limitations while 
using an MPC. Unmeasured meals can cause high glucose peaks 
and slow disturbance rejection. Thus, meal detection and meal size 
estimation algorithms are developed to automatically administer 
meal insulin boluses as feed-forward action to unmeasured (un-
announced) meals.27 Additionally, due to the predictive nature of 
the MPC model, it requires high and fast computational power for 
good results. Thus, hardware requirements play a big role in use 
of this model.

Fuzzy logic controller

Contrary to MPC and PID controllers, which use mathematical 
equations to describe the gluco-regulatory system, fuzzy logic con-
trollers only depend on glucose management parameters, which 
have been determined by an expert diabetes clinician and codified 
for use in the controller. A dosing rules matrix identifies special 
glucose dynamics indicative of events that may require special 
treatment, such as meals.28 In fuzzy machines, the decision and the 
means of choosing that decision are based on fuzzy sets and fuzzy 
rules. A fuzzy set is a set without a crisp, clearly defined boundary; 
it can contain elements with only a partial degree of membership.8 
Fuzzy logic-based APSs provide a simple way to arrive at a defi-
nite conclusion based upon vague, ambiguous, imprecise, noisy, 
or missing input information by mimicking and automating how 
a medical expert would make decisions. A fuzzy logic controller 
does not necessarily mimic the way the body would respond in 

Fig. 2. Flowchart describing the algorithm being followed by the control-
ler to determine the amount of insulin required. 
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order to balance BGLs, but rather it is based on how a practitioner 
or doctor would to want it. This is considered as both an advantage 
and disadvantage of this system.8

H-infinity controller

The uncertainty in sensor measurements and insulin absorption 
produces a special risk of instability in the computer control sys-
tem, calling for complex mathematical treatments, such as H-in-
finity theory for control algorithm design.29 The principle behind 
using an uncertain model controller like H-Infinity stems out from 
the fact that it is hard to derive the exact value of parameters in 
most biological systems. Therefore, all parameters of the model 
have been considered uncertain and parametric uncertainty forms 

the basis of this control design. Select studies on the controller 
designs are reviewed in Table 2.5,26–28,30

Machine learning in APS development

Machine learning enables systems to learn from existing CGM 
data of an individual, thus eliminating the need of complex math-
ematical representations of glucose homeostasis. These algorithms 
can analyze existing data, recognize complex patterns, and predict 
outputs based on its learning (Fig. 3).

Challenges arise for CL strategies when the complex physiol-
ogy of glucose homeostasis is represented in mathematical mod-
els. Additionally, the variation in a patient’s insulin absorption and 
action suggest the requirement for an individualized algorithm to 

Table 2.  Overview of the select studies on APS controller design

Author Study design Findings Future recommendations

Lauren et 
al., 20155

Design utilizes rapid glucose sensing 
and insulin action offered by the 
intraperitoneal space to tune a PID 
controller with insulin feedback to 
provide safe and effective insulin delivery

Control algorithm maintained BGLs 
within the tight glycemic range of 
80−140 mg/dL 78% of the time, with 
no time spent in hypoglycemia

Test this controller design with 
an animal model to evaluate 
in vivo performance

Clarke et 
al., 200926

Comparison analysis between personal 
open-loop systems and a model 
predictive CL system to control BGL 
overnight and post-breakfast meal

Model predictive CL control of 
BGLs is significantly superior to 
open-loop control in preventing 
overnight hypoglycemia

Performance of the system in the 
presence of external information, 
such as exercise, variable meals 
and stress, needs to be evaluated

Lee et al., 
200827

Implementing a human-friendly 
modeling test, integrated with a MPC 
formulation, meal detection, and 
meal size estimation for CL control

The proposed CL framework 
shows acceptable glucose control 
performance under daily life situations 
and can handle measured and 
unmeasured meal disturbances

Future research will incorporate 
time-varying insulin sensitivity 
to account for circadian effects

Mauseth 
et al., 
201328

Evaluation of a fuzzy logic controller 
with patients under bed rest in a very 
controlled environment for a 24-h period

7 of the 10 subjects in the study, with 
average blood glucose values of 165 
mg/dL, were within a specified target 
blood glucose range (70–200 mg/
dL) for 76% of the 24-h study period

Need for an extensive study for 
the generalizability of findings
Additional studies need to test 
system performance under 
influence of external information

Aicha et 
al., 201530

A robust H-infinity controller is employed 
to regulate BGL in T1DM patients, based 
on the uncertainty principle of the system

Designed controller proved effective 
in achieving normoglycemic 
and was robust to meal and 
exercise disturbances

Future work aims to 
employ the µ synthesis

Fig. 3. Block diagram of a machine learning algorithm. 
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control BGLs.31–33 Machine learning techniques broadly fall under 
three categories, namely supervised, unsupervised and reinforce-
ment learning (RL). Even though all three differ in their learning 
approach, each requires data that accurately represents the model 
that it wants to learn. There are two challenges associated with this 
approach. First, the data need to accurately represent the complex 
glucose-insulin dynamics of a patient and, second, training these 
learning algorithms requires a huge amount of data. This requires 
extensive patient monitoring performed in real-world conditions 
to obtain these data.

RL, a branch of machine learning, provides a flexible approach 
to maintaining normoglycemia in APSs. RL is an intensively active 
research field, which consists of algorithms that learn from data 
and optimize performance in an uncertain environment.31,32 The 
field of RL falls between supervised and unsupervised learning and 
includes problems where an agent algorithm attempts to improve 
performance at a given task over time by continual interaction with 
its environment.31 RL algorithms can learn individual glucose pat-
terns of a T1DM patient and provide adaptive drug delivery even 
in the presence of time delays and external disturbances.31 Select 
studies on machine learning are reviewed in Table 3.32–35

Comparison between single-hormone and dual-hormone CL 
studies

Single-hormone CL studies

Nimri et al.,36 while exploring the capabilities of a single-hormone 
CL system specifically during night-time, stated that the system sig-
nificantly reduced time spent in hypoglycemia and increased time 

spent in the target blood glucose concentration zone of 70–140 mg/
dL. The study demonstrated the feasibility of using CL insulin de-
livery in real-world settings. A randomized crossover study aimed 
to demonstrate robustness and generalizability of CL technology 
with the inclusion of a largely diverse group of people with T1DM 
over 12 weeks, with no restrictions on living conditions. Adminis-
tering insulin through either hybrid CL or sensor-augmented pump 
therapy in these patients showed that the proportion of the time that 
glucose was within target was higher while using a CL system as 
compared to pump therapy (65% vs. 54%, respectively). Addition-
ally, the time spent in hypoglycemia was also reduced.37

One of the first hybrid single-hormone CL systems was the 
MiniMed 670G Insulin Pump System by Medtronic. It has been 
approved for use in people aged 7 years and older and reportedly 
has more than 100,000 users.2 A study was conducted to demon-
strate the safety of this device, and showed that there were no epi-
sodes of severe hypoglycemia or ketoacidosis among the 12,389 
patients involved.2 However, there were certain limitations ob-
served in the system that included: frequent exits from the CL or 
automatic mode due to prolonged hyperglycemia; loss of sensor 
data; and delivery of insulin that was above or below the safe-
ty levels calculated. In the near future, several other companies 
are expected to release commercial single-hormone CL systems. 
The few names include: Tandem Diabetes Care; Insulet; Bigfoot 
Biomedical; Beta Bionics; Tidepool Loop; Roche; Admetsys; De-
fymed; and Diabeloop.2,38,39

Dual-hormone CL studies

Dual-hormone CL systems deliver both insulin and glucagon in 

Table 3.  Select studies on implementing machine learning towards APS

Author Experimental design Findings Future recommendations

Daskalaki et 
al., 201632

Evaluated a RL algorithm (Actor-Critic 
(AC) learning algorithm) for optimization 
of daily basal insulin infusion and 
insulin-carbohydrate ratio to provide 
a personalized glucose regulation

95.66% of time spent in normoglycemia 
with meal uncertainty
93.02% of time spent in normoglycemia 
with meal uncertainty and 
insulin sensitivity variations
AC learned patient-specific characteristics 
based on their glucose profile and 
provided individualized insulin treatment

Combination of AC algorithm 
with existing control strategies 
can capture both the fast and 
the slow glucose dynamics
An AC algorithm system can 
act as a personalized advisory 
system for the physicians

Bahremand 
et al., 201833

Artificial neural network, trained 
on empirical data, predicts the 
BGL of a virtual T1DM rat model 
and a MPC controls the BGL 
based on glucose predictions

System maintained BGL within 
the normal range (≤ 90%), mean 
absolute deviation: 4.7 mg/dL
Errors in predictions: <5 mg/dL 
(2%) for 5-m prediction & <11 mg/
dL (7%) for 30-m prediction

In vivo implementation 
to study its feasibility
Need to find ways to 
measure food consumption 
and exercise level during 
experiments to obtain more 
accurate virtual subjects

Rodríguez et 
al., 201934

Glucose–insulin dynamics data were 
collected through various sensors
Evaluated an approach to use lesser 
data for accurate person-centric 
short-term prediction models

Short-term predictions of 
glucose levels (15-m horizon) 
average error (15.43 mg/dL)

Effect of missing data (user 
error or low-quality sensors) on 
the accuracy of the prediction 
models should be examined

Dutta et 
al., 201835

Evaluation of a personalized data-driven 
approach, where a neural network 
predicts future BGL of the user and 
a MPC calculates optimal basal and 
bolus insulin values in the presence of 
unannounced meals and sensor errors

System stays as close to the desired 
target as possible, even in the presence 
of unannounced meals and sensor errors

Improvements towards 
plant model construction 
by using recurrent neural 
networks could be explored
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order to tackle hyperglycemia as well as hypoglycemia. Small bo-
luses of glucagon are given, in addition to the continuous supply of 
rapid-acting insulin.40 Meta-analysis has suggested that addition of 
glucagon is associated with a greater increase in time in target glu-
cose range and a greater decrease in time in hypoglycemia when 
compared with single-hormone systems.41 Dual-hormone systems 
reported less episodes of hypoglycemia caused due to exercise, 
everyday activities, and during sleeping.42

Though it seems that a dual-hormone system would be the more 
efficient approach, there are certain limitations that are inhibiting 
the development of such a commercial device.2 There is a lack of 
commercially-available glucagon that is stable at room-tempera-
ture. Additionally, introducing a second hormone to be delivered 
increases the device’s complexity and the limited number of long-
duration clinical studies poses a strong limitation in the commer-
cialization of such a device. Such a dual-hormone system will re-
quire a dual-chamber pump, which is not commercially available 
and still in the development stages. A bigger challenge is that it 
requires two infusion sites and additional skill that has to be taught 
to the patient or the system. This can be a serious limitation when 
working with younger patients, for whom infusion site rotation 
will also be difficult.42

There is a minor difference in the performance of both single-
hormone and dual-hormone systems in achieving glycemic con-
trol. Ahmed et al.43 in their randomized crossover trial compared 
the performance of both single and dual hormone systems along 
with the conventional insulin pump therapy, it was seen that over 
24 hours , the time spent in the target glucose range was 62%, 63%, 
and 51% respectively. The study concluded that single-hormone 
and dual-hormone APSs both provide better glycemic control than 
conventional insulin pump therapy. The study also found that the 
single-hormone APS might be sufficient for hypoglycemia-free 
overnight glycemic control.

Impact of CL systems on users

The feedback obtained from users of CL systems has suggested 
positive responses. The benefits shared by individuals include im-
proved glucose control, which further led to reassurance, reduced 
anxiety, improved sleep, and relaxed eating habits. Additionally, 
users reported that the system helped them save time and reduced 
their need for self-monitoring.44 Other surveys reveal that users 
find easy start-up and calibration very beneficial, along with per-
formance accuracy. There have been, however, some challenges 
expressed by users, the most common of which seemed to be trust 
in the CL device. Additional difficulties include technical trouble, 
excessive intrusiveness of an alarm feature, the equipment’s bulky 
size, poor device connectivity, and inconvenience in incorporat-
ing CL systems into activities of daily life, such as exercise and 
bathing. Despite these, most participants in CL studies reported 
that they would personally continue using or would recommend 
CL therapy to a friend or relative because the clinical benefits out-
weigh system imperfections.2

Comparison between fully automated and hybrid systems

A hybrid CL system requires the user’s initiation in order to deliver 
mealtime insulin boluses. There are studies that show such a model 
reduced hyperglycemia without causing any episodes of hypogly-
cemia.31 Though a hybrid system works well, the goal is to develop 
a fully automated system that requires no user interference. Such a 
system will automatically dose insulin without information about 

meals, thereby eliminating the need for user intervention. Despite 
this advantage, most CL approaches prefer using a hybrid system 
because glucose control is compromised with fully automated sys-
tems, owing to delayed absorption of subcutaneous insulin. Due to 
this, these systems may cause significant postprandial hyperglyce-
mic excursions and late postprandial hypoglycemia when deliver-
ing boluses.45 Thus, hybrid systems may be better in functionality 
until developments are seen in fast-acting insulin for fully auto-
mated systems.

‘Do-it-Yourself’ APS

Owing to the intricate technicalities of an APS and how the small-
est of errors in the system may be life-threatening for the user, 
we have not yet seen a commercially-available APS. Additionally, 
there are strict regulations and criteria that the device needs to ful-
fill in order to receive funding.46 Due to this slow progress towards 
commercialization, a group of technical enthusiasts have created 
a movement called #WeAreNotWaiting. This group has evolved 
into an entire community that shares their technical knowledge and 
algorithms that can help them build a do-it-yourself APS. Some 
examples of such communities include ‘OpenAPS’, ‘Loop’, and 
‘AndroidAPS’. The ‘OpenAPS’ system was developed on a Rasp-
berry Pi microcontroller system integrated with Medtronic insulin 
pumps. It has a feature that can suggest changes in insulin to car-
bohydrate ratios and insulin sensitivity factor settings, but it has 
limited pump compatibility as it was designed on an older version 
of the Medtronic insulin pump. The Loop can be used with an iP-
hone rather than a microcontroller. Its working differs in the sense 
that in order to calculate the required insulin value at any point of 
time, it will consider both the present glucose value as well as the 
value 30 minutes ago. A couple of drawbacks of this system is that 
it requires the use of a communication device and it uses an older 
version of the Medtronic insulin pump. The AndroidAPS uses an 
Android phone as its processing unit. A major advantage of this 
system is that it can work with many modern-day insulin pumps.

A do-it-yourself pancreatic system utilizes algorithms that are 
unregulated and untested in clinical trials, which makes them very 
unpredictable in terms of the risks they may induce on the user. Po-
tential risks could also come out of user interaction with the system 
and the use of out-of-warranty pumps.42 Another challenge in the 
use of such devices is the inability to effectively communicate any 
errors and safety concerns with all the users.

Due to the challenges and risks associated with do-it-yourself 
systems, it can be very challenging for clinicians or doctors to ethi-
cally handle the situation where a patient may ask for advice on a 
platform such as the OpenAPS. Considering the current guidelines 
laid out for a doctor, it is recommended that the doctors do men-
tion the existence of such a device to the patient asking but to not 
endorse or recommend it to them.47 Additionally, it is beneficial for 
the patients to be encouraged to share their data and information 
with their doctor in case they do choose to use such a system.

APS and T2DM Management

T2DM is the most prevalent chronic disease and is associated 
with premature mortality from multiple causes. Intensive insulin 
therapy (APS) when used in younger T2DM individuals helps in 
early glycemic control and prevents the loss of beta cell func-
tion and the expected diabetic micro- and macrovascular compli-
cations.48 However, in elderly people with T2DM and in people 
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with advanced T2DM, aggressive glycemic control goals and un-
dertreatment of hyperglycemia may complicate the management 
of geriatric syndromes and comorbid conditions. In the elderly 
population, APS usage might protect people from frailty, dis-
ability, and disease aggravation related to unrecognized episodes 
of massive dysglycemia. This could translate into lower rates of 
avoidable hospitalizations for actually ambulatory care-sensitive 
conditions.49

Challenges in the APS Technology

The development of an APS foresees certain challenges related to 
technological advancements in its components as briefed below.

CGM

1. The accuracy of interstitial glucose sensing is affected by rapid 
changes in BGL. This may cause the sensor to report glucose 
concentrations below their actual values.31 An incorrect BGL 
reading can lead to errors in insulin dosage being delivered to 
the user.

2. Studies have found sensor dropouts of blood glucose readings in 
the CGM sensors. This has been seen in cases where there was 
abnormal pressure applied on the sensor or if the user had laid 
directly down on it.12,26,50 Such dropouts have been observed to 
occur in commercially-available and approved glucose sensors 
and can cause problems in open-loop, low glucose suspend, or 
fully CL studies.50

3. Subcutaneous glucose sensors gathering data in real-time can 
incur a lag in measurement. An extensively large delay can lead 
to incorrect insulin dosages and hamper the system’s overall 
performance.31

4. Medical insurances are a limiting factor for users whose insur-
ance does not cover CGM systems or which provides limited 
coverage. These systems can be expensive when compared to 
SMBG devices, and regular replacements for sensors and trans-
mitters add on to the eventual cost of the system. Typically, sen-
sors will last from 7–14 days depending on the CGM device 
manufacturer, and their corresponding transmitters need to be 
replaced monthly to a couple times per year.11

5. Most CGM device manufacturers provide water resistance as a 
feature, but the extent to which the device is protected depends 
on the specific capabilities of the system. Abbott Freestyle Libre 
is water-resistant to 3 feet for up to 30 m. The Medtronic Guard-
ian Sensor 3 is water-resistant to 8 feet for up to 30 m, and the 
Senseonics Eversense is water-resistant to 3.3 feet for up to 30 
m. Since the transmitter requires Bluetooth technology to trans-
mit data to the receiver, CGM sensors may lose contact during 
water-based activities, such as showers, baths, and swimming. 
These dropouts in readings can cause problems in functionali-
ties of the device.11

CSII

1. While using the subcutaneous route, there are delays seen in 
glucose sensing and insulin delivery. These delays make it dif-
ficult for the patient’s body to be able to absorb and utilize the 
delivered insulin immediately after detecting an imbalance in 
BGL.51

2. A dual-hormone system is possibly an efficient approach for 

treating hypoglycemia; however, development of a commer-
cial device is challenging.2 Glucagon, as a secondary hormone, 
faces challenges due to its instability in solution form.24 Intro-
ducing a second hormone increases the device’s complexity 
and requires a dual-chamber pump system which is still not 
commercially-available. Finally, it requires two infusion sites, 
requiring additional skill that must be taught to the patient.42

3. Like CGM sensors, continued use of CSII technology is ex-
pensive and becomes an important issue in the care of patients 
with T1DM.11

Controller

1. The developed system should be able to regulate outputs in the 
presence of disturbances, such as exercise, mental stress, ill-
ness, and changes in meal composition.

2. Control algorithms need to personalize treatment to adapt to the 
inter/intra-individual variabilities in users, especially in their 
action on the unique glucose-insulin pattern.31

3. An APS involves integrating multiple components, such as 
the continuous glucose meter, insulin pump and the micro-
controller. This integration leads to the possibility of multiple 
fault scenarios. It is important to investigate how the system 
will manage potential technical risks before moving onto com-
mercialization.

Future directions

APS, over the years, has translated successfully from research to 
clinical practice. Cost-effective analyses are required for health 
care systems to support reimbursement of this technology. Based 
on the published literature on advancements in APSs, few rec-
ommendations are proposed for the future research. These in-
clude:

CGM

1. It is important for the system to use a reliable and long-lasting 
sensor to measure real-time blood glucose values accurately. It 
will make the device easily maintainable and affordable.

2. For better diabetes management during periods of rapid glu-
cose changes, future CGM sensors need to reduce the lag in the 
measurement of the glucose concentrations.

3. Another area of development for CGM systems is to make them 
easy to wear. With smaller profiles and better adhesive strategies 
to keep them in place, the lifetime of a sensor can be improved, 
which will eventually make the system more affordable.

4. Introducing compatibility of CGM sensors with other independ-
ent insulin pumps makes the eventual goal of developing a CL 
APS for automatic insulin delivery achievable.

CSII

1. For the development of a fully automatic CL system, faster-
acting insulin needs to be developed to reduce the delays in ab-
sorption of insulin delivered subcutaneously.

2. Long duration clinical studies assessing the feasibility of a du-
al-hormone system will help in faster commercialization. Ad-
ditionally, focus on the development of a dual-chamber pump 
system will help achieve a fully functional APS.42
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Controller

1. The control algorithm should be such that it automatically re-
sponds to external disturbances, such as physical exercise, meal 
composition, stress, and circadian variations in insulin sensi-
tivity, without the need of any additional information from the 
patient.52,53

2. Controllers should show optimal performance with respect to 
time delays in order to minimize the time taken from glucose 
imbalance detection to the absorption of the required amount of 
insulin or glucagon.52

3. Any proposed control algorithms should be evaluated in vivo 
in order to obtain realistic results with respect to a human’s 
glucose metabolism system. A steppingstone to human testing 
would be to test the control algorithm on animals with similar 
glucose metabolic systems, such as rats and pigs.

4. Prediction of type and intensity of physical activity using infor-
mation from heart rate sensors and accelerometers can provide 
crucial information for the development of future artificial pan-
creas control algorithms.53

5. To accommodate unique variations in insulin sensitivity for 
individuals, future artificial pancreas algorithms need to be ei-
ther personalized to respond to each situation separately or to 
closely mimic the physiological function of a working human 
pancreas for increased flexibility in operation.31,53

Machine learning

1. While applying machine learning techniques, it is important 
to make sure that the acquired data being used for training the 
model is representative, should have minimal noise, and the 
data set should neither be too little nor too large.31

2. A combination of machine learning and existing control strat-
egies could be studied. A data-driven approach could provide 
short-term insulin updates that function independently of the 
control strategy. This will allow for a system to be built that is 
able to capture both the fast and the slow glucose dynamics.32

Conclusion

APS has a promising efficacious and safe modality of digital-age 
bioelectronics approach to the treatment of diabetes. A systematic 
review concluded that APS stabilizes the glycemic levels by main-
taining an increased normoglycemic range, and reduced time in 
hypoglycemia and hyperglycemia.54 Evidence from several clini-
cal research studies has demonstrated that CL systems are effec-
tive with improved glycemic outcomes and reduced hypoglyce-
mia, and had positive end-user acceptance in children, adolescents, 
adults and pregnant women with T1DM.55 Limitations of current 
research evidence on APSs are related to inconsistency in outcome 
reporting, small sample size, and the short follow-up duration of 
individual trials. Clinical studies applying CL to particular cohorts 
of individuals with T1DM will be important in determining those 
who can benefit most from CL technology and will provide key 
evidence to support reimbursement by health care providers.
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