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Abstract

Alcoholic hepatitis is the most severe and acute form of alco-
holic liver disease. The mortality rate associated with alcoholic
hepatitis is high, largely due to the lack of suitable pharmaco-
logical interventions. While there has been substantial research
in the area, generating pharmacological interventions has been
plagued by the lack of a robust mouse model both for testing
and for understanding the underlying pathology. A number of
major notable advances have been made in this area recently,
with the goal of generating a mouse model of alcoholic
hepatitis. The purpose of this article is to review recent
advances inmodeling alcoholic liver disease both in vitro and in
vivo in the mouse, and place them in the context of the greater
spectrum of alcoholic liver disease, with a focus on how we can
translate current advances into a high-fidelity model of alco-
holic hepatitis. In addition, we will review the basic mecha-
nisms of alcoholic hepatitis as it is currently understood,
focusing on recent advancements in diagnosis, prognosis and
current pathophysiology, especially as it relates to the pro-
found immune dysfunction present during alcoholic hepatitis.
Citation of this article: Woolbright BL, Jaeschke H. Alcoholic
hepatitis: lost in translation. J Clin Transl Hepatol 2018;6(2):1–8.
doi: 10.14218/JCTH.2017.00054.

Introduction

Alcoholic hepatitis (AH) is a type of acute-on-chronic liver
failure associated with alcoholism and which has a high
mortality rate.1 Corticosteroid treatment is still the gold stand-
ard pharmaceutical intervention, but has minimal efficacy.2

Orthotopic liver transplantation is the most effective cure,
but there is a moral conundrum associated with giving valuable
livers to patients with ongoing alcoholism, especially given the
high rates of recidivism in the population.3 Moreover, the
number of livers available for transplantation is limited com-
pared to the number of AH patients in most regions, and more
information is necessary to fully understand what populations
respond positively to transplantation.4–6 As such, pharmaco-
therapy is urgently needed for this patient population.

A number of clinical trials or pilot studies have tried agents
that target inflammation or inflammatory cell death, based on
studies performed in the mouse model.2,7–9 There have been
a few cases of positive results, and none of these agents have
been translated into a legitimate clinical therapeutic candi-
date. This is partially due to the incredible complexity of AH
pathology; however, another increasingly well understood
factor is the lack of suitable models for generating therapeutic
candidates for late stage alcoholic liver disease (ALD).1,10–12

As such, a major imperative in the basic science of ALD
remains the generation of a high-fidelity mouse model of AH,
or advanced ALD. In this review, we will attempt to bridge the
gap between the mouse model and clinical AH, by defining
current obstacles and highlighting innovative recent solutions
to this growing dilemma.

Acute alcoholic hepatitis – Much more than just
steatosis and inflammation

Understanding AH as a clinical disorder is necessary to obtain
mouse models that accurately model the disease. AH patients
commonly present to the hospital with one or more co-
morbidities, including jaundice, esophageal varices, or fever
due to co-infection.13 Underlying cirrhosis can remain silent for
years prior to these precipitating events, but is present in up to
80% of AH patients.14 An overwhelming majority present with
some degree of fibrosis, indicating significant chronic liver
disease.14 As such, the largely silent nature of ALD in human
patients is a major hurdle for early diagnosis, and a major
contributor to the associated morbidity and mortality.1,15

Histologically, patients with AH commonly present with
marked fibrosis, steatosis and cholestasis or bilirubinostasis
in the liver.14 Patients also commonly present with elevations in
plasma bilirubin, plasma creatinine and the international nor-
malized ratio (INR), consistent withmajor liver and kidney dys-
function. Combinations of INR ratio, plasma creatinine and
plasma bilirubin levels, make up the bulk of a number of prog-
nostic batteries that will be discussed later in this review.16–18

As such, the major dysfunction associated with AH could be
classified as an abrupt lack of liver function, that is associated
with major underlying liver disease, severe inflammation and a
faulty homeostatic balance of functional hepatocytes.

Surprisingly, one factor that is rarely elevated is the common
marker of hepatocyte injury, plasma alanine aminotransferase
(ALT). Patients with AH typically have very minor elevations in
ALT, commonly less than 1.5-fold higher than the upper limit of
normal. While aspartate aminotransferase (AST) values can
rise as high as 200-300 IU/L, values much above this are
typically considered diagnostically unlikely to be AH, and mean
values in large studies are typically closer to 90-150 IU/L.2,14

AST activities are commonly elevated and AST>ALT is
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a common diagnostic indicator of AH versus other types of liver
injury.19

Given that AST is expressed in multiple organ systems other
than liver, the AST>ALT ratio may be indicative of cell death in
other organ systems. These relatively low values of AST/ALT
suggest only minor levels of necrosis occur in AH patients,
which is supported by data that a majority of cell death during
AH appears to be through apoptosis.9,20 Even still, measure-
ments of apoptosis return very low levels of overall cell death.21

TUNEL stains on AH biopsies indicate that AH patients undergo
relativelyminor levels of cell death, when compared to diseases
with major acute parenchymal injury.9,21 While some degree of
cell death certainly occurs during AH, these data call into ques-
tion whether or not cell death plays a critical role in AH
progression.21

Neither AST nor ALT plasma activities are strong predictors
of outcome in AH patients.21 It should be noted, though, that
ALTvaluesmay be partially suppressed due to an overall reduc-
tion of ALT activity in the liver of AH cirrhotics.22 The limited
degree of cell death that occurs during AH is likely not a miti-
gating disease factor acutely; although, the chronic cell death
that occurs during the course of ALD is still a potential driver of
subsequent inflammation, fibrosis and eventual cirrhosis.

Liver regeneration, which typically occurs as a subsequent
response to cell death, is also highly dysregulated in AH
patients. Cirrhotic patients have regenerative nodules that
are universally or widely positive for proliferating cell nuclear
antigen, suggesting widespread attempts at hepatocyte pro-
liferation.23 This is suppressed in AH patients though, as these
patients depose laminin instead of fibronectin, which pushes
progenitor cell expansion away frommature hepatocyte differ-
entiation, towards the bile duct epithelial cell lineage.24 The
enhanced proliferation of biliary epithelial cells also seen in
AH patients is also observable in the number of liver progenitor
cells proliferating, which both serve to reduce the number of
mature hepatocytes available to perform normal liver func-
tions.24,25 This lack of mature hepatocytes may be a major
driving factor in the lack of liver function and the subsequent
liver failure. Therapeutic interventions aimed at promoting the
maturation of hepatocytes and the deposition of normal
extracellular matrix are an interesting therapeutic avenue for
increasing liver function in alcoholic cirrhotics and AH patients.

In addition to liver dysfunction, many patients also have
dysfunction of other organ systems, such as kidney and gut,
which is intrinsically linked to both multiorgan system dys-
function and survival.26–29 AH patients suffer from a dysfunc-
tional immune response as well, including elevated plasma
leukocyte counts which, paradoxically, does not result in an
effective immune response, as these patients are at a dramat-
ically increased risk of systemic inflammatory response syn-
drome.30 This may be due to a well-characterized immune cell
dysfunction in AH patients including alterations in initiation of
respiratory burst in neutrophils and monocytes, and a faulty
myeloperoxidase enzyme in neutrophils from cirrhotics.31–33

The lack of a normal myeloperoxidase enzyme might
explain why these patients also have a paradoxical lack of
chlorotyrosine adducts associated with neutrophil-mediated
liver injury, despite considerable neutrophil deposition and
activation.34,35 The role of neutrophils in AH is still under
debate, as some evidence points towards neutrophils being
drivers of AH while other studies indicate the opposite.14,36–39

Given the extended time course of AH in patients, neutrophils
may play a contextual role based on current patient status.
Unfortunately, very limited information is available on the

time course of neutrophil activity in ALD patients, as so few
patients are identified during the early portion of the
disease.12 A greater understanding of neutrophil and mono-
cyte dysfunction during AH is necessary to better understand
how and why these patients become susceptible to infection.

Diagnosis, prognosis and presumed mechanisms

AH occasionally represents a diagnostic dilemma for clinicians.
The use of transjugular biopsy (TJB) is the recommended
means of differentiating between diagnoses, as it can defini-
tively provide an answer; although, a number of detractors
accurately point out that biopsy comes with inherent risk in
patients with bleeding susceptibility, andmay only be of limited
availability in rural settings.1,2,40 As such, The American Asso-
ciation for the Study of Liver Disease has not yet fully endorsed
TJB.40 A number of plasma biomarkers have been investigated
for when TJB is either unavailable or too risky, though.

Plasma values of keratin-18 are dramatically elevated in AH
patients, and may serve as a means for diagnosing the AH
population.41 While plasma keratin-18 values are typically
measured in the context of cell death, AH patients have dra-
matic elevations without the typically associated increases in
plasma transaminases, or lactate dehydrogenase (Fig. 1).21

Why this occurs remains a mystery, although it is currently
under investigation.21 Transient elastography can also identify
alcoholic cirrhosis (AC) with some specificity and sensitivity,
although its use in AH is likely limited.42 Alcoholic steatohepa-
titis (ASH) test is a novel multiparameter test with good spe-
cificity, and specificity that may be useful in some patient
populations or in centers with limited potential for biopsy.43

A highly sensitive and specific test for diagnosis of AH would
be incredibly valuable, as it would preclude the need for TJB in
highly at-risk patients, or in hospital settings where TJB is not
immediately available.

Prognosis of AH has been more widely investigated, as a
diagnosis of AH has a 28-day mortality rate of 25-40%.1

A number of metrics have been evaluated for their ability to
predict mortality in the population. Perhaps the most common
is Maddrey’s discriminatory function score based on prothrom-
bin time and bilirubin levels.44 This is a modified metric, where
scores above 32 indicate severe dysfunction and recommend
the use of corticosteroids.44 The model for end-stage liver

Fig. 1. Ratio of K18 (M65) to plasma alanine aminotransferase (ALT)
activity compiled from multiple studies. K18:ALT was calculated in a series
of studies on different clinically relevant liver diseases. Acetaminophen (APAP)
data are derived from Antoine et al.99; obstructive cholestasis data are derived
Woolbright et al.56; alcoholic cirrhosis (AC) and alcoholic hepatitis data are derived
from Woolbright et al.21
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disease score was also adapted for use in AH and was reported
to predict outcome more effectively than Maddrey’s, presum-
ably due to taking into account kidney function, which is linked
to survival.17,26 The Lille score is a dynamic scoring system and
not only predicts outcome in patients but also serves to deter-
minewhether or not patients are responders or non-responders
to corticosteroid treatment using multiple measurements over
7 days.18

Recently, combinations of these scores were shown to be
even more effective.45 The ABIC scoring system is also widely
reported in the literature and essentially is as effective as Lille
or Maddrey’s.16 Recently, our own group and others have
reported that plasma keratin-18 ratios may also be highly
predictive of mortality, despite the fact that plasma keratin-
18 levels in AH appear to be disproportional to traditional
measures of liver cell death in plasma.21,46 The use of prog-
nostic scores has been a major source of understanding of
clinical AH. As direct intervention is cumbersome and risky
in human patients, identifying markers associated with sur-
vival or non-survival is critical to understanding the disease.

A number of different factors associated with the immune
response have been correlated with survival and non-survival.
Interestingly, some of these values can be viewed as contra-
dictory in nature (i.e. plasma IL-8 values are elevated in
non-surviving AH patients), yet neutrophil infiltration seems
to be important for survival.14,36,39 Hepatic expression of CXC
chemokines, though, is also linked to poorer survival outcomes,
suggesting hepatic inflammation is detrimental to outcome.37

The lack of clarity in these data have led to some dichotomy
between the basic science fields and the clinical science fields
with regards to the role of neutrophils in AH.

Neutrophil infiltration has long been a desired aspect of
mouse models, due to their noted presence and presumed
pathological significance in AH patients, and recent advance-
ments were rightfully hailed for their incorporation of legit-
imate neutrophil infiltration into the model, achieved solely
with the use of alcohol.47,48 The Gao-bingemodel is dependent
on the presence of neutrophils for cytotoxicity, as prevention of
neutrophil extravasation by depletion of E-selectin is strongly
protective.48 Thus, a number of recent studies using thismodel
have capitalized on this finding and demonstrated a reduction
in neutrophil recruitment or activity, and suggested the immu-
nomodulatory activity as a potential therapeutic for AH,
despite the fact that histological evidence and clinical evidence
indicates that global inflammatory suppressionmight be highly
detrimental in some patients.7,39,49–51 As noted above, neutro-
phils very likely play multiple roles during the course of the
disease and should be investigated contextually in the future.

Even so, other markers of survival act to reinforce each
other. In the instance of cholestasis, a majority of research
indicates that concurrent cholestasis in patients or murine
models with alcoholic liver injury dramatically worsen out-
comes. In murine models, ethanol feeding dramatically exac-
erbates cholestatic liver injury induced by bile duct ligation
(Woolbright and Jaeschke, unpublished data). Plasma bile acid
values are elevated in patients with AH.52 Total plasma bile
acid levels, cholic acid levels and chenodeoxycholic acid
levels also correlate with severity of liver disease in ALD
patients.52 Concurrent cholestasis, plasma bilirubin levels,
and low deoxycholate/glycodeoxycholate levels, indicative of
intrahepatic or extrahepatic bile duct blockage, are all strongly
associated with mortality; however, it is unknown whether this
is a primary cause or a secondary effect of the lack of liver
function.37,44,52,53 Bile acids are thought to be hepatotoxic

in large concentrations, especially when hepatocytes are
exposed to leakage from the biliary tracts.54–56 Bile acids
themselves are also pro-inflammatory and may contribute to
the inflammation seen in AH patients when there is advanced
jaundice and cholestasis.56,57 More research is needed using
patient samples to establish whether or not some of these
effects are potentially causative or a byproduct of the loss of
liver function.

Alcoholic liver disease in the mouse – Limited
pathology

Mouse model – Mechanisms

A number of authoritative reviews have been written on
mechanisms of alcoholic steatosis, alcoholic gut dysfunction,
and the subsequent effects in mousemodels of ALD.58–60 This
review is an attempt to focus on translation of these findings
into actionable targets, and thus these mechanisms will only
be touched upon briefly.

Alcohol is widely considered to be unpalatable to most
rodent species, and, thus, ad libitum administration to rodents
rarely results in blood alcohol levels commensurate with
human exposure or human disease.61 The limited increase in
blood alcohol concentrations may also be due to faster metab-
olism of alcohol by rodents, and is likely a component of the
reduced pathology observed in murine models. Regardless,
alcohol is rapidly metabolized by the mammalian body through
numerous pathways, but primarily through alcohol dehydro-
genase and cytochrome 2E1, and in small quantities through
glucuronidation.62–64 Ethanol is converted to acetaldehyde
by alcohol dehydrogenase, and to acetic acid by aldehyde
dehydrogenase.62 Some additional detoxification occurs
through cytochrome P4502E1 (CYP2E1), through a similar
pathway as alcohol dehydrogenase.63 Acetaldehyde is far
more reactive than either ethanol or acetic acid and, thus, is
a likely source of cellular stress in ALD patients.65

Long-term alcohol consumption alters NADH to NAD+ ratios
through the alcohol dehydrogenase pathway, as this pathway
uses NAD+ as a co-factor.66 This shift alters the activity of
histone deacetylase sirtuin-1, which affects numerous signal-
ing pathways related to lipid metabolism. This includes activa-
tion of sterol response element binding protein-1, which
enhances lipogenesis, and a reduction in peroxisome prolifer-
ator activated receptor co-activator gamma signaling leading
to reduced fatty acid oxidation and accumulation of short chain
hydrocarbons.67,68 The effect of this simultaneous dysregula-
tion of metabolism is considerable accumulation of triglycer-
ides in hepatocytes, leading to the characteristic steatosis
present in alcohol-treated animals or cells.66–68

Most current research is focused on these processes, and
our understanding of this process is far greater than the
subsequent events in the mouse. Unfortunately, while simple
steatosis is present in a majority of AC and AH patients, the
pathology associated with simple steatosis alone is minimal,
and most patients present at a point considerably past
steatosis (Fig. 2).69 Moreover, steatosis is rapidly resolved by
abstinence, which remains a mainline therapy for ALD and AH,
and, thus, the likelihood that addressing liver steatosis as an
effective therapeutic target for AH is minimal, as it is self-
resolving in compliant patients.70,71

Considerable oxidative stress builds rapidly upon chronic
alcohol exposure. This is likely frommultiple sources, including
Kupffer cell-mediated oxidative stress, mitochondrial dysfunction
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in hepatocytes and the production of reactive metabolites.72–74

It has been hypothesized that CYP2E1 can be a relevant source
of reactive oxygen species (ROS) during alcohol exposure;
however, others have questioned this hypothesis and sug-
gested a role of NADPH oxidase in Kupffer cells as the
main source of alcohol-induced oxidant stress.75 Regard-
less, a number of different products from ROS-mediated
damage are measurable after alcohol exposure, including
4-hydroxynonenal and 3-nitrotyrosine.76 These species
likely contribute to cell death after alcohol consumption,
but also activate measures such as autophagy.77–78

As autophagy removes both damaged mitochondria and
lipid droplets, this is likely a protective measure against ROS-
damaged species in alcohol-fed mice.77 Selective mitophagy,
or the removal of damaged mitochondria, through the protein
parkin is protective against alcohol-induced liver injury, as
knockout of parkin dramatically exacerbates injury in alcohol-
fed mice.78 This is due to preservation of normal mitochondrial
function and removal of mitochondria damaged by excessive
ROS production and alcohol metabolism.79 It is currently
unknown as to whether selective or non-selective autophagy
also occurs in human patients; although, this might be another
potential therapeutic avenue for reducing cell death and
enhancing hepatocyte function.

Simultaneous to liver dysfunction, alcohol causes severe
gut dysfunction.80 The “leaky gut hypothesis” was an initial
explanation as to why lipopolysaccharide (LPS) levels were
elevated in alcoholics and alcohol-exposed mice.81 Chronic
alcohol exposure causes intestinal overgrowth of bacteria and
tight junction dysfunction in the gut.82 The combination of
these two factors allows for bacteria to spill out from the gut,
which increases plasma LPS levels.80 In human cirrhotics, this
effect can be ameliorated by gut sterilization with high doses of
rifaximin, designed to prevent the generation of ammonia and
reduce hepatic encephalopathy.60,83

Elevated LPS levels in the mouse model activate toll-like
receptor-4 (TLR-4) on Kupffer cells.84 This results in produc-
tion of tumor necrosis factor-a (TNF-a) and release of ROS
mediated by NADPH, which induces cell death in hepatocytes
and provokes inflammation.84,85 Ablation of TLR-4 expression
is protective against injury in the mouse model.84 The role of
TLR-4 has been confirmed repeatedly in subsequent studies by
multiple groups.85 This initially led to TNF-a blockers being
assessed in patients; however, the clinical results were disap-
pointing, as the blockade of inflammation led to sepsis in the
patient population and higher mortality.7 Surprisingly, in most
models of pure alcohol administration, the TNF-a release does
not result in overt neutrophil accumulation, fibrosis or cirrho-
sis.12 Administration of other agents is typically required, and
represents a major hurdle for generating a high-fidelity mouse
model.

The mouse model of ALD – What it is and what it is not

The rodent model of ALD has evolved since the original
experiments from DeCarli and Lieber identifying a liquid diet
that was capable of inducing steatosis in the mouse.86 While
DeCarli and Lieber used rats, the existence of a remarkable
number of tools in the mouse has led to its surge as the
primary animal model of use in the laboratory. Four- to six-
week feeding with the liquid diet induces steatosis and mild
elevations in plasma transaminase activity consistent with
very early stage ALD. Extended time frames, the addition of
different pathogenic molecules (such as LPS to enhance
inflammation or carbon tetrachloride (CCl4) to induce fibro-
sis), the use of binge dosing on top of subacute dosing, direct
intragastic infusion, and hybrid alcohol/high-fat diets has led
to a much more robust pathology.48,87–92

The above-listedmechanisms of alcohol metabolism, hepatic
steatosis and alcohol-induced inflammation in the mouse were
all largely discovered in one of these associated models,
validating the usefulness of these models in understanding
the effects of alcohol on mammalian physiology. Advantages
and disadvantages of each model are summarized in Table 1.
However, the plurality of the common findings associated with
AH either have not been demonstrated or are more tightly
associated with the adjuvant treatment, such as in the case
of liver fibrosis in mice treated with alcohol and CCl4, in
mouse models of ALD. This includes: major elevations in
plasma bilirubin or INR, indicating loss of liver function, multi-
organ dysfunction syndrome, concomitant cholestasis, bridg-
ing fibrosis, cirrhosis, regenerative nodules of hepatocytes,
progression to hepatocellular carcinoma, and acute-on-
chronic type liver failure. Unfortunately, increasingly well
acknowledged flaws exist that require remediation if the
mouse is going to serve as the major laboratory model for
ALD. Translating the above findings will require innovation
from the field as a whole, and advancement of the underlying
pathology present in clinical patients.

Lost in translation – How do we turn basic science
findings into clinical results in the alcohol field?

With the limited pathology available in mice, how do you
attempt to translate these findings into a more complete
understanding of clinical manifestations of ALD? A number of
groups have aggressively pursued better models, especially in
recent years.48,88–92While the obvious clinical need is an effec-
tive therapeutic, the most critical need for the basic science

Fig. 2. Disease severity in patients versus alcohol model progression.
A majority of models fail to recapitulate the disease severity observed in AH
patients. Abbreviations: ACLF, acute-on-chronic liver failure; AH, alcoholic
hepatitis; HCC, hepatocellular carcinoma.
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field is not therapeutic candidates but models of ALD that reca-
pitulate all aspects of the human pathophysiology. Unfortu-
nately, this task has proven difficult for the field, for a
number of the reasons listed in this review. New models are
being generated every year at this point as the field recognizes
that current models are inefficient and unlikely to translate to
the clinic. In the interim, additional methods are constantly
being developed to help bridge the gap between mice and
humans. A number of notable studies with innovative attempts
at bridging this gap have recently been published or presented
and will be discussed in the subsequent sections.

It is clear that patients with AH present with three critical
factors that are either missing or are poorly established in
mouse models: 1) the presence of major underlying liver
dysfunction (i.e. fibrosis or cirrhosis) before the onset of liver
failure (acute-on-chronic liver failure); 2) severe multiorgan
dysfunction; and 3) dysfunctional innate immune responses.
This is a critical point of understanding: mouse models fail to
recapitulate any of these underlying factors, with the possible
exception of point 3. Even the most advanced models typically
only recapitulate findings up to the point of steatohepatitis
(Fig. 2).48,91 This state can occur undetected for decades
before the onset of full-blown cirrhosis or concurrent AH, and
is not a single event precipitated by a single binge but more
likely the result of cumulative binges in both mice and
humans.91,92 Moreover, inflammation in the setting of steato-
sis is benign compared to the advanced pathology associated
with cirrhosis or AH.

While human patients likely encounter a similar progression
of pathology at some point, there is no diagnosis of ALD for the
overwhelming number of patients during this period. AC and
AH patients commonly present at or near the end of their
disease.1 This is clearly evidenced by the high mortality rate
associated with AH.1 Thus, interventions that attempt to
target this period would require a dramatic paradigm shift in
the diagnosis of ALD. As such, interventional studies should be
re-evaluated in the context of more advanced ALD.

Experimental therapeutic intervention in murine models
should be initiated after the major onset of pathology and
not before pathology begins. These studies can coincide with
prophylactic studies that address the role of the protein in pro-
gression of the injury. Knockout mouse models have become
the gold standard for the assessment of protein function during
disease. While the authors of this review concur with their use
in assessment of protein function during disease, they do not

always make excellent therapeutic models. This is especially
true in the case of chronic disease states, where an interven-
tion is only possible in the later stages of the disease.

A number of different mechanisms for selective protein
knockdown have become more widely available in recent years,
including knockdown via the hepatotropic adeno-associated
virus-8, inducible genetic knockdown, and cell-specific knock-
down therapies.93,94 Fortunately, therapeutic efficacy is still
demonstrable even when administered late in ALD in mice.
Administration of heat-shock protein 90 inhibitor 17-DMAG
prevented alcohol-induced liver injury when given directly
before a binge of ethanol, but after 10 days of chronic alcohol
treatment.95 By giving the drug at a point after chronic alcohol
administration, the authors insured that the drug did not affect
the onset of steatosis, but instead directly affected the immune
dysfunction associated with binge on chronic alcohol treat-
ment.95 Similar results with both prophylactic schemes and
treatment schemes were obtained in a separate study investing
the effect of pepducins on neutrophil recruitment in a model of
moderate ASH.51 More studies testing late-stage therapeutics
in addition to prophylactic treatment are recommended as they
allow for the differentiation between effects on disease progres-
sion and effects on disease state.

A number of studies have recently begun validating their
murine findings by following up in patients with ALD of varying
degrees. Impressive results were recently obtained when
investigators noticed that a protein called fat-specific protein
27 was up-regulated in microarray analysis of both human AH
patients and mice fed an ASH-inducing diet.92 Up-regulation of
the protein was confirmed in AH patients, and correlated with
mortality and disease severity; however, knockout of the
protein was protective in the mouse model, indicating direct
involvement in the injury.92 As such, the study bridged the gap
between murine ASH and human AH. Similarly, a study indi-
cating expression of osteopontin in AH patients correlated with
outcome and knockout of osteopontin was also protective in
the mouse; although, contrary results were obtained in other
alcohol models.49,90

These strategiesmay apply to diagnostic markers as well, as
microRNA-192 was up-regulated in plasma samples of both
mouse and humans exposed to alcohol, and was proposed as a
potential diagnostic marker.96 “Humanizing”mice in an attempt
to get a more human-like response from mice has also yielded
interesting results. Fecal transfer between AH patients and
germ-free or conventional mice resulted in a dramatic increase

Table 1. Comparison of clinical parameters and histological findings in widely used mouse models of alcohol exposure and human AH patients

L-C diet Gao-binge “Hybrid” gastric infusion Human AH patients

AST, U/L Slight elevation Elevated 100-300 U/L Elevated 100-200 U/L Elevated 80-120 U/L

ALT, U/L Slight elevation Elevated 100-300 U/L Elevated 100-200 U/L Mild elevation

Bilirubin No increase No increase No increase Elevated 3-30+ mg/dL

INR No increase No increase No increase Commonly elevated

Bilirubinostasis None None None Common

PMN infiltration No increase Significant Significant Significant

Fibrosis None None None Up to 98% of patients

Cirrhosis None None None Up to 80% of patients

Liver failure None Unknown Unknown ACLF

Abbreviations: ACLF, acute-on-chronic liver failure; AH, alcoholic hepatitis; ALT, alanine aminotransferase; AST, aspartate aminotransferase; INR, international normalized
ratio; L-C Diet, liquid diet; PMN, polymorphonuclear cell.
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in susceptibility to ALD, indicating some microbiota may be
inherently protective against ALD in patients that do not
undergo progression to advanced steatohepatitis and subse-
quent disease states.97

Other studies have used treatment of primary human
hepatocytes to determine how ethanol affects hepatocytes
acutely in man. Treatment of primary human hepatocytes with
ethanol resulted in posttranslational modifications of forkhead
box protein Class O 3 (FOXO3) as seen with in vivo treatment
of ethanol.98 Studies focused on validating murine results with
direct human impact are integral to both our understanding of
what the murine model represents and potential therapeutic
targets in patients. Furthermore, these studies might elucidate
novel information that assists in the development of high fidel-
ity mouse models.

Induction of cirrhosis followed by administration of alcohol
may also yield a better understanding of the effects of alcohol
in populations with underlying liver disease. Cirrhosis of all
origins, likely has more in common with AC than benign forms
of murine ALD that feature consumption of alcohol. In support
of this, patients with AC that remain abstinent for 6 months
have limited steatosis, but still suffer from a number of
associated complications and still have substantial neutrophil
infiltrate in the liver.21 Newmodels of cirrhosis that incorporate
known effects of alcohol need to be developed.

While the effects of alcohol on naïve livers is well understood
from decades of research, very few studies have examined the
effects of alcohol on the cirrhotic liver. Administration of alcohol
in addition to agents that can cause cirrhosis, such as repeated
CCL4 injection, accelerates progression of disease by enhancing
fibrosis.88 Chiang et al.12 hypothesized this was due to enhance-
ment of the same pathways present in CCl4-treated mice; thus,
agents that can dramatically enhance normal alcohol pathology
may be useful. A number of knockout mouse models also expe-
rience fibrosis after chronic ethanol feeding. Given that only a
minority of chronic alcohol drinkers undergo the conversion
from steatosis to steatohepatitis, a genetic component may be
involved, although little is understood about this area. Never-
theless, knockout mouse models with exacerbated effects
should be validated in human patients when possible by assess-
ing protein levels in patients at varying stages of ALD.

ALD – What does the future hold?

The number of studies on AH published has doubled in the
years between 2006 and 2015, according to NCBI, and is
continuing to increase at a rapid pace. As alcohol has widely
been understudied relative to its impact on liver health, the
field is poised for rapid expansion. During this period, it will be
imperative to focus on development of legitimate models of
late-stage ALD and AH if progress is to be made clinically on
these fronts. Continued attempts at translating our under-
standing of the mouse to human patients using novel and
innovative means will provide the greatest return, and will
hopefully generate real therapeutics in the immediate future.
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